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The Zariski–Lipman conjecture for log canonical spaces

Stéphane Druel

Abstract

In this paper, we prove the Zariski–Lipman conjecture for log canonical spaces.
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1. Introduction

The Zariski–Lipman conjecture asserts that a complex variety X with a locally free tangent
sheaf TX is necessarily smooth [13]. The conjecture has been shown in special cases: for
hypersurfaces or homogeneous complete intersections [8, 15], for local complete intersections
[9], for isolated singularities in higher dimensional varieties [17, Section 1.6], and more
generally, for varieties whose singular locus has codimension at least 3 (see [4]).

The Minimal Model Program was initiated in the early 1980s as an attempt to extend the
birational classification of surfaces to higher dimensions. It became clear that singularities are
unavoidable in the birational classification of higher dimensional complex projective varieties;
this led to the development of a powerful theory of singularities of pairs (see Definition 3.4 for
basic notions, such as klt and log canonical singularities). The class of log canonical singularities
is the largest class of singularities where the conjectures of the Minimal Model Program are
expected to hold.

The Zariski–Lipman conjecture has been shown for klt spaces in [7] (see also [1, Corol-
lary 5.7]). In this paper, we prove the conjecture for log canonical spaces. Note that log canonical
spaces in general have singularities in codimension 2.

Theorem 1.1 (Zariski–Lipman conjecture for log canonical spaces). Let X be a log
canonical space such that the tangent sheaf TX is locally free. Then X is smooth.

We remark that the results hold as well for singularities of complex analytic spaces, and
algebraic varieties defined over a field of characteristic zero.

After this paper was posted, Graf [5] presented a different proof of Theorem 1.1, based on
extensions theorems for 1-forms on log canonical spaces, in the spirit of [7].
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The paper is organized as follows. In Section 2, we study entire solutions of a particular
system of polynomial equations. In Section 3, we review basic definitions of singularities of
pairs, and the notion of canonical desingularization. In Section 4, we recall the Camacho–
Sad formula, and provide applications to surfaces with trivial logarithmic tangent sheaf (see
Proposition 4.8). The proof of Theorem 1.1 occupies Section 5.
Notation and conventions. Throughout this paper, we work over the field of complex numbers.
Varieties are always assumed to be irreducible and reduced. We denote by Sing(X) the singular
locus of a variety X. If X is a variety, then we denote by TX the tangent sheaf of X.

2. Preliminaries

Let r be a positive integer, and let e1, . . . , er be integers. We define the rational function
Φe1,...,er

by the formula

Φe1,...,er
(x) =

1

er −
1

er−1 −
1

. . . − 1

e2 −
1

e1 − x
.

The proof of Theorem 5.2 makes use of the following elementary result.

Lemma 2.1. Let r be a positive integer, and let e1, . . . , er be negative integers. Then
Φe1,...,er

(x) = x as rational functions if and only if e1 = . . . = er = −1, and r ≡ 0 (mod 3).

Proof. Let S and U be the rational functions defined by S(x) = −1/x, and U(x) =
(x − 1)/x. Recall that the modular group PSL2(Z) is the free product of the cyclic group
〈S〉 of order 2 and the cyclic group 〈U〉 of order 3. Set Ψei

(x) := 1/(ei − x) for i ∈ {1, . . . , r}.
Then Ψei

= S ◦ (U ◦ S)−ei , and

Φe1,...,er
= Ψer

◦ . . . ◦ Ψe1

= S ◦ (U ◦ S)−er−1 ◦ U ◦ (U ◦ S)−er−1−1 ◦ . . . ◦ U ◦ (U ◦ S)−e2−1 ◦ U ◦ (U ◦ S)−e1 .

Therefore, Φe1,...,er
(x) = x (as rational functions) if and only if er = . . . = er−1 = −1, and

S ◦ Ur ◦ S ◦ (U ◦ S)−e1−1(x) = x. Now S ◦ Ur ◦ S ◦ (U ◦ S)−e1−1(x) = x if and only if e1 = −1,
and r ≡ 0 (mod 3). This completes the proof of Lemma 2.1.

3. Canonical desingularizations, and the Zariski–Lipman conjecture for klt spaces

3.1 (Logarithmic tangent sheaf). Let Y be a nonsingular variety of dimension n � 1, and
Δ ⊂ Y be a divisor with simple normal crossings. That is, Δ is an effective divisor and its local
equation at an arbitrary point y ∈ Y decomposes in the local ring Oy into a product y1 · · · yk,
where y1, . . . , yk form part of a regular system of parameters (y1, . . . , yn) of Oy. Let

TY (− log Δ) ⊆ TY = DerC(OY )

be the subsheaf consisting of those derivations that preserve the ideal sheaf OY (−Δ). One easily
checks that the logarithmic tangent sheaf TY (− log Δ) is a locally free sheaf of Lie subalgebras
of TY , having the same restriction to Y \ Δ, and hence the same rank n.
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If Δ is defined at y by the equation y1 · · · yk = 0 as above, then a local basis of TY (− log Δ)
(after localization at y) consists of

y1∂1, . . . , yk∂k, ∂k+1, . . . , ∂n,

where (∂1, . . . , ∂n) is the local basis of TY dual to the local basis (dy1, . . . , dyn) of Ω1
Y .

A local computation shows that TY (− log Δ) can be identified with the subsheaf of TY

containing those vector fields that are tangent to Δ at smooth points of Δ.
The dual of TY (− log Δ) is the sheaf Ω1

Y (log Δ) of logarithmic differential 1-forms, that is,
of rational 1-forms α on Y such that α and dα have at most simple poles along Δ.

The top exterior power ∧nTY (− log Δ) is the invertible sheaf OY (−KY − Δ), where KY

denotes a canonical divisor.
We will need the following observation (see also [10, Lemma 2.14]).

Lemma 3.2. Let Y be a smooth variety of dimension at least 2, and Δ ⊂ Y be a divisor
with simple normal crossings. If H � Y is a smooth hypersurface such that Δ ∩ H is a divisor
in H with simple normal crossings, then there is an exact sequence

0 → N ∗
H/Y → Ω1

Y (log Δ)|H → Ω1
H(log Δ|H) → 0.

Proof. Consider the composite map α : N ∗
H/Y → Ω1

Y |H → Ω1
Y (log Δ)|H , and the morphism

β : Ω1
Y (log Δ)|H → Ω1

H(log Δ|H) induced by the restriction map. A local computation shows
that α and β yield an exact sequence as claimed.

3.3 (Singularities of pairs). We recall some definitions of singularities of pairs, developed
in the context of the Minimal Model Program.

Definition 3.4 (see [12, Section 2.3]). Let X be a normal variety, and B =
∑

aiBi be an
effective Q-divisor on X, that is, B is a nonnegative Q-linear combination of distinct prime
Weil divisors Bi on X. Suppose that KX + B is Q-Cartier, that is, some nonzero multiple of
it is a Cartier divisor.

Let π : Y → X be a log resolution of the pair (X,B). This means that Y is a smooth variety,
π is a birational projective morphism whose exceptional set Exc(π) is of pure codimension 1,
and the divisor

∑
Ei + π−1

∗ B has simple normal crossings, where the Ei are the irreducible
components of Exc(π). There are uniquely defined rational numbers a(Ei,X,B) such that

KY + π−1
∗ B = π∗(KX + B) +

∑
Ei

a(Ei,X,B)Ei.

The rational numbers a(Ei,X,B) do not depend on the log resolution π, but only on the
valuations associated to the exceptional divisors Ei’s ; a(Ei,X,B) is called the discrepancy of
Ei with respect to (X,B).

Let

discrep(X,B) = inf
E
{a(E,X,B)},

where E runs through all the prime exceptional divisors of all projective birational mor-
phisms. Then, either discrep(X,B) = −∞, or −1 � discrep(X,B) � 1. If X is smooth, then
discrep(X, 0) = 1.

We say that (X,B) is log terminal (or klt) if all ai < 1, and, for some log resolution π : Y → X
of (X,B), a(Ei,X,B) > −1 for every π-exceptional prime divisor Ei. We say that (X,B) is
log canonical if all ai � 1, and, for some log resolution π : Y → X of (X,B), a(Ei,X,B) � −1
for every π-exceptional prime divisor Ei. If these conditions hold for some log resolution of
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(X,B), then they hold for every log resolution of (X,B). Moreover, (X,B) is log canonical
(respectively, klt) if and only if discrep(X,B) � −1 (respectively, discrep(X,B) > −1 and all
ai < 1).

We say that X is klt (respectively, log canonical) if so is (X, 0).

Note that if the tangent sheaf TX is locally free, then KX is obviously Q-Cartier, so that
discrepancies make sense.

3.5 Canonical desingularization. In the proofs of Theorems 1.1 and 3.8, we will consider
a suitable resolution of singularities, whose existence is guaranteed by the following theorem.

Theorem 3.6 [6, Corollary 4.7; 11, Theorems 3.35 and 3.45]. Let X be a normal variety.
Then there exists a log resolution π : Y → X of (X, 0) such that

(1) π is an isomorphism over X \ Sing(X) and
(2) π∗TY (− log Δ)  TX where Δ is the largest reduced divisor contained in π−1(Sing(X)).

Note that Supp(Δ) = Exc(π). In particular, Δ has simple normal crossings. We call a
resolution π as in Theorem 3.6 a canonical desingularization of X.

3.7 Zariski–Lipman conjecture for klt spaces. Recall from [7] that the Zariski–Lipman
conjecture holds for klt spaces (see also [1, Corollary 5.7] for related results). We reproduce
the proof from [1, Corollary 5.7] for the reader’s convenience.

Theorem 3.8 [7]. Let X be a klt space such that the tangent sheaf TX is locally free.
Then X is smooth.

Proof. We assume to the contrary that Sing(X) �= ∅. Let π : Y → X be a canonical
desingularization of X, and let Δ be the largest reduced divisor contained in π−1(Sing(X)).
Note that Δ �= 0 since Sing(X) �= ∅. Consider the morphism of vector bundles

π∗TX  π∗(π∗TY (− log Δ)) → TY (− log Δ),

where π∗(π∗TY (− log Δ)) → TY (− log Δ) is the evaluation map. It induces an injective map of
sheaves

π∗OX(−KX)  π∗ det(TX) ↪→ det(TY (− log Δ))  OY (−KY − Δ).

This implies that a(Δi,X) � −1 for any irreducible component Δi of Δ, yielding a
contradiction and completing the proof of Theorem 3.8.

Remark 3.9. We have the following reformulation of Theorem 3.8. Let X be a variety such
that the tangent sheaf TX is locally free. If X is not smooth, then discrep(X) ∈ {−∞,−1}.

4. The Camacho–Sad formula

4.1 Foliations. A (singular) foliation on a smooth complex analytic surface S is a locally
free subsheaf L � TS of rank 1 such that the corresponding twisted vector field �v ∈ H0(X,TS ⊗
L ⊗−1) has isolated zeroes. Its singular locus Sing(L ) is the zero locus of �v. Considering the
natural perfect pairing Ω1

S ⊗ Ω1
S → ωS , we see that L � TS gives rise to a twisted 1-form with
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isolated zeroes ω ∈ H0(X, Ω1
S ⊗ M ) with M = ωS ⊗ L . Conversely, given a twisted 1-form

ω ∈ H0(X, Ω1
S ⊗ M ) with isolated zeroes, we define a foliation as the kernel of the morphism

TS → L given by the contraction with ω.

4.2 Camacho–Sad formula. A curve C ⊂ S is said to be L -invariant if any of its
irreducible components is the closure of a leaf of L . Let C ⊂ S be a compact (not necessarily
irreducible) L -invariant curve, and let p ∈ C ∩ Sing(L ). Let ω be a local 1-form defining L
in a neighborhood of p, and let f be a local equation of C at p. Then there exist nonzero
local functions g and h, and a local 1-form η such that f and h are relatively prime and
gω = hdf + fη (see [16, Lemma 1.1]). Following [16], we set

CS(L , C, p) = −Resp
1
h

η|C .

The right-hand side depends only on L and C.

Example 4.3. Let (x, y) be local coordinates at p. Suppose that L is given by the
local 1-form ω = λx(1 + o(1)) dy − μy(1 + o(1)) dx with μ �= 0. Set p = (0, 0), and let C be
the invariant curve defined by x = 0. Then CS(L , C, p) = λ/μ.

We can now state the Camacho–Sad formula (see [16, Theorem 2.1], see also [3]).

Theorem 4.4 (Camacho–Sad formula). Let L be a foliation on a smooth complex analytic
surface S, and let C ⊂ S be a compact (not necessarily irreducible) L -invariant curve. Then

C2 =
∑

p∈C∩Sing(L )

CS(L , C, p).

4.5. Here we give some applications of the Camacho–Sad formula. The following two are
immediate consequences of Theorem 4.4, of independent interest.

Lemma 4.6. Let S be smooth surface, Q be a line bundle on S, and TS � Q be a surjective
map of sheaves. Let C ⊂ X be a smooth complete connected curve of genus g. If degC(Q) <
2 − 2g, then g = 0, and degC(Q) = 0.

Proof. Let L be the kernel of TS � Q. Suppose that degC(Q) < 2 − 2g. Then the
composite map TC → TS |C → Q|C is the zero map, and hence TC = L|C � TS |C , and NC/S 
Q|C . In particular, C is a leaf of the regular foliation by curves L � TS . By the Camacho–
Sad formula (see Theorem 4.4), we must have degC(Q) = C2 = 0. This completes the proof of
Lemma 4.6.

Corollary 4.7. Let S be smooth surface, Q be a line bundle on S, and TS � Q be a
surjective map of sheaves. Let C ⊂ X be a smooth complete connected curve of genus g � 1.
Then degC(Q) � 0.

The next result is crucial for the proof of Theorem 1.1.



Page 6 of 9 STÉPHANE DRUEL

Proposition 4.8. Let S be smooth surface, and let C ⊂ S be a possibly reducible complete
curve with simple normal crossings. If TS(− log C)  OS ⊕ OS , then the intersection matrix of
irreducible components of C is not negative definite.

Proof. Let C ′ be a connected component of C, and set C ′′ = C \ C ′. Then, up to replacing
S by S \ C ′′, we may assume that C is a connected curve.

We denote the irreducible components of C by C1, . . . , Cr (r � 1). Recall that the dual graph
Γ of C is defined as follows. The vertices of Γ are the curves Ci, and for i �= j, the vertices Ci

and Cj are connected by Ci · Cj edges.
We first show that either C is a smooth curve of genus 1, or C is a cycle of rational

curves (see [14, Theorem 4.6.28] for related results). Note that OS(KS)  OS(−C) since
det(TS(− log C))  OS(−KS − C), and TS(− log C)  OS ⊕ OS . By the adjunction formula,
for 1 � i � r, we have

OCi
(KCi

)  OS(KS + Ci)|Ci
 OCi

⎛
⎝−

∑
j �=i

Cj |Ci

⎞
⎠ ,

and hence

degCi
(OCi

(KCi
)) = 2g(Ci) − 2 = −

∑
j �=i

degCi
(OCi

(Cj |Ci
)) � 0.

Thus, either C is irreducible, and g(C) = 1, or r � 2, Ci  P1 for all 1 � i � r and the dual
graph of C is a cycle. This proves our claim.

We argue by contradiction and assume that the intersection matrix {Ci · Cj}i,j is negative
definite.

Suppose first that C is irreducible with g(C) = 1. Recall that there is a surjective map of
sheaves TS(− log C) � TC . On the other hand, TS(− log C)  OS ⊕ OS . Hence, there exists
a nonzero global vector field �v ∈ H0(S, TS(− log C)) ⊆ H0(S, TS) such that �v|C �≡ 0. Since
TC  OC , �v(s) �= 0 for any s ∈ C. Set L = OS�v � TS . Then, C is a complete L -invariant
curve, disjoint from the singular locus Sing(L ). Thus, by the Camacho–Sad formula (see
Theorem 4.4), we must have C2 = 0, yielding a contradiction.

Suppose that r � 2, Ci  P1 for any 1 � i � r and that the dual graph of C is a cycle. If r = 2,
then C1 ∩ C2 = {p1, p2} with p1 �= p2. Suppose that r � 3. By renumbering the irreducible
components of Ci if necessary, we may assume that for each i ∈ {1, . . . , r}, Ci meets C \ Ci in
pi ∈ Ci−1 and pi+1 ∈ Ci+1, where Cr+1 = C1. Note that pr+1 = p1

Let �vk ∈ H0(S, TS(− log C)) ⊆ H0(S, TS) for k ∈ {1, 2} such that TS(− log C)  OS�v1 ⊕
OS�v2. Let λ ∈ C. Set �vλ = �v1 + λ�v2, and Lλ = OS�vλ ⊆ TS .

Set C0 = Cr. Fix i ∈ {1, . . . , r}, and let (xi, yi) be local coordinates at pi such that xi

(respectively, yi) is a local equation of Ci−1 (respectively, Ci) at pi. Then xi∂xi
and yi∂yi

are local generators of TS(− log C) at pi. Therefore, there exist local functions ai, bi, ci, di at
pi such that the matrix (

ai bi

ci di

)

is invertible, and such that{
�v1 = ai(xi, yi)xi∂xi

+ bi(xi, yi)yi∂yi
,

�v2 = ci(xi, yi)xi∂xi
+ di(xi, yi)yi∂yi

.

Thus,

�vλ = (ai(xi, yi) + λci(xi, yi))xi∂xi
+ (bi(xi, yi) + λdi(xi, yi))yi∂yi

,
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and a local generator for Lλ is given by the 1-form

ωλ = (ai(xi, yi) + λci(xi, yi))xi dyi − (bi(xi, yi) + λdi(xi, yi))yi dxi

= (ai(pi) + λci(pi))xi(1 + o(1)) dyi − (bi(pi) + λdi(pi))yi(1 + o(1)) dxi.

This implies that for λ ∈ C \ {−b1(p1)/d1(p1),−a1(p1)/c1(p1), . . . ,−br(pr)/dr(pr),−ar(pr)/cr(pr)}

(1) �vλ vanishes exactly at {p1, . . . , pr};
(2) CS(Lλ, Ci−1, pi) = (ai(pi) + λci(pi))/(bi(pi) + λdi(pi)) (see Example 4.3);
(3) CS(Lλ, Ci, pi) = (bi(pi) + λdi(pi))/(ai(pi) + λci(pi)) (see Example 4.3).

In particular, Lλ � TS is a foliation by curves on S, Sing(Lλ) = {p1, . . . , pr}, and
CS(Lλ, Ci, pi) = 1/CS(Lλ, Ci+1, pi).

Set ei = C2
i ∈ Z. Note that for each i ∈ {1, . . . , r}, we have

CS(Lλ, Ci+1, pi+1) =
1

CS(Lλ, Ci, pi+1)
by (3)

=
1

ei − CS(Lλ, Ci, pi)
by the Camacho–Sad formula.

Set xλ = CS(Lλ, C1, p1) = (a1(p1) + λc1(p1))/(b1(p1) + λd1(p1)). Then

xλ = CS(Lλ, C1, p1) = CS(Lλ, Cr+1, pr+1) =
1

er − CS(Lλ, Cr, pr)

=
1

er − 1
er−1−CS(Lλ,Cr−1,pr−1)

= . . . =
1

er −
1

er−1 −
1

. . . − 1

e2 −
1

e1 − CS(Lλ, C1, p1)

= Φe1,...,er
(xλ)

for any λ ∈ C \ {−b1(p1)/d1(p1),−a1(p1)/c1(p1), . . . ,−br(pr)/dr(pr),−ar(pr)/cr(pr)}.
This implies that

Φe1,...,er
(x) = x,

as rational functions. By Lemma 2.1, we must have e1 = . . . = er = −1, yielding a contradiction
since (C1 + C2)2 = −2 + 2C1 · C2 � 0. This completes the proof of Proposition 4.8.

5. Proof of Theorem 1.1

We will use the following theorem to reduce to the surface case.

Theorem 5.1 [4, Corollary]. Let X be a variety such that the tangent sheaf TX is locally
free. If codimXSing(X) � 3, then X is smooth.

We are now in position to prove our main result. Note that Theorem 1.1 is a immediate
consequence of Theorem 5.2.

Theorem 5.2 (Zariski–Lipman conjecture for log canonical pairs). Let (X,B) be a log
canonical pair such that the tangent sheaf TX is locally free. Then X is smooth.
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Proof. Note first that KX is Cartier since the tangent sheaf TX is locally free. This implies
that X is log canonical as well (see [12, Corollary 2.35]).

Let us assume to the contrary that Sing(X) �= ∅. By Theorem 5.1, we have codimXSing(X) =
2. By replacing X with an affine open dense subset, we may assume that X is affine, and that
Sing(X) is irreducible of codimension 2. We may also assume without loss of generality that
TX  O

⊕ dim(X)
X .

Let π : Y → X be a canonical desingularization of X, and let Δ be the largest reduced divisor
contained in π−1(Sing(X)). Note that Δ �= 0. As in the proof of Theorem 3.8, we consider the
morphism of vector bundles

π∗TX → TY (− log Δ),

and the induced injective map of sheaves

π∗OX(−KX)  π∗ det(TX) ↪→ det(TY (− log Δ))  OY (−KY − Δ).

This yields a(Δi,X) � −1 for any irreducible component Δi of Δ. Thus, a(Δi,X) = −1 since
X has log canonical singularities, and we have an isomorphism

π∗TX  TY (− log Δ).

Suppose that dim(X) � 3. Let G1 ⊂ X be a general hyperplane section, and set H1 =
π−1(G1) ⊂ Y . Then G1 is a normal affine variety (see, for instance, [2, Theorem 1.7.1]).
Moreover, H1 is smooth, and Δ ∩ H1 has simple normal crossings by Bertini’s Theorem. By
Lemma 3.2, there is an exact sequence

0 → N ∗
H1/Y → Ω1

Y (log Δ)|H1
→ Ω1

H1
(log Δ|H1) → 0.

Note that N ∗
H1/Y  π∗N ∗

G1/X  OH1 . Thus, there exist regular functions g1, . . . , gr on G1

such that the map OY  N ∗
H1/Y → Ω1

Y (log Δ)|H1
 O

⊕ dim(Y )
Y |H1

is given by g1 ◦ π|H1 , . . . , gr ◦
π|H1 . Let i ∈ {1, . . . , r} such that gi|H1∩Sing(X) �= 0. Then, by replacing X with X \ {gi =
0} if necessary, we may assume that Ω1

H1
(log Δ|H1)  O

⊕ dim(H1)
H1

(and Δ|H1 �= 0). Let
G2, . . . , Gdim(X)−2 ⊂ X be general hyperplane sections, and set Hi = π−1(Gi) ⊂ Y , S = H1 ∩
. . . ∩ Hdim(X)−2, C = Δ ∩ H1 . . . ∩ Hdim(X)−2, and T = G1 ∩ . . . ∩ Gdim(X)−2 = π(S). Then S
is smooth, and C has simple normal crossings. Proceeding by induction, we conclude that by
replacing T with an appropriate open subset, we may assume that TS(− log C)  O⊕2

S (and
C �= 0). Observe that the induced morphism π|S : S → T is birational with exceptional locus
C. This implies that the intersection matrix of irreducible components of C is negative definite.
But this contradicts Proposition 4.8, completing the proof of Theorem 5.2.

Acknowledgements. We would like to thank C. Jörder and the referee for helpful comments.
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