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Projectively flat log smooth pairs (∗)

Stéphane Druel (1)

ABSTRACT. — In this article, we study projective log smooth pairs with numer-
ically flat normalized logarithmic tangent bundle. Generalizing works of Jahnke–
Radloff and Greb–Kebekus–Peternell, we show that, passing to an appropriate finite
cover and up to isomorphism, these are the projective spaces or the log smooth pairs
with numerically flat logarithmic tangent bundles blown-up at finitely many points
away from the boundary. On the other hand, the structure of log smooth pairs with
numerically flat logarithmic tangent bundle is well understood: they are toric fiber
bundles over finite étale quotients of abelian varieties.

RÉSUMÉ. — Dans cet article, nous étudions les paires log lisses dont le fibré tan-
gent logarithmique normalisé est numériquement plat. Généralisant des travaux de
Jahnke–Radloff et Greb–Kebekus–Peternell, nous montrons qu’un revêtement fini
convenable d’une telle paire est isomorphe à un espace projectif ou à l’éclatement
en un nombre fini de points hors du bord d’une paire log lisse dont le fibré tangent
logarithmique est numériquement plat. La structure de ces dernières est par ailleurs
bien comprise : ce sont des fibrés en variétés toriques sur des quotients étales de
variétés abéliennes par des groupes finis.

1. Introduction

Let X be a smooth projective algebraic variety over the field of complex
numbers and let D ⊂ X be a divisor with normal crossings.

The structure of pairs (X, D) with trivial logarithmic tangent bundle
TX(− log D) is well understood by a result of Winkelmann (see [50]). They
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are called semiabelic varieties. The simplest examples are pairs (A, 0) where
A is an abelian variety, and pairs (X, D) where X is a smooth toric variety
with boundary divisor D. If (X, D) is a semiabelic variety, then the algebraic
group G := Aut0(X, D) is a semiabelian group which acts on X with finitely
many orbits. Moreover, the G-orbits in X are exactly the strata defined by
D. As a consequence, the albanese map is a smooth locally trivial fibration
with typical fiber F being a toric variety with boundary divisor D|F .

If TX(− log D) is only assumed to be numerically flat, then it has been
shown in [11, Corollary 1.7] that there is a smooth morphism a : X → A with
connected fibers onto a finite étale quotient of an abelian variety. Moreover,
the fibration (X, D) → A is locally trivial for the analytic topology and any
fiber F of the map a is a smooth toric variety with boundary divisor D|F .

In this article, we address pairs (X, D) whose normalized logarithmic
tangent bundle Sn TX(− log D) ⊗ OX(−(KX + D)) is numerically flat,
where n := dim X. Recall from [31, Theorem 1.1] that the vector bundle
Sn TX(− log D) ⊗ OX(−(KX + D)) is numerically flat if and only if
TX(− log D) is semistable with respect to some ample divisor H and equality
holds in the Bogomolov–Gieseker inequality,

n − 1
2n

c1(TX(− log D))2 · Hn−2 = c2(TX(− log D)) · Hn−2.

The simplest examples of pairs (X, D) with numerically flat normalized log-
arithmic tangent bundle are those with numerically flat logarithmic tangent
bundle and the pairs (Pn, H) where H is an hyperplane. Moreover, a smooth
finite cover which is étale over X \ D or the blow-up at a point in X \ D of
a pair (X, D) with numerically flat normalized logarithmic tangent bundle
has numerically flat normalized logarithmic tangent bundle as well.

Theorem 1.1. — Let (X, D) be a reduced log smooth pair with X a
complex projective variety of dimension n ⩾ 2. Suppose that the normalized
vector bundle Sn TX(− log D) ⊗ OX(−(KX + D)) is numerically flat. Then
there exist a smooth projective variety Y and a log smooth reduced pair (Z, B)
as a well as a finite cover γ : Y → X and a birational projective morphism
β : Y → Z such that β is the blow up of finitely many points in Z \ B and
γ−1(D) = β−1(B) ⊔ Exc β. Moreover, one of the following holds.

(1) The logarithmic tangent bundle TZ(− log B) is numerically flat. In
addition, the restriction of γ to Y \ Exc β is étale.

(2) We have Z ∼= Pn and B ∼= Pn−1 is an hyperplane in Pn. Further-
more, the restriction of γ to Y \ γ−1(D) is étale.

In fact, a more general statement is true (see Theorem 7.1) but its for-
mulation is somewhat involved.
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Remark 1.2. — Setting and notation as in Theorem 1.1. Then
Sn TX(− log D) ⊗ OX(−(KX + D)) is numerically flat if and only if it is nef.

Previous results

In [31], Jahnke and Radloff proved that finite étale quotients of abelian
varities are the only complex projective manifolds with numerically flat nor-
malized tangent bundle. Greb, Kebekus, and Peternell then generalised the
theorem of Jahnke and Radloff to projective varieties with klt singularities
in [19]. More precisely, they proved that torus quotients are the only klt
varieties with semistable tangent sheaf and extremal Chern classes. In [30],
Iwai addressed log smooth pairs with numerically flat normalized logarithmic
tangent bundle under the additional assumption that −(KX + D) is nef.

Outline of the proof

The general strategy of proof is similar to the one employed in [31]
and [19]. We had to overcome technical difficulties arising from the presence
of the boundary divisor. We also had to deal with mildly singular varieties
as explained below.

The main steps for the proof are as follows.

We first run a minimal model program for the pair (X, D). At each step,
we contract a connected component E of D with E ∼= Pn−1 to a point. The
minimal model program ends with a minimal model (Y, B) of (X, D) or with
a quotient (Y, B) of (Pn, H) by a finite cyclic group which is quasi-étale away
from B. Moreover, Y \ B has finitely many cyclic quotient singularities of
type 1

r (1, . . . , 1) and the pair (Y, B) is log smooth in a neighborhood of B.
These are exactly the singularities appearing in [19]. The proof of our main
result relies in part on the characterization of these singularities from [19,
Proposition 4.1].

If (Y, B) is a finite cyclic quotient of (Pn, H), then one easily checks that
(X, D) satisfies condition (2) in the statement of Theorem 1.1.

Suppose that (Y, B) is a minimal model. We show that (X, D) satisfies
condition (1) in the statement of Theorem 1.1 as follows.

We prove log abundance for KY + B following the strategy employed
in [31]: we use a Shafarevich map construction to prove that it reduces to the
special case where TY (− log B) ∼= L ⊕n for some rank one reflexive sheaf L .
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We then consider the log Itaka fibration f : Y → Z of a suitable quasi-
étale cover of (Y, B). We first observe that is suffices to prove that KY +B ≡
0. We argue by contradiction and assume that KY + B ̸≡ 0. The divisor
KY +B cannot be big, owing to the Miyaoka–Yau inequality for minimal Q-
factorial dlt pairs proved by Guenancia and Taji in [23]. Following the ideas
of [19] and [31] we will show that the log Itaka fibration of a suitable quasi-
étale cover of (X, D) is birational to an abelian group scheme f : Y1 → Z1
where Z1 has finitely many log canonical singularities and Q-ample canonical
divisor. This contradicts an analogue of the Arakelov inequality for variations
of Hodge structures of weight one due to Viehweg and Zuo ([49]).

These steps are addressed throughout the paper, and are collected to-
gether in Section 7.

Structure of the paper

Section 2 gathers notation, results and global conventions that will be
used throughout the paper. In Section 3, we describe the structure of pairs
(X, D) with nef logarithmic tangent bundle. The proof of Theorem 1.1 is
long and therefore subdivided into numerous steps: Sections 4 to 6 prepare
for it. With these preparations at hand, the proof of Theorem 1.1 which we
give in Section 7 become reasonably short.

2. Notation, convention and used facts

2.1. Global conventions

Throughout the paper, all varieties are assumed to be defined over the
field of complex numbers. Given a variety X, we denote by Xreg its smooth
locus.

2.2. Projective space bundle

If E is a locally free sheaf of finite rank on a variety X, we denote by
P(E ) the variety Proj(S• E ).

2.3. Stability

The word semistable will always mean slope-semistable with respect to a
given ample divisor. We refer to [28, Def. 1.2.12] for its precise definition.
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2.4. Reflexive hull

Given a normal variety X, m ∈ N, and a coherent sheaf F on X, write
F [⊗m] := (F ⊗m)∗∗, S[m] F := (Sm F )∗∗ and det F := (Λrank FF )∗∗.
Given any morphism f : Y → X of normal varieties, write f [∗]F := (f∗F )∗∗.

2.5. Singularities of pairs

A pair (X, D) consists of a normal quasi-projective variety X and an
effective Q-divisor D on X. A reduced pair is a pair (X, D) such that D is
reduced. We will use the notions of klt and log canonical singularities for
pairs without further explanation or comment and simply refer to [39] for a
discussion and for their precise definitions.

The following elementary fact will be used throughout the paper (see [39,
Proposition 3.16]).

Fact 2.1. — Let γ : Y → X be a finite cover between normal complex
varieties. Let D be a Q-divisor on X, and set B := γ∗(KX + D) − KY .
Suppose that B is effective. Then (X, D) is klt (resp. log canonical) if and
only (Y, B) is klt (resp. log canonical).

We will also need the following definition.
Definition 2.2. — A normal, quasi-projective variety X is said to be of

klt type if there exists an effective Q-divisor D on X such that (X, D) is klt.
Fact 2.3. — If X is of klt type and Q-factorial, then X has klt singular-

ities.

2.6. Covering maps and quasi-étale morphisms

A cover or covering map is a finite and surjective morphism of normal
varieties.

A morphism γ : Y → X between normal varieties is called a quasi-étale
cover if γ is finite and étale in codimension one.

The following elementary fact follows from purity of the branch locus.
Fact 2.4. — Let γ : Y → X be a quasi-étale cover. If D is a reduced and

effective divisor on X such that (X, D) is log smooth in a Zariski open neigh-
borhood of D, then (Y, γ−1(D)) is log smooth in a Zariski open neighborhood
of γ−1(D) as well.
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2.7. Maximally quasi-étale varieties

Let X be a normal variety. Following [19, Paragraph 2.7], we say that X
is maximally quasi-étale if the natural push-forward map π1(Xreg) → π1(X)
induces an isomorphism between their profinite completions

π̂1(Xreg) ∼= π̂1(X).

Fact 2.5. — Let X be a normal variety that is maximally quasi-étale.
Then any finite-dimensional linear representation of π1(Xreg) extends to a
representation of π1(X) by [22, Théorème 1.2].

Fact 2.6. — If X is any quasi-projective variety of klt type, then X admits
a quasi-étale cover that is maximally quasi-étale and of klt type by [18,
Theorem 1.14].

2.8. Numerically flat vector bundles

We recall the definition of numerically flat vector bundles on projective
varieties.

Definition 2.7. — A vector bundle E of rank r ⩾ 1 on a projective
variety is called numerically flat if E and E ∗ are nef vector bundes.

Remark 2.8. — Let X be a projective variety and let E be a vector bundle
of rank r ⩾ 1 on X with det E ∼= OX . Then E is numerically flat if and only
if E is nef.

Theorem 2.9. — Let X be a normal projective variety of klt type and
let E be a vector bundle of rank r ⩾ 1 on X. Then the following conditions
are equivalent.

(1) The vector bundle E is numerically flat.
(2) The vector bundle E has a filtration by subbundles whose graded

pieces are given by unitary representations of π1(X).
(3) The vector bundle E is flat and semistable with respect to some

ample divisor.
(4) The vector bundle E is flat and semistable with respect to any ample

divisor.

Proof. — Let β : Z → X be a resolution of X. By [47, Theorem 1.1], the
natural map π1(Z) → π1(X) is an isomorphism. Then (1) ⇔ (2) follows
easily from [9, Theorem 1.18] applied to β∗E .

By [46] applied to β∗E , E has a filtration by subbundles whose graded
pieces are given by unitary representations of π1(X) if and only if β∗E is

– 616 –



Projectively flat log smooth pairs

flat and semistable with respect to any ample divisor on Z. If β∗E is flat
and semistable with respect to any ample divisor on Z, then E is easily seen
to be flat and semistable as well using the fact that big and nef divisors are
limits of ample divisors. If E is flat and semistable with respect to any ample
divisor, then β∗E is flat and semistable with respect to any ample divisor
by [21, Theorem 3.9] applied to E equipped with the zero Higgs field.

Finally, (3) ⇔ (4) follows again from [21, Theorem 3.9] applied to E
equipped with the zero Higgs field. □

2.9. Projectively flat sheaves

One key notion is that of a projectively flat vector bundle. We recall the
definition.

Definition 2.10. — A vector bundle E of rank r ⩾ 1 on a variety X
is called projectively flat if P(E ) is defined by a representation π1(X) →
PGL(r,C).

Fact 2.11. — Setup as in Definition 2.10. Suppose in addition that X is
smooth. Then E is projectively flat if and only if there exists a closed subset
Z ⊂ X of codimension codimX Z ⩾ 2 such that the restriction F |X\Z of F
to X \ Z is projectively flat.

Lemma 2.12. — Let E be a vector bundle on a projective variety. If E
is projectively flat, then ci(E ) ≡ 1

ri

(
r
i

)
c1(E )i for any i ⩾ 1.

Proof. — This follows from the arguments of [31, Proof of Propos-
ition 1.1(2)] applied to the pull-back of E to a resolution of X. □

The following result extends [31, Theorem 1.1] and [31, Proposition 1.1]
to projective varieties of klt type that are maximally quasi-étale.

Theorem 2.13. — Let X be a normal projective variety of klt type that
is maximally quasi-étale and let E be a reflexive sheaf of rank r ⩾ 1 on X.
Then the following conditions are equivalent.

(1) The sheaf E is semistable with respect to some ample divisor and
E |Xreg is locally free and projectively flat.

(2) The sheaf E is semistable with respect to any ample divisor and
E |Xreg is locally free and projectively flat.

(3) The sheaf (Sr E ⊗ det E ∗)∗∗ is locally free and numerically flat.

Proof. — Suppose first that (Sr E ⊗ det E ∗)∗∗ is locally free and numeri-
cally flat. By Theorem 2.9, the vector bundle (Sr E ⊗ det E ∗)∗∗ is then flat
and semistable with respect to any ample divisor. This in turn implies that E
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is semistable with respect to any ample divisor. Moreover, the sheaf E |Xreg is
easily seen to be locally free and projectively flat using [20, Proposition 3.7].
This proves the implication (3) ⇒ (2)

The implication (2) ⇒ (1) is obvious.

To finish the proof of the theorem, it remains to prove (1) ⇒ (3). Suppose
that E is semistable with respect to some ample divisor and that E |Xreg is
locally free and projectively flat. By [20, Corollary 3.6], the sheaf (Sr E ⊗
det E ∗)∗∗ is locally free and flat. Moreover, (Sr E ⊗ det E ∗)∗∗ is semistable
by [28, Theorem 3.1.4]. By Theorem 2.9, we conclude that (Sr E ⊗ det E ∗)∗∗

is numerically flat, completing the proof of the theorem. □

Remark 2.14. — The implication (3) ⇒ (2) remains true if X is only
assumed to be of klt type and not necessarily maximally quasi-étale.

We will need the following immediate consequence of [31, Theorem 1.1]
together with [31, Proposition 1.1].

Corollary 2.15. — Let X be a normal projective variety and let E be
a reflexive sheaf of rank r ⩾ 1 on X. Suppose that the sheaf (Sr E ⊗det E ∗)∗∗

is locally free and numerically flat. Let Y ⊆ X be a smooth projective variety
such that E is locally free along Y . Then the vector bundle E |Y is semistable
with respect to any ample divisor on Y and projectively flat.

The following observation will be crucial for the proof of our main result.
We refer to [41] (see also [18, Definition 4.3]) for the definition of intersection
numbers of line bundles with Q-Chern classes of reflexive sheaves. We will
use the notions of Q-varieties and Q-sheaves without further explanation
and simply refer to [43, Section 2].

Lemma 2.16. — Let X be a normal projective variety of klt type that is
maximally quasi-étale and let E be a reflexive sheaf of rank r ⩾ 1 on X. Sup-
pose that det(E ) is Q-Cartier. Suppose in addition that E is semistable with
respect to some ample divisor and that E |Xreg is locally free and projectively
flat. If c1(E ) ≡ 0 then E is locally free and flat.

Proof. — There exists a closed subset Z ⊂ X with codimX Z ⩾ 3 and a
quasi-étale Q-structure on X◦ := X \ Z since X has quotient singularities
in codimension two. We may also assume without loss of generality that
E |X◦ is a Q-vector bundle by [25, Corolayry 1.4]. Let γ◦ : Y ◦ → X◦ be a
global Mumford cover (we refer to [43, Section 2] for this notion). Then
G ◦ := (γ◦)[∗](E |X◦) is locally free and projectively flat. Set n := dim X and
let H1, . . . , Hn−2 be very ample divisors on X. Let S be a general complete
intersection surface of elements in |H1|×· · ·×|Hn−2| and set T := (γ◦)−1(S).
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Then S ⊂ X◦ and

ĉ1(E )2·H1 · · · H2 = (γ◦|T )∗c1(G ◦)2 and ĉ2(E )·H1 · · · H2 = (γ◦|T )∗c2(G ◦).

Moreover, since det E is Q-Cartier by assumption, we have ĉ1(E ) ≡ c1(E ) ≡
0. By Lemma 2.12 applied to G ◦|T , we must have ĉ1(E )2 ≡ 0 and ĉ2(E ) ≡ 0.
Therefore, by [41, Theorem 1.4], the sheaf E |Xreg is locally free and flat.
Since X is maximally quasi-étale, we infer that E is likewise locally free and
flat. This finishes the proof of the lemma. □

2.10. Logarithmic differential forms

Let X be a smooth variety of dimension n ⩾ 1, and let D ⊂ X be a
divisor with simple normal crossings. Let

TX(− log D) ⊆ TX = DerC(OX)

be the subsheaf consisting of those derivations that preserve the ideal sheaf
OX(−D). One easily checks that the logarithmic tangent sheaf TX(− log D)
is a locally free sheaf of Lie subalgebras of TX , having the same restriction
as TX to X \ D. If D is defined at x by the equation x1 · · · xk = 0, where
x1, . . . , xk form part of a regular system of parameters (x1, . . . , xn) of the
local ring OX,x of X at x, then a local basis of TX(− log D) (after localization
at x) consists of

x1∂1, . . . , xk∂k, ∂k+1, . . . , ∂n,

where (∂1, ..., ∂n) is the local basis of TX dual to the local basis (dx1, ..., dxn)
of Ω1

X .

A local computation shows that TX(− log D) can be identified with the
subsheaf of TX containing those vector fields that are tangent to D at smooth
points of D.

The dual of TX(− log D) is the sheaf Ω1
X(log D) of logarithmic differential

1-forms. More generally, if 1 ⩽ p ⩽ n, then Ωp
X(log D) :=

∧p Ω1
X(log D) is

the sheaf of logarithmic differential p-forms, that is, of rational p-forms α on
X such that α and dα have at most simple poles along D. The top exterior
power det Ω1

X(log D) = Ωn
X(log D) is the invertible sheaf OX(KX +D), where

KX denotes a canonical divisor.

Lemma 2.17. — Let (X, D) be a reduced log smooth pair with X pro-
jective and let β : Y → X be the blow-up of X at a point x ∈ X \ D with
exceptional divisor E. Then Ω1

Y (log(β−1(D) + E)) is semistable and projec-
tively flat if and only if Ω1

X(log D) is semistable and projectively flat.
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Proof. — An easy local computation shows that the composition

β∗Ω1
X(log D) −→ Ω1

Y (log(β−1(D)) −→ Ω1
Y (log(β−1(D) + E)

yields an isomorphism

β∗Ω1
X(log D) ∼= Ω1

Y (log(β−1(D) + E)(−E).

The claim now follows from Theorem 2.13. □

Lemma 2.18. — Let (X, D) be a reduced log smooth pair with X pro-
jective and let β : Y → X be the blow-up of X along a strata of (X, D)
with exceptional divisor E. Then Ω1

Y (log(β−1(D) + E)) is semistable and
projectively flat if and only if Ω1

X(log D) is semistable and projectively flat.

Proof. — An easy local computation shows that standard pull-back map
of Kähler differentials

β∗Ω1
X(log D) −→ Ω1

Y (log β−1(D))

is an isomorphism. The claim now follows from Theorem 2.13. □

2.11. Reflexive (logarithmic) differentials forms

Given a normal variety X, we denote the sheaf of Kähler differentials by
Ω1

X . If 1 ⩽ p ⩽ dim X is any integer, write Ω[p]
X := (Ωp

X)∗∗. The tangent
sheaf (Ω1

X)∗ will be denoted by TX .

Let D be a reduced effective divisor on X. If 1 ⩽ p ⩽ dim X is any
integer, we write Ω[p]

X (log D) for the reflexive sheaf on X whose restriction
to the open set U where (X, D) is log smooth is the sheaf of logarithmic
differential p-forms Ωp

U (log D|U ). We will refer to it as the sheaf of reflexive
logarithmic p-forms.

The dual of Ω[1]
X (log D) is the logarithmic tangent sheaf TX(− log D).

Lemma 2.19 ([11, Lemma 2.7]). — Let γ : Y → X be a finite cover
between normal varieties, and let D be a reduced effective divisor on X.
Suppose that γ is quasi-étale over X \ D and set B := γ∗(KX + D) − KY .
Then B is reduced and effective. Moreover, the standard pull-back map of
Kähler differentials induces an isomorphism

γ[∗]Ω[1]
X (log D) ∼= Ω[1]

Y (log B).
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2.12. Quotient singularities

A complex algebraic variety X of dimension n ⩾ 2 is said to have a
quotient singularity of type 1

r (1, . . . , 1) at x ∈ X for some positive integer r if
an analytic neighborhood of x is biholomorphic to an analytic neighborhood
of the origin in Cn/G, where G = ⟨ζ⟩ is a cyclic group of order r acting on
Cn by ζ · (z1, . . . , zn) = (ζz1, . . . , ζzn). Then x is an isolated singularity and
the blow-up Y of X at x is a resolution of (X, x). Moreover, the exceptional
divisor E of the blow-up is isomorphic to Pn−1 and NE/Y

∼= OPn−1(−r).

The following characterization of quotient singularities of type 1
r (1, . . . , 1)

is shown in [19].

Proposition 2.20. — Let (X, x) be a germ of normal complex space of
dimension n ⩾ 2 with log canonical singularities. Assume that the sheaf Ω[1]

X

of reflexive differential forms satisfies Ω[1]
X

∼= L ⊕n, where L is reflexive of
rank one. Then (X, x) has a cyclic quotient singularity of type 1

r (1, . . . , 1)
for some integer r ⩾ 1. In particular, (X, x) has klt singularities.

Proof. — The arguments of [19, Proof of Proposition 4.1] apply
verbatim. One only needs to replace the use of [10, Theorem 3.8] by [10,
Theorem 1.1]. □

Proposition 2.21. — Let X be a normal, irreducible complex space of
dimension n ⩾ 2 with log canonical singularities. Suppose that there exists
a representation ρ : π1(X) → PGL(n,C) such that P(TX |Xreg) is defined by
the induced representation π1(Xreg) → π1(X) → PGL(n,C). Then X has
isolated cyclic quotient singularities of type 1

r (1, . . . , 1).

Proof. — This follows easily from [20, Proposition 3.11] together with
Proposition 2.20. □

The next result extends Lemma 2.17 to projective varieties with (isolated)
cyclic quotient singularities of type 1

r (1, . . . , 1).

Lemma 2.22. — Let (X, D) be a reduced pair with X projective of di-
mension n ⩾ 2. Suppose that (X, D) is log smooth in a Zariski open neighbor-
hood of D and that X \ D has only (isolated) cyclic quotient singularities of
type 1

r (1, . . . , 1). Let β : Z → X be the blow-up of the finitely many singular
points with exceptional divisor E. Then Ω1

Z(log(β−1(D) + E)) is semistable
and projectively flat if and only if the reflexive sheaf Ω[1]

X (log D) is semistable
and Ω[1]

X (log D)|Xreg is projectively flat.

Proof. — If Ω1
Z(log(β−1(D)+E)) is semistable and projectively flat, then

Ω[1]
X (log D) is easily seen to be semistable using the fact that big and nef
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divisors are limits of ample divisors. Moreover, Ω[1]
X (log D)|Xreg is projectively

flat.

Conversely, suppose that Ω[1]
X (logD) is semistable and that Ω[1]

X (logD)|Xreg

is projectively flat.

Suppose first that X is maximally quasi-étale. We denote the irreducible
components of E by E1, . . . , EN . By construction, Ei = β−1(xi) for some
xi ∈ X \D and the Ei are pairwise disjoint. By assumption, X has a quotient
singularity of type 1

ri
(1, . . . , 1) at xi for some positive integer ri. Set m :=∏

1⩽i⩽N ri. Then OX(m(KX +D)) is locally free. By Theorem 2.13, the sheaf
S[m](S[n] Ω[1]

X (log D))⊗OX(−m(KX +D)) is locally free and numerically flat.
An easy local computation now shows that there are isomorphisms of locally
free sheaves

β∗S[m](S[n] Ω[1]
X (log D)) ∼= Sm(Sn Ω1

Z(log(β−1(D)+E)))⊗OZ

( ∑
1⩽i⩽N

mn

ri
Ei

)
and

OZ(m(KZ + β−1(D) + E)) ∼= β∗OX(m(KX + D)) ⊗ OZ

( ∑
1⩽i⩽N

mn

ri
Ei

)
.

Thus, we have

β∗(S[m](S[n] Ω[1]
X (log D)) ⊗ OX(−m(KX + D))

)
∼= Sm(Sn Ω1

Z(log(β−1(D) + E))) ⊗ OZ(−m(KZ + β−1(D) + E)).

This implies that Sm(Sn Ω1
Z(log(β−1(D)+E)))⊗OZ(−m(KZ +β−1(D)+E))

is numerically flat. It follows that Sn(Ω1
Z(log(β−1(D) + E))) ⊗ OZ(−(KZ +

β−1(D) + E)) is likewise numerically flat. Hence Ω1
Z(log(β−1(D) + E)) is

semistable with respect to some ample divisor on Z and projectively flat by
Theorem 2.13.

In the general case, by Fact 2.6, there exists a quasi-étale cover γ : Y → X
that is maximally quasi-étale and of klt type. Set D1 := γ−1(D). By purity
of the branch locus, (X1, D1) is log smooth in a Zariski open neighborhood of
D1 and the singular locus S1 of X1 is contained in the preimage γ−1(S) of the
singular locus S of X. If X has a quotient singularity of type 1

r(x) (1, . . . , 1)
at x ∈ X \ D and x1 ∈ γ−1(x), then X1 has a quotient singularity of
type 1

r(x1) (1, . . . , 1) for some r(x1) dividing r(x). Moreover, Ix · OX1,x1 =
I

r(x)/r(x1)
x1 . In particular, if β1 : Z1 → X1 denotes the blow-up of γ−1(S)

with exceptional divisor E1, then γ ◦ β1 factors through β by the universal
property of blow-ups. Let γ1 : Z1 → Z denote the induced morphism. Notice

– 622 –



Projectively flat log smooth pairs

that γ1 is finite and étale over Z \E and that Z1 is smooth. By Lemma 2.19,
we have

γ∗
1Ω1

Z(log(β−1(D) + E)) ∼= Ω1
Z1

(log(β−1
1 (D1) + E1))

and γ∗Ω[1]
X (log D) ∼= Ω[1]

X1
(log D1).

The general case now follows easily from the case treated previously. □

2.13. Abundance

The following special case of the abundance conjecture is an easy conse-
quence of [14, Theorem 1.7].

Proposition 2.23. — Let (X, D) be a log canonical pair with X pro-
jective and let f : X 99K Y be a dominant, almost proper, rational map with
connected fibers onto a normal projective variety Y . Let F be a general fiber
and set DF := D|F . Suppose that KF + DF is abundant and that Y is of
general tytpe. Then KX + D is abundant.

Proof. — Let β : Z → X be a resolution of the indeterminacy of f . Re-
placing Z by a further blow-up, we may also assume that β is a log reso-
lution of (X, D). Write KZ + B = β∗(KX + D) + E where B and E are
effective with no common components, β∗B = D and E is β-exceptional.
Set G := β−1(F ), BG := B|G and EG := E|G. By general choice of F , we
may also assume that βG := β|G : G → F is a log resolution of (F, DF ), that
(βG)∗BG = DF and that EG is βG-exceptional. By the adjunction formula,
KG + BG = β∗

G(KF + DF ) + EG. Then we have
κ(KG + BG) = κ(KF + DF )

= ν(KF + DF ) since KF + DF is abundant
= ν(KG + BG) by [44, Proposition V.2.7(7)]

and KG + BG is likewise abundant. Note that (Z, B) is log canonical. Now
we have

κ(KX + D) ⩽ ν(KX + D) by [44, Proposition V.2.7(2)]
= ν(KZ + B) by [44, Proposition V.2.7(7)]
⩽ ν(KG + BG) + dim Y by [44, Proposition V.2.7(9)]
= κ(KG + BG) + dim Y since KG + BG is abundant
= κ(KZ + B) by [14, Theorem 1.7]
= κ(KX + D).

It follows that κ(KX + D) = ν(KX + D), as claimed. □

– 623 –



Stéphane Druel

2.14. Pseudo-effective divisors

We will need the following easy consequence of the Hodge index theorem.

Lemma 2.24. — Let X be a projective manifold of dimension n ⩾ 2,
and let D =

∑
i∈I aiDi be a Q-divisor on X. Suppose that D · Di ≡ 0 for

any i ∈ I and that D is pseudo-effective. Then there exist numbers bi ∈ Q⩾0
such that D ≡

∑
i∈I biDi.

Proof. — By the Lefschetz theorem on hyperplane sections together with
a theorem of Bertini (see [32, I 6.10]), we may assume without loss of gener-
ality that n = 2. We may also assume that the classes in NS(X)Q of the Di

are Q-linearly independent and that ai ̸= 0 for any i ∈ I. Suppose also that
D ̸≡ 0.

Set I1 := {i ∈ I | ai > 0} and I2 := I \I1 = {i ∈ I | ai < 0}. If I2 = ∅ then
the conclusion of Lemma 2.24 holds true. Suppose from now on that I2 ̸= ∅.
Notice that I1 ̸= ∅ since D is pseudo-effective and D ̸≡ 0 by assumption.
Then

D2 =
(∑

i∈I1

aiDi

)2

+
(∑

i∈I2

aiDi

)2

+ 2
(∑

i∈I1

aiDi

)(∑
i∈I2

aiDi

)
= 0

and
(∑

i∈I1

aiDi

)(∑
i∈I2

aiDi

)
⩽ 0.

Hence, either (
∑

i∈I1
aiDi)2 ⩾ 0 or (

∑
i∈I2

aiDi)2 ⩾ 0. Notice that∑
i∈I1

aiDi ̸≡ 0 and
∑

i∈I2
aiDi ̸≡ 0 since the classes in NS(X)Q of the

Di are Q-linearly independent and ai ̸= 0 for any i ∈ I. As D2 = 0 and
D · (

∑
i∈I1

aiDi) = D · (
∑

i∈I2
aiDi) = 0, the Hodge index theorem then im-

plies that either D ≡ λ(
∑

i∈I1
aiDi) for some λ ∈ Q>0 or D ≡ µ(

∑
i∈I2

aiDi)
for some µ ∈ Q<0 using again the fact that D is pseudo-effective. This fin-
ishes the proof of the lemma. □

3. Log smooth pairs with nef logarithmic tangent bundle

Let (X, D) be a reduced log smooth pair with X projective. If TX(− log D)
is numerically flat, then there is a smooth morphism a : X → A with con-
nected fibers onto a finite étale quotient of an abelian variety. Moreover, the
fibration (X, D) → A is locally trivial for the analytic topology and any fiber
F of the map a is a smooth toric variety with boundary divisor D|F (see [11,
Corollary 1.7]). In this section we provide a structure result for reduced log
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smooth pairs with nef logarithmic tangent bundles, which might be of in-
dependent interest. We refer to [9, Theorem 3.14] for a somewhat related
result.

Proposition 3.1. — Let (X, D) be a reduced log smooth pair with X
projective. Suppose that the logarithmic tangent bundle TX(− log D) is nef.
Then there exists a smooth morphism a : X → A with rationally connected
fibers onto a finite étale quotient of an abelian variety. Moreover, D is a
relative simple normal crossing divisor.

Proof. — Let f : X 99K R be the maximally rationally chain connected
fibration, and let G be the induced foliation on X. Set q := dim R. We may
assume without loss of generality that R is smooth and projective. Recall
that f is an almost proper map and that its general fibers are rationally
connected. If q = 0, then X is rationally connected and the statement holds
true.

Suppose from now on that q ⩾ 1. By [17, Theorem 1.1], R is not uniruled.
Thus KR is pseudo-effective by [4, Corollary 0.3]. Let ω ∈ H0(X, Ωq

X ⊗ L )
be a twisted q-form defining G , where L is a line bundle, and let X◦ ⊆ X
be an open set with complement of codimension at least two such that f
restricts to a morphism f◦ : X◦ → R. Then L ∗|X◦ ∼= (f◦)∗OR(KR)(E◦) for
some effective divisor E◦ on X◦, and hence L ∗ pseudo-effective. The twisted
q-form ω then yields an inclusion

ωD : L ∗ ⊆ Ωq
X(log D).

On the other hand, TX(− log D) is nef by assumption. This immediately
implies that L is numerically trivial. Together with [9, Proposition 1.16],
this shows that ωD is nowhere vanishing. This in turn implies that G is
regular and that any irreducible component of D is generically transverse to
G . By [26, Corollary 2.11], the quotient map a : X → Y onto the space of
leaves of G is then a smooth morphism between smooth projective varieties.
Note that L ∼= a∗OY (−KY ) ⊗ OX(−E) for some effective divisor E on X.
Since KY is pseudo-effective and L is numerically trivial, we conclude that
E = 0 and that KY ≡ 0. Moreover, the composition

TX(− log D) −→ TX −→ a∗TY

is surjective since ωD is nowhere vanishing. This immediately implies that TY

is numerically flat. By [9, Corollary 1.19], we have c1(TY ) ≡ 0 and c2(TY ) ≡
0. As a classical consequence of Yau’s theorem on the existence of a Kähler–
Einstein metric, Y is then covered by a complex torus (see [36, Chapter IV
Corollary 4.15]). Finally, since the natural map TX(− log D) → a∗TY is
surjective, we see that D is a relative simple normal crossing divisor. This
finishes the proof of the proposition. □
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Remark 3.2. — Setting and notation as in Proposition 3.1. If F is any
fiber of a : X → Y , then TF (− log D|F ) is nef.

4. Preparation for the proof of Theorem 1.1: easy observations

Throughout the present paper, we will be working in the following setup.

Setup 4.1. — Let (X, D) be a reduced pair with X projective of dimen-
sion n ⩾ 2. Suppose that X has isolated cyclic quotient singularities of type
1
r (1, . . . , 1) and that (X, D) is log smooth in a Zariski open neighborhood of
D. Set E := Ω[1]

X (log D). Suppose finally that the sheaf (Sn E ⊗ det E ∗)∗∗ is
locally free and numerically flat. We denote the irreducible components of
D by D =

⋃
i∈I Di.

Remark 4.2. — Setting and notation as in Setup 4.1. Then the pair
(X, D) is log canonical and X is Q-factorial and klt.

By Remark 2.14, the sheaf E is semistable with respect to any ample
divisor and E |Xreg is locally free and projectively flat.

Remark 4.3. — Setting and notation as in Setup 4.1. Suppose in addi-
tion that X is maximally quasi-étale. Then there exists a representation
ρ : π1(X) → PGL(n,C) such that P(E |Xreg) is defined by the induced repre-
sentation π1(Xreg) → π1(X) → PGL(n,C). If ρ is the trivial representation,
then TX(− log D) ∼= L ⊕n, where L is a rank one reflexive sheaf.

We will need the following easy observation.

Lemma 4.4. — Setting and notation as in Setup 4.1. Let G be a prime
divisor on X which is not contained in D and let C ⊆ G be a curve passing
through a point in G \ D. If (KX + D) · C ⩽ 0 then G · C ⩾ 0.

Proof. — Since X has quotient singularities, there exists a positive in-
teger m such that S[m] TX(− log D) and OX(mG) are locally free sheaves.
Moreover, the composition

Sm TX(− log D)|G∩Xreg −→ Sm TX |G∩Xreg

−→ Sm NG/X |G∩Xreg
∼= OX(mG)|G∩Xreg

yields a generically surjective morphism of locally free sheaves
S[m] TX(− log D)|C −→ OX(mG)|C .

By Corollary 2.15 together with [28, Theorem 3.1.4], the vector bundle
S[m] TX(− log D)|C is semistable of non-negative degree, and hence G·C ⩾ 0,
proving the lemma. □
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We will also need the following minor generalization of [31, Lemma 5.2].

Lemma 4.5. — Setting and notation as in Setup 4.1. Let B be a smooth
curve and let A be an abelian variety of dimension dim A ⩾ 1. Let also
γ : B×A 99K X be a generically finite rational map. Suppose in addition that
γ is well defined along {b} × A for b ∈ B general and that γ({b} × A) ∩ D =
∅. Let C ⊂ B × A be a general complete intersection curve of very ample
divisors. Then (KX + D) · γ(C) ⩽ 0.

Proof. — Let β : Z → X be the blow-up of the finitely many singular
points with exceptional divisor E. Then Ω1

Z(log(β−1(D) + E)) is semistable
and projectively flat by Lemma 2.22 together with Remark 2.14. We denote
the irreducible components of E by E =

⋃
j∈J EJ . Given j ∈ J , let rj be the

positive integer such that NEj/Z
∼= OPn−1(−rj). An easy computation then

shows that

KZ + β−1(D) + E ≡ β∗(KX + D) +
∑
j∈J

n

rj
Ej .

Therefore, replacing (X, D) by (Z, β−1(D)+E), if necessary, we may assume
without loss of generality that (X, D) is a log smooth pair.

Let U ⊆ B × A be an open set with complement of codimension at
least 2 such that γ|U is a morphism. Let F ⊂ B × A be the divisor such
that (γ|U )−1(D) = F ∩ U . Observe that F is a finite union of fibers of the
projection prB : B × A → B. Let also C ⊂ B × A be a general complete
intersection curve of very ample divisors. Then C ⊂ U by general choice
of C. The standard pull-back map of Kähler differentials gives a generically
injective morphism

(γ|U )∗Ω1
X(log D) −→ Ω1

U (log F |U ) ∼= ((pr∗
B Ω1

B) ⊗ OB×A(F ) ⊕ pr∗
A Ω1

A)|U .

By general choice of C, the composition

(γ|C)∗Ω1
X(log D) −→ ((pr∗

B Ω1
B) ⊗ OB×A(F ) ⊕ pr∗

A Ω1
A)|C

−→ pr∗
A Ω1

A|C ∼= O⊕ dim A
C

is then generically surjective. On the other hand, by Corollary 2.15, the
vector bundle (γ|C)∗Ω1

X(log D) is semistable, and hence we must have (KX +
D) · γ(C) ⩽ 0. This finishes the proof of the lemma. □

In the setting of Setup 4.1, Lemma 4.6 below and [11, Corollary 1.7] give
the description of the Di.

Lemma 4.6. — Setting and notation as in Setup 4.1. Let i ∈ I. Then
either TDi

(− log(D − Di)|Di
) is numerically flat or Di is a connected com-

ponent of D and Di
∼= Pn−1.
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Proof. — By Corollary 2.15, for any smooth curve C → Di, the vector
bundle E |C is semistable. On the other hand, the restriction to Di of the
residue map yields a surjective morphism

resDi
|Di

: E |Di
= Ω[1]

X (log D)|Di
−→−→ ODi

. (4.1)

This immediately implies that degC(E ) ⩽ 0 and that the locally free sheaf
TX(− log D)|Di

is nef. In particular, −(KX + D)|Di
is also nef. By [35,

Lemma 2.13.2], the kernel of resDi |Di identifies with Ω1
Di

(log(D − Di)|Di)
so that we obtain a surjective map

TX(− log D)|Di −→−→ TDi(− log(D − Di)|Di). (4.2)

It follows that TDi(− log(D − Di)|Di) is likewise nef. In particular, if (KX +
D)|Di ≡ 0, then TDi(− log(D − Di)|Di) is numerically flat.

Suppose from now on that (KX + D)|Di ̸≡ 0.

By Proposition 3.1, there is a smooth morphism ai : Di → Ai with ra-
tionally connected fibers onto a finite étale quotient of an abelian variety.
Moreover, (D − Di)|Di is a relative simple normal crossing divisor. Then the
composition

TX(− log D)|Di −→−→ TDi(− log(D − Di)|Di) ↪−→ TDi −→ a∗
i TAi

is surjective. On the other hand, recall that TX(− log D)|C is semistable and
nef for any smooth curve C ⊆ Di. As a consequence, if dim ai(C) = 1,
then (KX + D) · C = 0. By [2, Theorem 2.1], we must have dim Ai = 0.
Therefore Di is rationally connected and hence simply connected. Moreover,
TX(− log D)|Di

∼= L ⊕n
i for some line bundle Li on Di. Then Li is generated

by its global sections by (4.1). This in turn implies that TDi(− log(D −
Di)|Di) is likewise generated by its global sections using (4.2).

By [5, Proposition 2.4.1], the pair (Di, (D − Di)|Di
) is homogeneous

under a connected affine algebraic group Gi. In particular, the strata of
(Di, (D − Di)|Di) are rational varieties. Moreover, they are the Gi-orbits
by [5, Corollary 2.1.3]. Recall that −(KX +D)|Di

is nef and (KX +D)|Di
̸≡ 0

by assumption. Let Ci be a positive dimensional strata of (Di, (D − Di)|Di
)

such that (KX +D)|Ci
is not nef and dim Ci is minimal. Note that Ci comes

with a boundary divisor Bi such that OCi(KCi + Bi) ∼= (L ∗
i )⊗n|Ci by the

adjunction formula. Observe also that Bi = 0 if dim Ci ⩾ 2.

Suppose first that dim Ci ⩾ 2. By the cone theorem, there exists an
extremal rational curve Γi ⊂ Ci with 0 < −KCi · Γi ⩽ dim Ci + 1. It follows
that n ⩽ n degΓi

Li ⩽ dim Ci + 1, and hence Ci = Di and −KCi
· Γi =

dim Ci + 1. From [51, Theorem 1.1], we conclude that Di is a Fano manifold
with Picard number 1. Then [37] implies that Di

∼= Pn−1 and Li
∼= OPn−1(1).

Moreover Di is a connected component of D. If dim Ci = 1, then −2 +
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degCi
Bi = degCi

(KCi
+ Bi) = −n degCi

Li ⩽ −n. Therefore, n = 2, Bi = 0
and Ci = Di. Moreover, degCi

Li = 1. Since Bi = 0, Ci = Di is a connected
component of D. This finishes the proof of the lemma. □

Remark 4.7. — Setting and notation as in Lemma 4.6. If TDi
(− log(D −

Di)|Di
) is numerically flat, then we have (KX + D)|Di

≡ 0.

5. Preparation for the proof of Theorem 1.1: reduction steps

In this section we provide a number of reduction steps for the proof of
our main result. We first show that the conclusion of Theorem 1.1 holds in
the special case where KX + D is torsion.

Lemma 5.1. — Setting and notation as in Setup 4.1. Suppose in addition
that KX + D ≡ 0. Then there exists a quasi-étale cover γ : Y → X such that
the following hold. Set B := γ∗(KX + D) − KY .

(1) The divisor B is reduced and effective and the pair (Y, B) is log
smooth.

(2) The logarithmic tangent bundle TY (− log B) is numerically flat.

Proof. — Let γ : Y → X be a quasi-étale cover that is maximally quasi-
étale. Set B := γ∗(KX + D) − KY . Notice that B is reduced and effective.
By purity of the branch locus, (Y, B) is log smooth in a Zariski open neigh-
borhood of B. We have KY + B ≡ 0 by construction. Set G := Ω[1]

Y (log B).
Then G ∼= γ[∗]E and (Sn G ⊗ det G ∗)∗∗ ∼= γ∗((Sn E ⊗ det E ∗)∗∗). It follows
that (Sn G ⊗ det G ∗)∗∗ is locally free and numerically flat. By Theorem 2.13,
G is semistable with respect to any ample divisor and G |Xreg is locally free
and projectively flat. Applying Lemma 2.16, we see that G is locally free
and flat. This easily implies that TY is likewise locally free. By the solu-
tion of the Zariski–Lipman conjecture for klt spaces (see [10, Theorem 1.1]),
the pair (Y, B) is log smooth. Moreover, TY (− log B) is numerically flat by
Theorem 2.9, completing the proof of the lemma. □

The next result will allow to reduce the proof of our main result to the
special case where KX + D is nef.

Lemma 5.2. — Setting and notation as in Setup 4.1. Suppose in addition
that there exists a representation ρ : π1(X) → PGL(n,C) such that P(E |Xreg)
is defined by the induced representation π1(Xreg) → π1(X) → PGL(n,C).
Then there exists a birational (KX + D)-negative contraction φ : X → Y
whose exceptional locus is a disjoint union of connected components Di of
D such that Di

∼= Pn−1 and φ contracts these divisors to points. Moreover,
one of the following holds. Set B := φ∗D.
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(1) The divisor KY + B is nef and (Y, B) satisfies all the conditions
listed in Setup 4.1.

(2) We have B ∼= Pn−1 and there exists a finite cyclic cover γ : Pn → Y
which is quasi-étale over Y \ B. Moreover, γ−1(B) ∼= Pn−1 is an
hyperplane in Pn.

Proof. — Let R ⊆ NE(X) be an extremal ray such that (KX + D) · R∗ <
0. Let φ : X → Y be the contraction of R whose existence is guaranteed
by [13, Theorem 1.4]. We will show that either dim Y = 0 and Y satisfies
condition (2) or φ contracts a connected component Di of D such that
Di

∼= Pn−1 to a point.

Suppose first that dim Y = 0. Then −(KX +D) is ample. Moreover, X is a
Q-Fano variety with klt singularities and Picard number one. In particular, X
is simply connected. It follows that TX(− log D) ∼= L ⊕n, where L is a rank
one reflexive sheaf. By Lemma 4.6, we have (D, L |D) ∼= (Pn−1, OPn−1(1)).
Let d be the positive integer such that OX(D)|D ∼= OPn−1(d). Since L |D ∼=
OPn−1(1) we have d c1(L ) ≡ D. By [1, Lemma 2.5], the Q-Cartier divi-
sor d c1(L ) − D is torsion. Replacing X by the corresponding quasi-étale
cover (see [40, Definition 2.52]), we may assume that d c1(L ) ∼Z D as Weil
divisors. In other words, we have L [⊗d] ∼= OX(D). Let γ : X1 → X be
the associated cyclic cover (see [40, Definition 2.52]) which is quasi-étale
away from D and smooth in a Zariski open neighborhood of γ−1(D). Set
D1 := γ∗(KX + D) − KX1 . By Lemma 2.19, D1 is reduced and effective.
Moreover, we have

TX1(− log D1) ∼= γ[∗]TX(− log D) ∼= γ[∗]L ⊕n.

By construction, γ[∗]L ∼= OX1(D1) is Cartier. By the solution of the Zariski–
Lipman conjecture for klt spaces (see [10, Theorem 1.1]), we conclude that
X1 is smooth. Moreover, KX1 ∼Z −(n+1)D1. A classical result of Kobayashi
and Ochiai then implies that X1 ∼= Pn and that γ[∗]L ∼= OPn(1). Thus, Y
satisfies condition (2).

Suppose now that 0 < dim Y < dim X and let F be a general fiber of
φ. Note that F is smooth since X has isolated singularities. Note also that
F is a Fano manifold. In particular, F is simply connected. It follows that
TX(− log D)|F ∼= L ⊕n

F , where LF is an ample line bundle. The composition

TX(− log D)|F ∼= L ⊕n
F −→ TX |F −→−→ NF/X

∼= O⊕ dim Y
F

is generically surjective, yielding a contradiction since LF is ample.

Suppose from now on that dim Y = dim X and let C be a curve such
that [C] ∈ R.

If C ⊆ Di for some i ∈ I, then Di is a connected component of D and
Di

∼= Pn−1 by Lemma 4.6. Moreover, φ contracts Di to a point.
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Suppose that C ̸⊆ Di for any i ∈ I. There exists a prime divisor G on
X such that G · C < 0 (see [8, Paragraph 1.42]). In particular, C ⊆ G, and
hence G is not contained in the support of D. Then Lemma 4.4 yields a
contradiction.

This proves that φ contracts a connected component Di of D such that
Di

∼= Pn−1 to a point. Note that Y has an isolated cyclic quotient singular-
ity of type 1

r1
(1, . . . , 1) at φ(Di), where ri is the positive integer such that

OX(Di)|Di
∼= OPn−1(−ri).

Set B := φ∗(D) and G := Ω[1]
Y (log B). By [47, Theorem 1.2], the rep-

resentation ρ factors through φ and P(G |Yreg) is induced by the induced
representation π1(Yreg) → π1(Y ) → PGL(n,C). Moreover, one easily checks
that the pair (Y, B) satisfies all the conditions listed in Setup 4.1 using [47,
Theorem 1.2] again. Therefore, a (KX + D)-MMP terminates after finitely
many steps and ends with a pair satisfying (1) or (2). This finishes the proof
of the lemma. □

The following varieties were first considered by Iwai in [30, Section 4.2].
Example 5.3. — Let m and n be a positive integers and let Y be the

weighted projective space P(1, . . . , 1, m) of dimension n. Then Y is the
quotient of Pn by the cyclic group G = ⟨ζ⟩ of order m acting on Pn by
ζ · (z0, . . . , zn) = (ζz0, . . . , ζzn−1, zn). It has a cyclic quotient singularity of
type 1

m (1, . . . , 1) at (0, . . . , 0, 1). Let B be the divisor given by {zn = 0}.
Then (Y, B) satisfies all the conditions listed in Setup 4.1.

Let X be the blow-up of Y at the singular point (0, . . . , 0, 1) with excep-
tional divisor E. Let us denote by D the strict transform of B in X. Then
(X ∼= PPn−1(OPn−1 ⊕ OPn−1(−m)), D + E) also satisfies the condition listed
in Setup 4.1 by Lemma 2.22 together with Theorem 2.13.

6. Preparation for the proof of Theorem 1.1: abundance

In this section we prove a special case of the abundance conjecture. More
precisely, we prove that if the pair (X, D) satisfies all the conditions listed
in Setup 4.1 and moreover (X, D) is minimal, then KX + D is semiample.
We will need the following observation.

Lemma 6.1. — Let (X, D) be a reduced log smooth pair with X of dimen-
sion n ⩾ 2. Suppose that TX(− log D) ∼= L ⊕n, where L is invertible. Then
there exist numbers ai ∈ C such that c1(L ) =

∑
i∈I aiDi ∈ H1(X, Ω1

X).
Proof. — By assumption, TX(− log D) ∼= V ⊗ L where V is a complex

vector space of dimension n. Let v ∈ V \ {0} and set Lv := Cv ⊗ L ⊆
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V ⊗ L ∼= TX(− log D). If v is a general point then Lv is saturated in TX

and defines a foliation Lv ⊆ TX . By construction, Di is Lv-invariant for any
i ∈ I.

Let v ∈ V be a general point. Denote by Nv the normal sheaf of Lv.
Let Uv ⊆ X be the open set where Lv is a regular foliation. Note that
Uv has complement with codimension at least two in X. By [3, Corol-
lary 3.4], the vector bundle Nv|Uv

admits an Lv|Uv
-connection. On the other

hand, since D is Lv-invariant, the line bundle N ∗
D/X |Uv

∼= OX(−D)|Uv

also admits an Lv|Uv -connection. This in turn implies that L ⊗n−1
v |Uv

∼=
det(Nv|Uv

) ⊗ OX(−D)|Uv
likewise admits an Lv|Uv

-connection. The
arguments of [3, Proof of Proposition 3.3] then show that c1(L |Uv

) =
c1(Lv|Uv

) ∈ H1(Uv, Ω1
Uv

) lies in the image of the natural map
H1(Uv, N ∗

v |Uv
) → H1(Uv, Ω1

Uv
). It follows that the image of c1(Lv|Uv

) ∈
H1(Uv, Ω1

Uv
) in H1(Uv, Ω1

Uv
(log D|Uv

)) lies in the subspace

Nv := H1(Uv, N ∗
D,v|Uv

) ⊆ H1(Uv, Ω1
Uv

(log D|Uv
))

where ND,v := TX(− log D)/Lv
∼= L ⊕n−1. Let now v1, . . . , vn be general

elements in V and set U := Uv1 ∩ · · · ∩ Uvn . Since c1(L |U ) = c1(Lvi |U ),
we find that the image of c1(L |U ) in H1(U, Ω1

U (log D|U )) is contained in
Nv1 ∩ · · · ∩ Nvn

= {0}. This easily implies that there exist complex numbers
ai ∈ C such that c1(L ) =

∑
i∈I aiDi ∈ H1(X, Ω1

X) using the fact that
codim X \ U ⩾ 2. □

Next, we consider the case where the logarithmic tangent sheaf is projec-
tively trivial.

Lemma 6.2. — Setting and notation as in Setup 4.1. Suppose in addition
that KX + D is nef and that TX(− log D) ∼= L ⊕n, where L is a rank one
reflexive sheaf. Then KX + D is abundant.

Proof. — For the reader’s convenience, the proof is subdivided into a
number of steps. Set M := L ∗.

Step 1. — By Lemma 6.1 applied to (Xreg, D|Xreg), there exist numbers
ai ∈ C such that c1(L ) ≡

∑
i∈I aiDi. Since c1(L ) ∈ NS(X)Q and Di ∈

NS(X)Q for any i ∈ I, we may assume without loss of generality that ai ∈ Q.

We have KX + D ≡ −nc1(L ) and hence c1(L ) · Di ≡ 0 by Lemma 4.6.
By Lemma 2.24 applied to the pull-backs of −

∑
i∈I aiDi and the Di on a

resolution of X, we may assume that ai ⩽ 0 for any i ∈ I. Set bi := −ai ∈
Q⩾0 and B :=

∑
i∈I biDi. Since B · Di ≡ 0 for any index i ∈ I, we must

have B2 ≡ 0.

Step 2. — Let N be a sufficiently large and divisible positive integer
such that Nbi ∈ Z⩾0 for any i ∈ I and such that M [⊗N ] is Cartier. Suppose
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in addition that M [⊗N ] ⊗ OX(−NB) ∈ Pic0(X). Recall that Pic0(X) is an
abelian variety since X has rational singularities. Hence, we may also assume
that there exists P ∈ Pic0(X) such that (M ⊗ P)[⊗N ] ∼= OX(NB).

Let γ : X1 → X be the associated cyclic cover (see [40, Definition 2.52]).
Then γ is quasi-étale away from D and γ∗B is an integral divisor on X1 by
construction. Moreover, γ[∗](M ⊗ P) ∼= (γ[∗]M ) ⊗ γ∗P ∼= OX(γ∗B). This
in turn implies that γ[∗]M is invertible.

Set D1 := γ∗(KX +D)−KX1 . By Lemma 2.19, D1 is reduced and effective
and

Ω[1]
X1

(log D1) ∼= γ[∗]Ω[1]
X (log D) ∼= (γ[∗]M )⊕n.

In particular, Ω[1]
X1

(log D1) is locally free. Notice that (X1, D1) is log canon-
ical by [39, Proposition 3.16]. By [11, Lemma 2.10], there exists a log reso-
lution β : X2 → X1 such that

Ω1
X2

(log D2) ∼= β∗Ω[1]
X1

(log D1) ∼= (β∗(γ[∗]M ))⊕n

where D2 is the largest reduced divisor contained in β−1(Supp D1). There-
fore, replacing X by X2 if necessary, we may assume without loss of gener-
ality that (X, D) is log smooth and that

M ⊗ P ∼= OX(B)

with B =
∑

i∈I biDi for some bi ∈ Z⩾0. By [7, Corollary 3.2], we have
κ(KX + D) ⩾ 0. In particular, if B = 0, then κ(KX + D) = ν(KX + D) = 0.
Suppose from now on that B ̸= 0.

Step 3. — Note that OX(KX + D) ∼= M ⊗n so that M is a nef line
bundle. Recall from [34, Proposition 2.2] that κ(KX + D) ⩽ ν(KX + D).
Let S ⊆ X be a general complete intersection surface of very ample divisors.
Then NS/X is an ample vector bundle unless dim X = 2. Consider the short
exact sequence (see [10, Lemma 3.2])

0 −→ N ∗
S/X −→ Ω1

X(log D)|S ∼= (M |S)⊕n −→ Ω1
S(log D|S) −→ 0.

Since M is nef, any composition

M |S ↪−→ Ω1
X(log D)|S ∼= (M |S)⊕n −→ Ω1

S(log D|S)

is nonzero. The Bogomolov–Sommese vansihing theorem ([12, Corollary 6.9])
then implies that M |S is not big. This shows that c1(M )2 ≡ 0, and hence
ν(KX + D) ⩽ 1.

Step 4. — By assumption, TX(− log D) ∼= V ⊗ L where V is a complex
vector space of dimension n. Let v ∈ V \ {0} and set Lv := Cv ⊗ L ⊆
V ⊗ L ∼= TX(− log D).
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Recall from Step 2 that κ(KX + D) ⩾ 0. Therefore, there exists an
effective Q-divisor Q :=

∑
j∈J mjQj such that c1(M ) ∼Q Q. Since M is nef

and c1(M )2 ≡ 0, we must have Q2 ≡ 0 and Q · Qj ≡ 0 for any index j ∈ J .
Notice that Q ̸= 0 since B ̸= 0 by assumption.

Suppose that q(X) > 0. Let a : X → A be the Albanese morphism and
let f : X → Y be its Stein factorization. By assumption, we have dim Y ⩾ 1.

Let j ∈ J and suppose that dim f(Qj) ⩾ 1. Then there exists a global
1-form on X whose restriction to Lv is nonzero at a general point in Qj

(for v ∈ V general enough). This easily implies that κ(M ) ⩾ 1, and hence
κ(KX + D) = ν(KX + D) = 1.

Suppose now that dim f(Qj) = 0 for any j ∈ J . By the Negativity
Lemma, we must have dim Y = 1 since Q2 ≡ 0 and Q ̸= 0. Moreover,
Q ∼Q

∑
i∈I riFi where ri ∈ Q>0 and Fi is a fiber of f by Zariski’s Lemma.

This again implies that κ(M ) ⩾ 1 and hence κ(KX + D) = ν(KX + D) = 1.

Suppose finally that q(X) = 0. Then M ∼= OX(B). Recall that B ·Di ≡ 0
for any i ∈ I. It follows that Supp B is a union of connected components of
D. Set J := {i ∈ I | bi ̸= 0}. Set also C := D \ Supp B and set U := X \ C.
Notice that Bj ⊂ U for any j ∈ J . Moreover, we have an isomorphism

H0(X, Ω1
X(log C)) ∼= H0(X, Ω1

X(log D))

since Ω1
X(log D) ∼= OX(B)⊕n. If h0(X, M ) ⩾ 2, then κ(M ) ⩾ 1 and hence

κ(KX + D) = ν(KX + D) = 1. Suppose from now on that h0(X, M ) = 1. In
particular, h0(X, Ω1

X(log C)) = n. Let

a : U −→ G

be the universal morphism to a semi-abelian variety (see [29] and [45]).
Since Ω1

X(log C) is generated by its global sections over X \ D ⊆ U , the
tangent map

Ta : TU −→ a∗TG
∼= H0(X, Ω1

X(log C)
)∗ ⊗ OU

is injective over X \ D. This implies that the map a is generically finite. On
the other hand, since q(X) = 0, G ∼= Gn

m is affine. It follows that a contracts
Supp(B) to points. But this contradicts the fact that B2 ≡ 0. This finishes
the proof of the proposition. □

The following is the main result of this section.

Lemma 6.3. — Setting and notation as in Setup 4.1. Suppose in addition
that KX + D is nef. Then KX + D is semiample.

Proof. — By Lemma 4.6, for any index i ∈ I, (KX +D)|Di
= KDi

+(D−
Di)|Di

≡ 0. Moreover, the pair (Di, (D − Di)|Di
) is log smooth. Then [7,
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Corollary 3.2] implies that (KX + D)|Di
is torsion. In particular, the restric-

tion of KX + D to any log canonical center of (X, D) is abundant. As a
consequence of [16, Theorem 1.6], in order to prove the lemma, it suffices to
show that KX + D is abundant.

Let γ : Y → X be a quasi-étale cover that is maximally quasi-étale. Set
B := γ∗(KX +D)−KY . Notice that B is reduced and effective. By purity of
the branch locus, (Y, B) is log smooth in a Zariski open neighborhood of B.
Moreover, Y has isolated cyclic quotient singularities of type 1

r (1, . . . , 1). One
then readily checks that (Y, B) satisfies all the conditions listed in Setup 4.1.
By [48, Theorem 5.13], we have κ(KX + D) = κ(KY + B). On the other
hand, we have ν(KX + D) = ν(KY + B). Replacing (X, D) by (Y, B), if
necessary, we may assume that X is maximally quasi-étale. Hence, there
exists a representation ρ : π1(X) → PGL(n,C) such that P(E |Xreg) is defined
by the induced representation π1(Xreg) → π1(X) → PGL(n,C).

Let H ⊆ PGL(n,C) be the Zariski closure of ρ(π1(X)). This is a linear
algebraic group which has finitely many connected components. Applying
Selberg’s Lemma and passing to an appropriate finite quasi-étale cover of
X, we may assume without loss of generality that H is connected and that
the image of the induced representation

ρ1 : π1(X) −→ H −→ H/ Rad(H)

is torsion free, where Rad(H) denotes the radical of H. Let

shaρ1 : X 99K Y

be the ρ1-Shafarevich map. Recall that the rational map shaρ1 is almost
proper. By [6, Théorème 1], we may assume without loss of generality that
Y is a smooth projective variety of general type and that ρ1 factors through
shaρ1 . Let F be a general fiber of shaρ1 and set DF := D|F . Note that F is
klt and that (F, DF ) is log canonical. By Proposition 2.23, in order to prove
that KX + D is abundant, it suffices to prove that KF + DF is abundant.
In particular, we may assume from now on that dim Y < dim X.

Suppose first that either q(F ) > 0 or q(F ) = 0 and dim Y > 0.

Let a : F → A be the Albanese morphism, that is, the universal morphism
to an abelian variety (see [45]). Since F has rational singularities, we have
dim A = q(F ) by [33, Lemma 8.1]. Let G be a general fiber of the Stein
factorization of F → a(F ). Notice that G is smooth and contained in Xreg
since X has isolated singularities. By [27, Theorem 1.1], in order to prove
that KF + DF is abundant, it suffices to prove that KG + DG is abundant,
where DG := D|G. In particular, we may also assume that dim G > 0 and
that q(G) = 0. Since ρ(π1(F )) ⊆ Rad(H), the restriction of ρ to a finite
index subgroup of π1(F ) factorizes through a. Hence, there exists a finite
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étale cover G1 → G such that ρ(π1(G1)) is trivial. It follows that

Ω1
X(log D)|G1 = Ω[1]

X (log D)|G1
∼= M ⊕n

G1

for some line bundle MG1 on G1. Next, consider the exact sequence (see [10,
Lemma 3.2])

0 −→ N ∗
G1/X −→ Ω1

X(log D)|G1
∼= M ⊕n

G1
−→ Ω1

G1
(log DG1) −→ 0.

Note that NG/X
∼= O⊕ dim X−dim G

G since G is a (general) fiber of the relative
Albanese map. This immediately implies that NG1/X

∼= O⊕ dim X−dim G
G1

.
As a consequence, the line bundle MG1 is generated by its global section. It
follows that Ω1

G1
(log DG1) and hence OG1(KG1 +DG1) are likewise generated

by their global sections. This easily implies that KG + DG is abundant.

Suppose finally that q(X) = 0 and dim Y = 0. Then ρ(π1(X)) is finite
and KX + D is easily seen to be abundant using Lemma 6.2. This finishes
the proof of Lemma 6.3. □

7. Proof of Theorem 1.1

In this section we finally prove our main result. Note that Theorem 1.1
is an immediate consequence of Theorem 7.1 below together with Theo-
rem 2.13.

Theorem 7.1. — Let (X, D) be a reduced pair with X projective of di-
mension n ⩾ 2. Suppose that X is of klt type and that (X, D) is log smooth
in a Zariski open neighborhood of D. Suppose in addition that TX(− log D) is
semistable with respect to some ample divisor on X and that TX(− log D)|Xreg

is projectively flat. Then there exist a smooth projective variety Y and a log
smooth reduced pair (Z, B) as a well as a finite cover γ : Y → X and a bira-
tional projective morphism β : Y → Z such that β is the blow up of finitely
many points in Z \ B and γ−1(D) = β−1(B) ⊔ Exc β. Moreover, one of the
following holds.

(1) The logarithmic tangent bundle TZ(− log B) is numerically flat. In
addition, the restriction of γ to Y \ Exc β is quasi-étale.

(2) We have Z ∼= Pn and B ∼= Pn−1 is an hyperplane in Pn. Further-
more, the restriction of γ to Y \ γ−1(D) is quasi-étale.

Proof. — For the reader’s convenience, the proof is subdivided into a
number of steps. We denote the irreducible components of D by D =

⋃
i∈I Di.

Notice that the pair (X, D) is log canonical.
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Step 1. — Replacing X by a quasi-étale cover, we may assume without
loss of generality that X is maximally quasi-étale. Set E := Ω[1]

X (log D). Then
there exists a representation ρ : π1(X) → PGL(n,C) such that P(E |Xreg) is
defined by the induced representation π1(Xreg) → π1(X) → PGL(n,C).
By Proposition 2.21, X has only isolated cyclic quotient singularities of type
1
r (1, . . . , 1). Moreover, by Theorem 2.13, the sheaf (Sn E ⊗det E ∗)∗∗ is locally
free and numerically flat. The pair (X, D) therefore satisfies all the conditions
listed in Setup 4.1. In particular, X is Q-factorial and klt.

Step 2. — By Lemma 5.2, there exists a birational (KX + D)-negative
contraction φ : X → Y whose exceptional locus is a disjoint union of con-
nected components Di of D such that Di

∼= Pn−1 and φ contracts these
divisors to points. Moreover, one of the following holds. Set B := φ∗D.

(1) The divisor KY + B is nef and (Y, B) satisfies all the conditions
listed in Setup 4.1.

(2) We have B ∼= Pn−1 and there exists a finite cyclic cover γ : Y1 :=
Pn → Y which is quasi-étale over Y \B. Moreover, B1 := γ−1(B) ∼=
Pn−1 is an hyperplane in Pn.

Suppose first that (Y, B) satisfies (2). Let X1 be the normalization of the
fiber product X ×Y Y1 with natural morphisms γ1 : X1 → X and φ1 : X1 →
Y1. By construction, γ1 is quasi-étale over X \ D. Recall that Y has isolated
cyclic quotient singularities at any point y in φ(Exc φ). It follows that the
restriction of γ1 : X1 → X to a sufficiently small neighborhood U of φ−1(y)
is a disjoint union of finite cyclic cover of (U, φ−1(y)). This in turn implies
that (X1, γ−1

1 (Exc φ)) is log smooth in a neighborhood of γ−1
1 (Exc φ). A

theorem of Moishezon (see also [42, Theorem 2]) then applies to show that
φ1 : X1 → Y1 is the blow-up of Y1 at finitely many points in Y1 \ B1. It
follows that the conclusion of Theorem 7.1(2) holds for (X, D).

Suppose now that KY + B is nef and that the pair (Y, B) satisfies all the
conditions listed in Setup 4.1. Then KY + B is semiample by Lemma 6.3.

Suppose in addition that KY +B ≡ 0. By Lemma 5.1, there exists a quasi-
étale cover γ : Y1 → Y such that the following properties hold in addition.
Set B1 := γ∗(KY + B) − KY1 and notice that B1 is reduced and effective.
Then (Y1, B1) is log smooth and Ω1

Y1
(log B1) is numerically flat. Let X1 be

the normalization of the fiber product X ×Y Y1 with natural morphisms
γ1 : X1 → X and φ1 : X1 → Y1. Set also D1 := γ∗

1 (KX + D) − KX1 . By
construction, γ1 is quasi-étale over X \Exc φ. Arguing as above, we conclude
that X1 is the blow-up of Y1 at finitely many points. It follows that the
conclusion of Theorem 7.1(1) holds for (X, D).
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Therefore, to prove Theorem 7.1, it suffices to show that KX + D ≡ 0
under the additional assumption that KX + D is semiample.

Suppose from now on that KX + D is semiample and let f : X → Y be
the fibration defined by |m(KX + D)| for m ⩾ 1 sufficiently divisible. We
argue by contradiction and assume that dim Y ⩾ 1.

Step 3. — Suppose first that dim Y = dim X ⩾ 2. Then KX + D is nef
and big. By [23, Theorem B], the Miyaoka–Yau inequality

c2(X, D) · (−c1(X, D))n−2 ⩾
n

2(n + 1)c1(X, D)2 · (−c1(X, D))n−2

holds where c1(X, D) ≡ −(KX + D) and c2(X, D) := ĉ2(TX(− log D)).
On the other hand, using Lemma 2.12, one easily checks that c2(X, D) =
n−1
2n c1(X, D)2, yielding a contradiction since c1(X, D)n > 0 by assumption.

Suppose from now on that 1 ⩽ dim Y < dim X. Following the ideas of [19]
and [31] we will show that the log Itaka fibration of a suitable quasi-étale
cover of (X, D) is birational to an abelian group scheme.

Step 4. — By Lemma 4.6, (KX + D)|Di
≡ 0 for any index i ∈ I, and

hence f maps Di to a point in Y . Let F be a general fiber of f . Notice that F

is smooth since X has only isolated singularities. Moreover Ω[1]
X (log D)|F ∼=

Ω[1]
X |F is projectively flat and semistable with respect to an ample divisor on

F by Corollary 2.15. Since c1
(
Ω[1]

X |F
)

≡ 0, we conclude that the locally free
sheaf Ω[1]

X |F is numerically flat by Lemma 2.16. The short exact sequence

0 −→ N ∗
F/X

∼= O⊕ dim F
F −→ Ω[1]

X |F −→ Ω1
F −→ 0

then implies that Ω1
F is numerically flat as well. As a classical consequence

of Yau’s theorem on the existence of a Kähler–Einstein metric, F is then
covered by an abelian variety (see [36, Chapter IV Corollary 4.15]).

The arguments of [19, Claim 5.30] apply verbatim to show that, up to
replacing X by a finite étale cover, there is a commutative diagram of normal
projective varieties as follows:

X X1 X2

Y Y1 Y2

f

birational

f1 f2

étale

birational étale

γ2

where f1 and f2 are abelian schemes and f2 has a level three structure. Set
Y ◦ := Y \ f(D) and X◦ := f−1(Y ◦). Note that Y ◦ is of klt type by [15,
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Theorem 7.1]. The arguments of [19, Claim 5.31] then show that we have a
commutative diagram of projective morphisms:

X◦ X◦
3 X◦

4 X◦
2

Y ◦ Y ◦
3 Y ◦

4 Y ◦
2

f◦:=f |X◦ f◦
3

étale birational

f◦
4

f2|X◦
2

étale birational

γ2|Y ◦
2

where f◦
4 is an abelian scheme equipped with a level three structure. More-

over, the restriction of γ2 to Y ◦
2 := γ−1

2 (Y ◦) factors through the étale mor-
phim Y ◦

3 → Y ◦ and the induced morphism Y ◦
2 → Y ◦

3 is birational. In ad-
dition, the abelian scheme X◦

2 → Y ◦
2 is the pull-back of X◦

4 → Y ◦
4 , where

X◦
2 := f−1

2 (Y ◦
2 ).

Claim 7.2. — The variety Y ◦ is smooth and the morphism f◦ := f |X◦ is
smooth as well. In particular, X◦ is smooth. Moreover, the birational map
X◦

3 99K X◦
4 is an isomorphism.

Proof. — Using [24, Corollary 1.5], we see that the rational map X◦
3 99K

X◦
4 is a morphism. Observe that X◦

3 and X◦
4 are of klt type. Proposition 2.21

together with [47, Theorem 1.1] then imply that X◦
4 has only isolated sin-

gularities. Since dim X◦
4 > dim Y ◦

4 by assumption, we conclude that Y ◦
4 and

hence X◦
4 are smooth. By construction, the projective birational morphism

X◦
3 → X◦

4 is crepant, and thus an isomorphism since X◦
4 is smooth. As a

consequence, f◦ is a smooth morphism between smooth varieties, proving
the claim. □

Step 5. — We will need the following observation.

Claim 7.3. — Let G be a prime divisor on X such that f(G) = f(Di) for
some i ∈ I. Then there exists j ∈ I such that G = Dj .

Proof. — We argue by contradiction and assume that G ̸= Dj for any
index j ∈ I. Notice that there is a curve C ⊆ G passing through a gen-
eral point of G such that G · C < 0. This follows from Zariski’s Lemma if
dim Y = 1 and from the Negativity Lemma if dim Y ⩾ 2. But this contra-
dicts Lemma 4.4. □

Let Y2 → Y5 → Y be the Stein factorization of γ2, and let X5 be the nor-
malization of the fiber product Y5×Y X with natural morphisms f5 : X5 → Y5
and γ5 : X5 → Y5. Set D5 := γ∗

5(KX + D) − KX5 . By Step 4, the mor-
phism Y5 → Y is étale over Y ◦. It then follows from Claim 7.3 that γ5 is
quasi-étale away from D. By Lemma 2.19, D5 is reduced and effective and
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Ω[1]
X5

(log D5) ∼= γ
[∗]
5 Ω[1]

X (log D). In particular, Ω[1]
X5

(log D5) is locally free in
a Zariski open neighborhood of D5. Notice that (X5, D5) is log canonical
by [39, Proposition 3.16]. By [11, Lemma 2.10], there exists a partial log
resolution β5 : X6 → X5 which induces an isomorphism over γ−1

5 (X \ D)
and such that

Ω[1]
X6

(log D6) ∼= β∗
5Ω[1]

X5
(log D5)

where D6 is the largest reduced divisor contained in β−1
5 (Supp D5). Set E6 :=

Ω[1]
X6

(log D6). One then easily checks that

(Sn E5 ⊗ det E ∗
5 )∗∗ ∼= (γ5 ◦ β5)∗(Sn E ⊗ det E ∗)∗∗.

It follows that the sheaf (Sn E5 ⊗ det E ∗
5 )∗∗ is locally free and numerically

flat. Moreover, the restriction of P(E5) to the smooth locus of X5 is defined
by the representation induced by ρ. We obtain a commutative diagram as
follows:

X X6 X2

Y Y5 Y2.

f

generically finite

f6

birational

f2

finite birational

γ2

By construction, the restriction of the finite morphism Y5 → Y to the preim-
age Y ◦

5 of Y ◦ in Y5 identifies with Y ◦
3 → Y ◦ and the restriction f◦

6 of f6 to
the preimage X◦

6 of Y ◦
5 in X6 identifies with f◦

3 .

Let A3 be the fine moduli space of polarized abelian varieties with level
three structure, and let Y2 → Z2 → A3 be the Stein factorization of the
morphism Y2 → A3 defined by f2. Note that X2 → Y2 is the pull-back
of an abelian scheme over Z2 with a level three structure via Y2 → Z2.
Let C ⊆ Y2 be a curve which is contracted in Z2. Lemma 4.5 then easily
implies that C must be contracted in Y5 as well since any curve B ⊂ X with
dim f(B) = 1 has positive degree with respect to KX + D by construction.
Hence, the morphism Y2 → Y5 factors through the birational morphim Y2 →
Z2. Replacing X by X6 and Y2 by Z2 if necessary, we may therefore assume
without loss of generality that we have a commutative diagram:

X X2

Y Y2.

f

β2, birational

f2

γ2, birational

and that the morphism Y2 → A3 defined by f2 is finite.
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Step 6. — We now prove that KY2 is Q-ample. We will need the following
observation.

Claim 7.4. — The rational map β2 : X 99K X2 is a morphism and
Exc β2 ⊆ D.

Proof. — Recall from [38, Lemma 5.9.3] that A3 does not contain any
rational curve. The first claim then follows from [24, Corollary 1.5].

Notice that there exists an effective Cartier divisor E on X such that
E · C < 0 for any curve C contracted by β2 (see [8, Paragraph 1.42]). The
second claim then follows from Lemma 4.4. □

Observe that KX + D ∼Q β∗
2(KX2 + D2) where D2 := (β2)∗D. It follows

that the pair (X2, D2) has log canonical singularities. Moreover, KX2 + D2
is the pull-back of an ample divisor on Y . Since f2 is a smooth morphism
and D2 = f−1

2 (f2(D2)), any log canonical center of (X2, D2) is the preim-
age of a subvariety of Y2. Let i ∈ I and set Ai := β2(Di). By Lemma 4.6
and [11, Corollary 1.7], there exists a smooth morphism Di → Ti with ra-
tionally connected fibers onto a finite étale quotient of an abelian variety.
As a consequence, the morphism Di → Ai is smooth. Moreover, by [38,
Lemma 5.9.3], we must have dim f2(Ai) = 0 using the fact that Y2 → A3 is
finite. Since Ai is a log canonical center of (X2, D2) we conclude that Ai is
a fiber of f2.

Claim 7.5. — The variety Y2 is smooth away from the finitely many
points f2(Ai). Moreover, X is smooth.

Proof. — By Claim 7.4, X \D ∼= X2 \β2(D). This implies that X2 \β2(D)
has isolated singularities. This in turn implies that X \D and X2 \β2(D) are
smooth since dim Y1 < dim X2 by assumption. Our claim follows easily. □

If dim Y2 = 1, then γ2 is an isomorphism and KY2 is ample by [38,
Lemma 5.9.3] again. Suppose from now on that dim Y2 ⩾ 2. Then D2 = 0
and Exc β2 = D. Let s2 : Y2 → X2 be the unit section. Recall that X2 is
log canonical. Since f2 is smooth, KY2 is Q-Cartier and Y2 is likewise log
canonical. Moreover, C ⊂ Y2 is a log canonical center of Y2 if and only if
f−1

2 (C) is a log canonical center of X2. It follows that the log canonical
centers of Y2 are the finitely many points f2(Ai) with i ∈ I.

Let Y 2 ⊂ X be the closed subscheme defined by the ideal β−1
2 (Is2(Y2)) ·

OX and let η2 : Y 2 → Y2 be the natural morphism.

Claim 7.6. — The morphism η2 is a resolution of Y2. Moreover, the pair
(Y 2, D2) is log smooth and KY 2

+ D2 ∼Q η∗
2KY2 , where D2 := D|Y 2

. In
particular, D2 := D|Y 2

is reduced.
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Proof. — Notice first that η2 is an isomorphism away from the points
f2(Ai). It follows from Claim 7.5 that Y 2 is smooth away from Y 2 ∩ D.
Set g := dim X2 − dim Y2 = dim X − dim Y . Let yi be the unique point in
s2(Y2) ∩ Ai. There exit local functions t1, . . . , tg at yi such that s2(Y2) is
defined by the equations t1 = · · · = tg = 0 and such that the restrictions of
the dyi

tj to Tyi
Ai are linearly independent. Together with the fact that the

morphism Di → Ai is smooth, this implies that the pair (Y 2, η−1
2 (yi)) is log

smooth in a neighborhood of η−1
2 (yi).

An easy computation using the adjunction formula then shows that KY 2
+

D2 ∼Q η∗
2KY2 . It follows that D2 is reduced since Y2 is log canonical, finishing

the proof of the claim. □

Claim 7.7. — The canonical divisor KY2 is Q-ample.

Proof. — Recall that the morphism Y2 → A3 defined by f2 is finite by
construction.

By the cone theorem for log canonical spaces (see [13, Theorem 1.4]), if
KY2 is not nef, then Y2 contains a rational curve. But this contradicts [38,
Lemma 5.9.3] and shows that KY2 is nef.

By [38, Lemma 5.9.3] again, κ(Y 2) = dim Y2. Thus

dim Y2 = κ(Y 2) ⩽ κ(KY 2
+ D2) = κ(KY2)

using Claim 7.6. It follows that KY2 is abundant. Recall that the log canon-
ical centers of Y2 are the points f2(Ai) so that KY2 is automatically log
abundant. As a consequence of [16, Theorem 1.6], the canonical divisor KY2

is semiample.

Let g : Y2 → I be the birational morphism defined by the linear sys-
tem |mKY2 | for m ⩾ 1 sufficiently divisible. We argue by contradiction and
assume that there exists a curve C ⊂ Y2 such that KY2 · C = 0.

Recall that η2 induces an isomorphism Y 2 \ D2 ∼= Y2 \ η2(D2). It follows
that the strict transform C of C in Y 2 is not contained in D2. As a conse-
quence, either KY 2

· C < 0 or C ∩ D2 = ∅. Hence, either KY 2
· C < 0 or

Exc g ⊂ Y2 \ η2(D2).

Suppose first that KY 2
· C < 0. A theorem of Miyaoka and Mori then

implies that there is a rational curve through any point of C. It follows that
Y2 contains rational curves, yielding a contradiction.

Suppose now that Exc g ⊂ Y2 \ η2(D2) =: Y ◦
2 . There exists an effective

Cartier divisor E◦ on Y ◦
2 such that E◦ · C < 0. If ϵ ∈ Q>0 is small enough,

then the pair (Y ◦
2 , ϵE◦) is klt. The relative cone theorem for klt spaces applied
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to Y ◦
2 → g(Y ◦

2 ) then shows that Y2 contains a rational curve, yielding again
a contradiction. This completes the proof of the claim. □

Step 7. — The final step of the argument is similar to that of [31, The-
orem 6.1]. Let now C ⊂ Y2 be a general complete intersection curve of
members of |m(KY2)|. By general choice of C, we have C ⊂ Y2 \ η2(D2). Set
B := s2(C) ⊂ X2. Set also E 1,0 := (f2)∗Ω1

X2/Y2
so that Ω1

X2/Y2
∼= f∗

2 E 1,0.
Consider the exact sequence

0 −→ (f2|X◦
2
)∗Ω1

Y ◦
2

−→ Ω1
X◦

2
−→ Ω1

X◦
2 /Y ◦

2
∼= (f2|X◦

2
)∗(E 1,0|Y ◦

2
) −→ 0.

Set d := dim Y2. By Theorem 2.13, the vector bundle Ω1
X2

|B is semistable.
It follows that

md−1 Kd
Y2

+ degC E 1,0

n
= degB KX2

n
⩽

degB f∗
2 E 1,0

g
= md−1 degC E 1,0

g

and hence
Kd

Y2

d
⩽

degC E 1,0

g
.

On the other hand, by [49, Theorem 1 and Remark 2] applied to the pull-back
of f2 to Y 2, we have

2degC E 1,0

g
⩽

(KY 2
+ D2)d

d
=

Kd
Y2

d
.

This yields a contradiction since Kd
Y2

> 0, finishing the proof of the theorem.
□
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