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1. Introduction

X = a smooth complex projective variety, n := dim(X), KX a canonical divisor on X (any

divisor whose associated line bundle is det(Ω1
X)).
1
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Conjecturally, and very roughly, the 〈〈 building bricks 〉〉 of algebraic geometry are varieties

with

• −KX ample (Fano varieties),

• KX trivial,

• KX ample and

mild singularities.

Fano manifolds are quite rare in nature. Let X = Fano manifold.

• dim(X) = 1 iff X ' P1;

• dim(X) = 2 iff either X ' P1 × P1, or X ' the blow-up of P2 at 6 8 points in

general position = 10 deformations types (usually called del Pezzo surfaces);

• dim(X) = 3: 17 deformations types with Picard number ρ(X) = 1 (Iskovskikh ’77,

’78, Shokurov ’79) and 88 deformations types with Picard number ρ(X) > 2 (Mori-

Mukai ’82, ’03);

• There are at most (n + 2)(n+2)n23n

deformations types of complex Fano varieties of

dimension n (Campana ’91, Nadel ’91, Kollár-Miyaoka-Mori ’92).

Definition 1. The index of a Fano manifold X is the largest positive integer ιX such that

−KX ∼ ιXH for a divisor H on X.

Theorem 2 (Kobayashi-Ochiai ’73). X = Fano manifold of index ιX . Then

• ιX 6 n+ 1;

• ιX = n+ 1 iff X ' Pn;

• ιX = n iff X ' Qn (smooth quadric in Pn+1).

Definition 3. Fano manifolds of dimension n and index ιX = (n − 1)k for some integer

k > 1 are usually called del Pezzo manifolds.

Fano manifolds of dimension > 3 and index i = n− 3 were classified by Fujita.
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Theorem 4 (Fujita ’80, ’81 and ’84). Let X be Fano manifold of dimension n > 3 and index

i = n− 3. Then X is either

(1) an hypersurface of degree 6 in the weighted projective space P(3, 2, 1, . . . , 1), or

(2) an hypersurface of degree 4 in the weighted projective space P(2, 1, . . . , 1), or

(3) a cubic hypersurface, or

(4) a complete intersection of two quadrics, or

(5) a linear section of the Grassmannian G(2, 5) (n 6 6), or

(6) the blow-up of P3 in 1 point, or

(7) PP2(TP2), or

(8) P1 ×P1 ×P1, or

(9) P2 ×P2.

(4n + 1n66 deformations types with Picard number ρ(X) = 1 and 4 deformations types

with Picard number ρ(X) > 2).

Similar ideas can be applied in the context of foliations on complex projective manifolds.

2. Foliations

Definition 5. A (singular) foliation on X = sheaf of OX-modules F ⊂ TX , closed under

the Lie bracket, saturated in TX (= TX/F is torsion free) of rank 1 6 r 6 n− 1.

KF = a canonical divisor of F = any divisor whose associated line bundle is OX(−KF ) '

det(F ) := (∧rF )∗∗.

In analogy, we define a

Definition 6. Fano foliation = foliation F with −KF ample.

As in the case of Fano manifolds, we expect Fano foliations to present very special behavior.

This is the case for instance if the rank of F is 1, i.e., F is an ample invertible subsheaf of

TX . By Wahl’s Theorem, this can only happen if (X,F ) '
(
Pn,O(1)

)
.
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Theorem 7 (Mori ’79, Wahl ’83, Andreatta-Wísniewski ’01). Let X be a smooth complex

projective n-dimensional variety. Assume that the tangent bundle TX contains an ample

locally free subsheaf E of rank 1 6 r 6 n. Then X ' Pn and either E ' OPn(1)⊕r ( 

degree 0 foliation on Pn) or E = TX .

Definition 8. The index of a Fano foliation F on X is the largest positive integer ιF such

that −KF ∼ ιFH for a divisor H on X.

In analogy with the first part of Kobayachi-Ochiai’s theorem, we have the following.

Theorem 9 (Araujo,−, Kovács ’08). Let F be a Fano foliation of rank r on an n-dimensional

complex projective manifold X, with 1 ≤ r ≤ n− 1. Then ιF ≤ r and equality holds only if

X ∼= Pn.

Foliations as q-forms. Let X be a smooth variety of dimension n > 2, and F ( TX

a foliation of rank r on X. Set N∗F := (TX/F )∗, and NF := (N∗F )∗. These are called

the conormal and normal sheaves of the foliation F , respectively. The conormal sheaf

N∗F is a saturated subsheaf of Ω1
X of rank q := n − r. The q-th wedge product of the

inclusion N∗F ⊂ Ω1
X gives rise to a nonzero twisted differential q-form ω with coefficients in

the line bundle L := det(NF ), which is locally decomposable and integrable. To say that

ω ∈ H0(X,Ωq
X ⊗ L ) is locally decomposable means that, in a neighborhood of a general

point of X, ω decomposes as the wedge product of q local 1-forms ω = ω1 ∧ · · · ∧ ωq. To

say that it is integrable means that for this local decomposition one has dωi ∧ ω = 0 for

i ∈ {1, . . . , q}. Conversely, given a twisted q-form ω ∈ H0(X,Ωq
X ⊗ L ) \ {0} which is

locally decomposable and integrable, we define a foliation of rank r on X as the kernel of

the morphism TX → Ωq−1
X ⊗L given by the contraction with ω.

Proposition 10 (Cerveau-Déserti ’05). Let F be a Fano foliation on Pn with index equal to

the rank (usually called degree 0 foliations on Pn). Then F is induced by a linear projection

Pn 99K Pn−r ( leaves are algebraic).
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Proof. Set q := n− r. Let ω ∈ H0(Ωq
Pn(q + 1)) be a twisted differential q-form defining F .

Then ω is induced by a q-form

Ω =
∑

I=(i1<···<iq)

`I dzi1 ∧ · · · ∧ dziq

on Cn+1 such that iRΩ = 0 where R =
∑

16i6n+1 zi
∂
∂zi

and `I is a linear form.

Let us assume for simplicity that q = 1. Let x ∈ Cn+1 be a general point. By Frobenius’

theorem, there exists a local holomorphic function f defined in an open neighborhood of x

such that Ω∧df = 0. Thus dΩ∧df = 0. We may assume that f = z0+g where g ∈ m2
x. Since

dΩ has constant coefficients, we must have dΩ∧dz0 = 0. Thus dΩ = dz0∧d` = 1
2
d(z0d`−`dz0)

for some linear form ` on Cn+1. Finally, Ω = 1
2
d(z0d`− `dz0) + dq for some quadratic form

q on Cn+1. Since iRΩ = 0, we must have q = 0. The claim follows. �

Singularities of pairs. LetX be a normal (projective) variety, and ∆ =
∑
ai∆i an effective

Q-divisor on X, where the ∆i’s are distinct prime divisors. Suppose that KX + ∆ is Q-

Cartier. Let f : X̃ → X be a log resolution of the pair (X,∆). This means that X̃ is a

smooth (projective) variety, f is a birational projective morphism whose exceptional locus

is the union of prime divisors Ei’s, and the divisor
∑
Ei + f−1∗ ∆ has simple normal crossing

support. There are uniquely defined rational numbers a(Ei, X,∆)’s such that

KX̃ + f−1∗ ∆ ∼Q f ∗(KX + ∆) +
∑
Ei

a(Ei, X,∆)Ei.

The a(Ei, X,∆)’s do not depend on the log resolution f , but only on the valuations associated

to the Ei’s.

We say that (X,∆) is klt (resp. lc) if 0 6 ai < 1 (resp. 0 6 ai 6 1) and, for some

log resolution f : X̃ → X of (X,∆), a(Ei, X,∆) > −1 (resp. a(Ei, X,∆) > −1) for every

f -exceptional prime divisor Ei. If this condition holds for some log resolution of (X,∆),

then it holds for every log resolution of (X,∆).

Singularities of Foliations.
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Definition 11. Let F be a foliation on a smooth n-dimensional variety X. Suppose that F

has algebraic leaves. Let Y ⊂ X be the closure of a general leaf. Then there is a commutative

diagram

Ωr
X

//

��

OX(KF )

��

Ωr
Y

ηY
// OX(KF )|Y

whose vertical maps are the standard maps.

Let n : Ỹ → Y the normalization morphism. Then ηY extends uniquely to Ωr
Ỹ
→

n∗OX(KF )|Y (follows from a theorem of Seidenberg). We obtain a map η̃Y : OỸ (KỸ ) →

n∗OX(KF )|Y . Let ∆Y be the (Weil) divisor on Ỹ of zeroes of η̃Y . Note that ∆Y is an effective

integral Weil divisor such that OỸ (KỸ + ∆Y ) ' n∗OX(KF )|Y . The pair (Y,∆Y ) is called a

(general) log leaf.

Definition 12. Let X be a smooth complex variety, r an integer with 1 6 r 6 dim(X)− 1,

and F a foliation of rank r on X with algebraic leaves. Then F is said to have log terminal

(resp. log canonical) singularities along a general leaf if (Y,∆Y ) has log terminal (resp. log

canonical) singularities where (Y,∆Y ) is a general log leaf.

Foliations of rank r and index r on Pn. Let F ( TPn be a Fano foliation of rank r and

index ιF = r on Pn. These are classically known as degree 0 foliations on Pn. Recall that F

is defined by a linear projection Pn 99K Pn−r. The singular locus of F is a linear subspace S

of dimension r− 1. The closure of the leaf through a point p 6∈ S is the r-dimensional linear

subspace L of Pn containing both p and S. Let p1, . . . , pr ∈ S be r linearly independent

points in S, and vi ∈ H0(Pn, TPn(−1)) a nonzero section vanishing at pi. Then the vi’s define

an injective map OPn(1)⊕r → TPn whose image is F . Thus the restricted map F |L → TL

is induced by the sections vi|L ∈ H0(L, TL(−1)) ⊂ H0(L, TPn(−1)|L). In particular, the zero

locus of the map det(F )|L → det(TL) is the codimension one linear subspace S ⊂ L. Thus

the log leaf (F̃ , ∆̃) = (L, S) is log canonical, and F has log canonical singularities along a

general leaf.
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Fano foliations on Grassmannians. Let m and n be nonnegative integers, and V a

complex vector space of dimension n + 1. Let G = G(m + 1, V ) be the Grassmannian of

(m+ 1)-dimensional linear subspaces of V , with tautological exact sequence

0→ K → V ⊗ OG → Q → 0.

Let k be an integer such that 0 6 k 6 n−m−1, and W a (k+1)-dimensional linear subspace

of V . Set

F := W ⊗K ∗ ⊂ V ⊗K ∗.

The map V ⊗K ∗ → Q⊗K ∗ induced by V ⊗OG → Q yields a map F → Q⊗K ∗ ' TG.

For a general point [L] ∈ G, L ∩W = {0} since k + m 6 n − 1. Thus the map F → TG

is injective at [L]. Since F is locally free, F ↪→ TG is injective. Let P be the linear span

of L and W in V . It has dimension m + k + 2 6 n + 1. Notice that the Grassmannian

G(m+ 1, P ) ⊂ G is tangent to F at a general point of G(m+ 1, P ).

Suppose that k 6 n − m − 2 (or equivalently that dim(P ) < dim(V )). Then F is a

subbundle of TG in codimension one, and thus saturated in TG (easy). In particular F is

a Fano foliation on G of rank r = (m + 1)(k + 1). Its singular locus S is the set of points

[L] ∈ G such that dim(L ∩W ) > 1.

Recall that Pic(G) = Z[OG(1)] where OG(1) ' det(Q) is the pullback of OP(∧m+1V )(1)

under the Plücker embedding. It follows that F has index ιF = k + 1. In particular,

ιF = r − 1 if and only if m = 1 and k = 0. In this case, G = G(2, V ) and F is the rank

2 foliation on G whose general leaf is the P2 of 2-dimensional linear subspaces of a general

3-plane containing the line W .

Finally, observe that S∩G(m+1, P ) is irreducible and has codimension one in G(m+1, P ).

Moreover, det(TG(m+1,P )) ' OG(m+1,P )(m+ k+ 2), and det(F )|G(m+1,P ) ' OG(m+1,P )(k+ 1).

It follows that the map det(F )|G(m+1,P ) → det(TG(m+1,P )) vanishes at order m + 1 along

S ∩G(m+ 1, P ). So the general log leaf of F is

(F̃ , ∆̃) =
(
G(m+ 1, P ), (m+ 1) ·

(
S ∩G(m+ 1, P )

))
.
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In particular, F has log canonical singularities along a general leaf if and only if m = 0, i.e.,

G = Pn, and F is the foliation described above.

When m = 1 and k = 0, we obtain a rank 2 del Pezzo foliation on G = G(2, V ) with

general log leaf (F̃ , ∆̃) ' (P2, 2H), where H is a line in P2.

Theorem 13 (Fujita). Let ∆ be an integral Weil divisor on a normal projective variety F

of dimension > 1, and let L be an ample line bundle. Suppose that −(KF + ∆) ∼Z ic1(L )

with i ∈ Z.

(1) If i > dim(X) + 1, then ∆ = 0, i = dim(X) + 1 and (X,L ) ' (Pdim(X),OPdim(X)(1)).

(2) If i = dim(X), then either (X,L ,OX(∆)) ' (Pdim(X),OPdim(X)(1),OPdim(X)(1)) or

∆ = 0 and (X,L ) ' (Qdim(X),OQdim(X)
(1)) where Qdim(X) is a possibly singular

quadric hypersurface in Pdim(X).

3. Foliations and rational curves

If a smooth projective variety X admits a Fano foliation F , then it is uniruled by a result

of Miyaoka. In order to study the pair (X,F ), it is useful to understand the behavior of F

with respect to families of rational curves on X.

We start by recalling some definitions and results from the theory of rational curves on

smooth projective varieties.

Minimal dominating families of rational curves. Let X be a smooth projective variety,

and H a family of rational curves on X, i.e., an irreducible component of RatCurvesn(X).

If C is a curve from the family H, with normalization morphism f : P1 → C ⊂ X, then we

denote by [C] or [f ] any point of H corresponding to C. We denote by Locus(H) the locus

of X swept out by curves from H. We say that H is unsplit if it is proper, and minimal if,

for a general point x ∈ Locus(H), the closed subset Hx of H parametrizing curves through

x is proper. We say that H is dominating if Locus(H) = X. In this case we say that a curve

C parametrized by H is a moving curve on X, and that any curve from H is a deformation

of C.
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Let X be a smooth projective uniruled variety. Then X always carries a minimal domi-

nating family of rational curves. Fix one such family H, and let [f ] ∈ H be a general point.

Then f ∗TX ' OP1(2)⊕ OP1(1)⊕d ⊕ O⊕(n−d−1)P1 , where d = deg(f ∗TX)− 2 ≥ 0.

d = deg(f ∗TX)− 2.

Rationally connected quotients. Let H1, . . . , Hk be families of rational curves on X. For

each i, let H i denote the closure of Hi in Chow(X). Two points x, y ∈ X are said to be

(H1, . . . , Hk)-equivalent if they can be connected by a chain of 1-cycles from H1 ∪ · · · ∪Hk.

This defines an equivalence relation on X. By a reuslt due to Campana (’92), there exists

a proper surjective equidimensional morphism π0 : X0 → T0 from a dense open subset of X

onto a normal variety whose fibers are (H1, . . . , Hk)-equivalence classes. We call this map

the (H1, . . . , Hk)-rationally connected quotient of X. When T0 is a point we say that X is

(H1, . . . , Hk)-rationally connected.

Lemma 14 (Andreatta-Wísniewski ’01). Let H be a dominating family of rational curves

on X. Suppose that H is unsplit. Then ρ(X) = 1 iff dim(T0) = 0.

Lemma 15 (Araujo,−’11). Let X be a smooth projective variety, H1, · · · , Hk unsplit domi-

nating families of rational curves on X, and F a foliation on X. Denote by π0 : X0 → T0

the (H1, · · · , Hk)-rationally connected quotient of X. If TP1 ⊂ f ∗F for general [f ] ∈ Hi,

1 ≤ i ≤ k, then there is an inclusion TX0/T0 ⊂ F |X0.

Proof. Notice that a general curve from each of the families Hi’s is contained in a leaf of F .

Let x ∈ X be a general point. We define inductively a sequence of (irreducible) subvarieties

of X as follows. Set V0(x) := {x}, and let Vj+1(x) be the closure of the union of curves from

the families Hi, 1 ≤ i ≤ k, that pass through a general point of Vj(x).

Then dimVj+1(x) ≥ dimVj(x), and equality holds if and only if Vj+1(x) = Vj(x). In

particular, there exists j0 such that Vj(x) = Vj0(x) for every j ≥ j0. We set V (x) = Vj0(x).

Since x is general, V (x) is smooth at x. Notice also that V (x) is irreducible, and that V (x)

is contained in the leaf of F through x by construction.
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We define the subfoliation V ⊂ F by setting Vx = TxV (x) for general x ∈ X. The leaf

of V through x is precisely V (x). In particular V is an algebraically integrable foliation of

X. Moreover, by construction, a general curve from each of the families Hi’s is contained

in a leaf of V , and avoids the singular locus of V . The result then follows from Lemma 16

below. �

Lemma 16 (Araujo,−’11). Let X be a smooth projective uniruled variety, H1, · · · , Hk unsplit

families of rational curves on X, and F an algebraically integrable foliation on X. Denote

by π0 : X0 → T0 the (H1, · · · , Hk)-rationally connected quotient of X. Suppose that a general

curve from each of the families Hi’s is contained in a leaf of F and avoids the singular locus

of F . Then there is an inclusion TX0/T0 ⊂ F |X0.

Proof. Let W be the closure in Chow(X) of the subvariety parametrizing general leaves of

F , with universal family morphisms:

U

p

��

q
// X.

W

Let AW be a general very ample effective divisor on W , and set A = q∗(p
∗(AW )). By

assumption, a general curve ` ⊂ X parametrized by each Hi is contained in a leaf of F , and

avoids the singular locus of F . Thus A · ` = 0.

Let Xt = (π0)
−1(t) be a general fiber of π0. Observe that every proper curve C ⊂ Xt is

numerically equivalent in X to a linear combination of curves from the families Hi’s , and

so A · C = 0. This shows that A|Xt ≡ 0, and thus Xt ⊂ q(p−1(w)) for some w ∈ W , i.e., Xt

is contained in a leaf of F . We conclude that TX0/T0 ⊂ F |X0 by Lemma 17 below. �

Lemma 17 (Araujo,−’11). Let F be a foliation of rank rF on a normal variety X, and

π : X → Y an equidimensional morphism with connected fibers onto a normal variety.

Suppose that the general fiber of π is contained in a leaf of F . Then F induces a foliation
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G of rank rG = rF −
(

dim(X)− dim(Y )
)

on Y , together with an exact sequence

0→ TX/Y → F → (π∗G )∗∗.

Definition 18. Under the hypothesis of Lemma 17, we say that F is the pullback via π of

the foliation G .

4. The relative anticanonical bundle of a fibration and applications

Miyaoka proved (’93) that the anticanonical bundle of a smooth projective morphism

f : X → C onto a smooth proper curve cannot be ample. We generalized this result by

dropping the smoothness assumption, and replacing −KX/C with −(KX/C + ∆), where ∆ is

an effective Weil divisor on X such that (X,∆) is log canonical over the generic point of C.

In this section we also provide applications to the theory of Fano foliations.

Theorem 19 (Araujo,−, Kovács ’08). Let X be a normal projective variety, and f : X → C

a surjective morphism with connected fibers onto a smooth curve. Let ∆ ⊆ X be an effective

Weil Q-divisor. Assume that KX + ∆ is Q-Cartier.

(1) If (X,∆) is log canonical over the generic point of C, then −(KX/C+∆) is not ample.

(2) If (X,∆) is klt over the generic point of C, then −(KX/C + ∆) is not nef and big.

Proof. To prove (1), we assume to the contrary that (X,∆) is log canonical over the generic

point of C, and −(KX/C + ∆) is ample. Let π : X̃ → X be a log resolution of singularities

of (X,∆), A an ample divisor on C, and m � 0 such that D = −m(KX/C + ∆) − f ∗A is

very ample. Then

KX̃ + π−1∗ ∆ = π∗(KX + ∆) + E+ − E−,

where E+ and E− are effective π-exceptional divisors with no common components and the

support of π−1∗ ∆ + E+ + E− is a snc divisor.

Set f̃ := f ◦ π and let D̃ ∈ |π∗D| be a general member. Setting ∆̃ = π−1∗ ∆ + 1
m
D̃ + E−,

we obtain that (X̃, ∆̃) is log canonical over the generic point of C and that

KX̃ + ∆̃ ∼Q f̃ ∗KC + E+ −
1

m
f̃ ∗A.
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Furthermore, since E+ is effective and π-exceptional, π∗OX̃(lE+) = OX for any l ∈ N.

Then for any l ∈ N,

f̃∗OX̃(lm(KX̃/C + ∆̃)) ' f̃∗OX̃(l(mE+ − f̃ ∗A)) ' OC(−lA).

Finally, observe that f̃∗OX̃(lm(KX̃/C + ∆̃)) is semi-positive (Campana ’04), but that con-

tradicts the fact that A is ample. This proves (1).

To prove (2), we assume to the contrary that (X,∆) is klt over the generic point of C,

and −(KX/C + ∆) is nef and big. There exists an effective Q-Cartier Q-divisor N on X such

that −(KX/C + ∆)− εN is ample for 0 < ε� 1. Let 0 < ε� 1 be such that (X,∆ + εN)

is klt over the generic point of C. Set ∆′ := ∆ + εN . Then

−(KX/C + ∆′) = −(KX/C + ∆)− εN

is ample, contradicting part (1) above. This proves (2). �

As a first application of Theorem 19, we derive a special property of Fano foliations with

mild singularities. This property will play a key role in our study of Fano foliations.

Proposition 20. Let X be a normal projective variety, and F ( TX an algebraically inte-

grable Fano foliation on X. If (X,F ) has log canonical singularities along a general leaf,

then there is a common point in the closure of a general leaf of F .

Proof. Let W be the normalization of the closure in Chow(X) of the subvariety parametrizing

general leaves of F , and U the normalization of the universal cycle over W , with universal

family morphisms:

U
e

//

π

��

X .

W

Denote by Uw the fiber of π over a point w ∈ W .
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For every x ∈ X, π|e−1(x) : e−1(x)→ W is finite. If we show that dim(e−1(x)) > dim(W )

for some x ∈ X, then we conclude that π
(
e−1(x)

)
= W , and thus x ∈ e

(
Uw
)

for every

w ∈ W , i.e., x is contained in the closure of a general leaf of F .

Suppose to the contrary that dim
(
e−1(x)

)
< dim(W ) for every x ∈ X. Let C ⊂ W

be a general complete intersection curve, and let UC be the normalization of π−1(C), with

natural morphisms πC : UC → C and eC : UC → X. Since C is general, C is not contained

in π
(
e−1(x)

)
for any x ∈ X, and thus the morphism eC : UC → X is finite onto its image.

In particular, e∗C(−KF ) is ample.

Notice that F induces a generically surjective morphism ΩrF
UC/C

→ e∗C det(F )∗. By

Lemma 21 below, after replacing C with a finite cover if necessary, we may assume that

πC has reduced fibers. This implies that det(Ω1
UC/C

) ' OUC
(KUC/C). Thus there exists an

effective integral divisor ∆C on UC such that

−(KUC/C + ∆C) = e∗C(−KF ).

Since (X,F ) has log canonical singularities along a general leaf, the pair (UC ,∆C) is log

canonical over the generic point of C. But this contradicts Theorem 19, and the result

follows. �

Lemma 21 (Bosch, Siegfried and Lütkebohmert ’95). Let X be a quasi-projective variety,

and f : X → C a flat surjective morphism onto a smooth curve with reduced general fiber.

Then there exists a finite morphism C ′ → C such that f ′ : X ′ → C ′ is flat with reduced

fibers. Here X ′ denotes the normalization of C ′ ×C X and f ′ : X ′ → C ′ is the morphism

induced by the projection C ′ ×C X → C ′.

Proposition 22. Let F be an algebraically integrable foliation on a smooth projective variety

X. Suppose that F has log terminal singularities along a general leaf. Then det(F ) is not

nef and big.

Proof. We let C ⊂ Chow(X) be a general complete curve contained in the closure of the

subvariety parametrizing general leaves of F . We denote by U the normalization of the
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universal cycle over C, with natural morphisms π : U → C and e : U → X. Since C is

general, e : U → X is birational onto its image. Thus if −KF is nef and big, then so is

e∗(−KF ).

Note that F induces a Pfaff field Ωr
U/C → e∗OC(−KF ), where r denotes the rank of F .

By Lemma 21, after replacing C with a finite cover if necessary, we may assume that π has

reduced fibers. This implies that det(Ωr
U/C) ' OU(KU/C). Thus there exists a canonically

defined effective divisor ∆ on U such that

−(KU/C + ∆) = e∗(−KF ).

By assumption, (U,∆) is log terminal over the generic point of C. So, by Theorem 19,

e∗(−KF ) cannot be nef and big. �

5. Proof of Theorem 9

Step 1. Algebraic integrability.

Theorem 23 (Bost ’01, Bogomolov-Mcquillan ’01). Let X be a normal complex projective

variety, and F a foliation on X. Let C ⊂ X be a complete curve disjoint from the singular

loci of X and F . Suppose that the restriction F |C is an ample vector bundle on C. Then

the leaf of F through any point of C is an algebraic variety, and the leaf of F through a

general point of C is moreover rationally connected.

Proof. We show that the leaf of F through any point of C is an algebraic variety. Suppose

that C is smooth for simplicity. Let L be an ample line bundle on X. Let X̂ be the formal

completion of X along C. By Frobenius’ Theorem, there is a smooth formal subscheme V̂

of dimension r + 1 of X̂ tangent to F̂ . By replacing X with the Zariski closure of V̂ in X,

we may assume that V̂ is dense in X. Thus the restriction map induces an inclusion

H0(X,L ⊗D) ↪→ H0(X̂, L̂ ⊗D).
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Observe that it is enough to prove the estimate that H0(X̂, L̂ ⊗D) = O(Ddim(V̂ )) where D

is an integer which goes to +∞ since dim(X) is the degree of the Hilbert polynomial of L .

To prove the estimate, one filters H0(X̂, L̂ ⊗D) by the order of vanishing along C :

rk H0(X̂, L̂ ⊗D) 6
∑
i>0

rk H0(C, Si(N∗
C/V̂

)⊗L ⊗D).

Finally, rk H0(C, Si(N∗
C/V̂

)⊗L ⊗D) grows at most like (i+D)dim(C)+rk NC/V̂ −1, and vanishes

when i
D

is large enough since NC/V̂ ' F|C is ample. �

Proposition 24 (Araujo,−’11). Let F be a Fano foliation of rank r on an n-dimensional

complex projective manifold X, with 1 ≤ r ≤ n− 1. If ιF > r then F has algebraic leaves.

Proof. Note that X is uniruled. Let H be a minimal dominating family of rational curves

on X, and let π0 : X0 → T0 be the H-rationally connected quotient of X.

Let [f ] ∈ H be a general point. Then f ∗F ⊂ f ∗TX ' OP1(2) ⊕ OP1(1)⊕d ⊕ O⊕(n−d−1)P1 ,

where d = deg(f ∗TX) − 2 ≥ 0. This implies that either f ∗F is ample or f ∗F ' OP1(2) ⊕

OP1(1)⊕r−2 ⊕ OP1 (and r − 2 6 d).

If f ∗F is ample, then conclude using Theorem 23.

Suppose f ∗F ' OP1(2) ⊕ OP1(1)⊕r−2 ⊕ OP1 . We must have f ∗A ' OP1(1). Hence H

is unsplit. By Lemma 15, there is an inclusion TX0/T0 ⊂ F |X0 . We may assume that

TX0/T0 ( F |X0 . Observe that a general fiber of π0 is ' Pr−1 by the Kobayashi-Ochiai

Theorem. By Lemma 25, we may assume that codimX(X \X0) ≥ 2 and that π0 has integral

fibers. Since A|F ' OPr−1(1), π0 is a Pr−1-bundle and F|X0 is the pullback via π0 of a

foliation by curves M0 ⊂ TT0 on T0.

Let C → T0 be a smooth complete curve. Suppose degC(M0) 6 0. Let XC := X0 ×T0
C with morphism πC onto C. Then det(TXC/C) ' A ⊗k

|XC
⊗ π∗CM⊗−1

0 is ample. But this

contradicts Theorem 19. Conclude using Theorem 23. �

Lemma 25 (Araujo,−, Kovács ’08). Let X be a smooth complex projective variety and

H1, . . . , Hk unsplit covering families of rational curves on X. Then there is an open subset
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X0 of X, with codimX(X \X0) ≥ 2, a smooth variety T0, and a proper surjective equidimen-

sional morphism with irreducible and reduced fibers π0 : X0 → T0 which is the (H1, . . . , Hk)-

rationally connected quotient of X.

Step 2. We denote by F the closure of a general leaf of F , F̃ its normalization, (F̃ , ∆̃)

the corresponding log leaf. Recall that KF̃ + ∆̃ = ẽ∗KF , where ẽ : F̃ → X is the natural

morphism.

By Theorem 13, either F̃ ' Pr and ∆̃ is an hyperplane in Pr or F̃ ' Qr and ∆̃ = 0.

Suppose that F̃ ' Qr and ∆̃ = 0. Note that F̃ has klt singularities, but that contradicts

Proposition 22.

Hence, we must have F̃ ' Pr, ∆̃ must be an hyperplane in Pr, and ẽ∗A ' OPr(1).

By Proposition 20, there is a common point x ∈ X in the closure of a general leaf. Let H

be the family of rational curves on X induced by lines in F̃ ' Pr.

Then H is unsplit and Locus(Hx) = X. Thus ρ(X) = 1, dim(Hx) = n−1 and −KX ·H =

n+ 1. Finally −KX = (n+ 1)c1(L ). Conclude using Kobayashi-Ochiai’s Theorem.

6. On del Pezzo foliations

In this lecture I shall discuss del Pezzo foliations on complex projective manifolds. As I

shall explain, such foliations have algebraic and rationally connected leaves, except for some

well understood degree 1 foliations on Pn. I will also discuss the classification of del Pezzo

foliations having mild singularities.

Definition 26. del Pezzo foliation on X = Fano foliation of rank r and index ι = r − 1.

Proposition 27 (Loray-Pereira-Touzet ’11). Let F be a del Pezzo foliation on Pn of rank

r (usually called degree 1 foliation on Pn). Then

(1) either F is induced by a dominant rational map Pn 99K P(1n−r, 2), defined by n− r

linear forms and one quadratic form (leaves are algebraic), or

(2) F is the linear pullback of a foliation on Pn−r−1 induced by a global holomorphic

vector field.
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Note that a foliation on Pn−r−1 induced by a global holomorphic vector field may or may

not have algebraic leaves.

Our first main result shows that this is the only case when a del Pezzo foliation is not

algebraically integrable.

Theorem 28. Let F be a del Pezzo foliation on a complex projective manifold X 6∼= Pn.

Then F is algebraically integrable, and its general leaves are rationally connected.

Harder-Narasimhan filtration. Let X be an n-dimensional projective variety, and A an

ample line bundle on X. Let F be a torsion-free sheaf on X. We define the slope of F

with respect to A to be µA (F ) = c1(F )·A n−1

rF
. We say that F is µA -semistable if for any

subsheaf E of F we have µA (E ) ≤ µA (F ).

Given a torsion-free sheaf F on X, there exists a filtration of F by (torsion-free) sub-

sheaves

0 = E0 ( E1 ( . . . ( Ek = F ,

with µA -semistable quotients Qi = Ei/Ei−1, and such that µA (Q1) > µA (Q2) > . . . >

µA (Qk). This is called the Harder-Narasimhan filtration of F .

Let X be a normal projective variety, A an ample line bundle on X, and F a coherent

torsion free sheaf of OX-modules. Let mi ∈ N, 1 ≤ i ≤ dim(X) − 1, be large enough

integers, Hi ∈ |miA | be general members, and set C := H1∩· · ·∩Hdim(X)−1. By the Mehta-

Ramanathan Theorem, the Harder-Narasimhan filtration of F with respect to A commutes

with restriction to C. In this case we say that C is a general complete intersection curve for

F and A in the sense of Mehta-Ramanathan. If F and A are clear from the context, we

simply say that C is a general complete intersection curve.

Proof of Theorem if ρ(X) = 1. Note that X is uniruled. Since ρ(X) = 1, X is in fact a Fano

manifold. Let A be an ample line bundle on X such that Pic(X) = Z[A ]. By assumption

we have det(F ) = A ⊗r−1, where r > 2.
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Let C ⊂ X be a general complete intersection curve. Notice that F|C is locally free. If F

is semi-stable, then F|C is semi-stable with µ(F|C) > 0. Hence F|C is ample, and the claim

follows.

Assume F is not semi-stable and let F1 ⊂ F be the maximally destabilizing subsheaf.

Then F1 defines a foliation on X. Write det(F1) = A ⊗k1 . Since µ(F1) > µ(F ), we have

k1
r1
> r−1

r
, and thus k1 ≥ r1. By the foliated version of the Kobayahi-Ochiai’s theorem,

(X,A ) ' (Pn,OPn(1)). Use Loray-Pereira-Touzet ’11 to conclude. �

Proposition 29. Let n > 3 be an integer and let X ⊂ Pn+1 be a smooth hypersurface

of degree d > 3. Let ι be a positive integer. Then there exists a foliation on X of rank

2 6 r 6 n− 1 and index ι if and only if d− 1 6 r − ι.

Let n > 3 be an integer and let X ⊂ Pn+1 be a smooth hypersurface of degree d > 2. Then

there exists a foliation on X of rank 2 6 r 6 n− 1 and index ι = r− 1 if and only if d = 2.

On del Pezzo foliations on Ps-bundles over Pm. We follow Grothendieck’s notation:

for a locally free sheaf E on a variety Y , PY (E ) is the space of hyperplanes in fibers of E .

Let π : X → Pm be a P s-bundles.

If s = 1, then X ' P1 ×Pm, and F is the pullback via π of a foliation O(1)⊕i ⊂ TPm for

some i ∈ {1, 2}. For s ≥ 2, we have the following result.

Theorem 30. Let F ( TX be a del Pezzo foliation on a Ps-bundle π : X → Pm, with

s ≥ 2. Suppose that F 6⊂ TX/Pm. Then there is an exact sequence of vector bundles

0 → K → E → Q → 0 on Pm such that X ' PPm(E ), and F is the pullback via

the relative linear projection X 99K Z = PPm(K ) of a foliation q∗ det(Q) ⊂ TZ. Here

q : Z → Pm denotes the natural projection. Moreover, one of the following holds.

(1) m = 1, Q ' OP1(1), K is an ample vector bundle such that K 6' OP1(a)⊕s for any

integer a, and E ' Q ⊕K (r = 2).

(2) m = 1, Q ' OP1(2), K ' OP1(a)⊕s for some integer a > 1, and E ' Q ⊕ K

(r = 2).
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(3) m = 1, Q ' OP1(1) ⊕ OP1(1), K ' OP1(a)⊕s−1 for some integer a > 1, and

E ' Q ⊕K (r = 3).

(4) m > 2, Q ' OPm(1), and K is V -equivariant for some V ∈ H0
(
Pm, TPm ⊗

OPm(−1)
)
\ {0} (r = 2).

Conversely, given K , E and Q satisfying any of the conditions above, there exists a del

Pezzo foliation of that type.

Let K be a locally free sheaf on a smooth variety Y , W a locally free sheaf of rank

one on Y , and V ∈ H0(Y, TY ⊗ W ) be a twisted vector field on Y . Recall that K is

called V -equivariant if there exists a C-linear map Ṽ : K → W ⊗K lifting the derivation

V : OY → W (Carrell-Lieberman) (Ṽ (fs) = V (f)s+ fṼ (s)).

Let at(K ) ∈ H1(Y,E nd(K )⊗ Ω1
Y ) be the Atiyah class of K . Then K is V -equivariant

if and only if V∗at(K ) ∈ H1(Y,E nd(K )⊗W ) vanishes.

Theorem 31. Let X be a smooth projective variety with Picard number ρ(X) > 2. Let

F ⊂ TX be a codimension 1 del Pezzo foliation. Then X is a Ps-bundle over P1 for some

s > 2 and F 6⊂ TX/P1.

In particular, dim(X) 6 4.

Theorem 32 (Loray-Pereira-Touzet ’11). Let X be a smooth projective variety with Picard

number ρ(X) = 1. Let F ⊂ TX be a codimension 1 del Pezzo foliation. Then either X ' Pn

or X ' Qn ⊂ Pn+1 and F is induced by a degree 0 foliation on Pn+1.

From Theorem 28, we know that a del Pezzo foliation F on a complex projective manifold

different from Pn is algebraically integrable. Hence it makes sense to ask that F has log

canonical singularities along a general leaf. Under this restriction we have the following

classification result.

Theorem 33. Let F be a del Pezzo foliation of rank r on a complex projective manifold X

with ρ(X) > 2. Suppose that F is locally free with log canonical singularities along a general

leaf. Then X is a Ps-bundle over Pm.
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Note that F * TX/Pm by 20.

Theorem 34. Let F ( TX be a regular foliation on a complex projective manifold X with

Picard number ρ(X) = 1. Then −KF is not ample.

Proof. Set Q = TX/F . Notice that det(Q) ' OX(−KF ) ⊗ L ⊗−1 where L = det(F ).

By Baum-Bott (’70), det(Q)dim(X) = 0. Since ρ(X) = 1, we must have det(Q) ≡ 0. This

implies that X is a Fano manifold. Finally, det(Q) ' OX , and h0(X,Ω
dim(X)−r
X ) 6= 0. But

h0(X,Ω
dim(X)−r
X ) = hdim(X)−r(X,OX) by Hodge symmetry. By Kodaira vanishing theorem,

we must have r = dim(X), a contradiction. �

Theorem 35. Let F be a codimension 1 regular foliation on a complex projective manifold.

Then −KF is not ample.

Proof. We assume to the contrary that −KF is not ample. Set L := OX(−KF ). The exact

sequence

0→ F → TX → OX(−KX)⊗L ⊗−1 → 0

gives an injective map

OX(KX)⊗L ↪→ Ω1
X .

By Baum-Bott ’72, there exists α ∈ H1(X,OX(KX)⊗L ) that maps to c1(O(KX)⊗L ) ∈

H1(X,Ω1
X). By Kodaira’s vanishing theorem, h1(X,OX(KX) ⊗L ) = 0 and we must have

c1(OX(KX)⊗L ) ≡ 0. Thus X is a Fano manifold and OX(−KX) ' L . This implies that

h0(X,Ω1
X) 6= 0, a contradiction. �

Lemma 36. Let X be a smooth variety, and F ( TX a regular foliation. Set Q = TX/F .

Then at(Q) ∈ H1(X,Ω1
X⊗EndOX

(Q)) is in the image of the map H1(X,Q∗⊗EndOX
(Q))→

H1(X,Ω1
X ⊗ EndOX

(Q)).

Proof. The cohomology of the exact sequence of sheaves on X

0→ Q∗ → Ω1
X → F ∗ → 0,
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yields the exact sequence

H1(X,Q∗ ⊗ EndOX
(Q))→ H1(X,Ω1

X ⊗ EndOX
(Q))

δ→ H1(X,F ∗ ⊗ EndOX
(Q)).

Thus it is enough to show that δ(at(Q)) = 0.

Let q denotes the rank of Q. Choose an affine open cover (Ui)i∈I of X such that Q admits

a frame αi : Oq
Ui

∼→ Q∗|Ui
for each Ui also viewed as a line vector whose entries are local

sections of Q∗ ⊂ Ω1
X . By assumption, F is stable under the Lie bracket. This is equivalent

to saying that dQ∗ ⊂ Q∗∧Ω1
X . Thus, there exist a matrix βi whose entries are local sections

of Q∗ ⊂ Ω1
X over Ui such that dαi = αi ∧ βi.

For i, j ∈ I, define fij := α−1j |Uij
◦ αi|Uij

. Then

at(Q) =
[
(−fj|Uij

◦ dfij|Uij
◦ f−1i |Uij

)i,j
]
∈ H1(X,Ω1

X ⊗ EndOX
(Q)).

Note that αi = αj · fij on Uij. Thus

dαi = dαj · fij + αj ∧ dfij,

and

αi ∧ βi = αj · fij ∧ βi = αj ∧ βj · fij + αj ∧ dfij.

Let ~v ∈ H0(Uij,F|Uij
). Then

αj · fij · βi(~v) = i~v(αj · fij ∧ βi)

= i~v(αj ∧ βj · fij + αj ∧ dfij).

= αj · βj(~v) · fij + αj · dfij(~v).

This implies that

δ(at(Q)) =
[
(−fj|Uij

◦dfij|Uij
◦f−1i |Uij

)i,j
]

=
[
(βj|Uij

−βi|Uij
)i,j
]

= 0 ∈ H1(X,F ∗⊗EndOX
(Q)).

This proves our claim. �


