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Abstract

We investigate the structure of smooth holomorphic foliations with
numerically flat tangent bundles on compact Kähler manifolds. Extend-
ing earlier results on non-uniruled projective manifolds by the second and
fourth authors, we show that such foliations induce a decomposition of the
tangent bundle of the ambient manifold, have leaves uniformized by Eu-
clidean spaces, and have torsion canonical bundle. Additionally, we prove
that smooth two-dimensional foliations with numerically trivial canonical
bundle on projective manifolds are either isotrivial fibrations or have nu-
merically flat tangent bundles. This in turn implies a global Weinstein
splitting theorem for rank-two Poisson structures on projective manifolds.
We also derive new Hodge-theoretic conditions for the existence of zeros
of Poisson structures on compact Kähler manifolds.

Résumé

Dans cet article, nous nous intéressons à la structure des feuilletages
holomorphes réguliers dont le fibré tangent est numériquement plat, la
variété ambiante étant compacte kählérienne. Nous étendons dans ce
cadre des résultats précédemment obtenus par les deuxième et quatrième
auteurs. Nous montrons notamment que l’existence d’un tel feuilletage
induit une décomposition du fibré tangent de la variété, que les feuilles
sont uniformisées par un espace euclidien et que le fibré canonique dudit
feuilletage est de torsion. En outre, nous établissons, lorsque la variété
ambiante est supposée projective, qu’un feuilletage régulier de dimen-
sion deux dont le fibré canonique est numériquement trivial est ou bien
une fibration isotriviale, ou bien possède un fibré tangent numériquement
plat. Ce dernier résultat fournit un analogue global du théorème de
décomposition de Weinstein pour les structures de Poisson de rang deux
sur les variétés projectives lisses. Nous obtenons également de nouvelles
conditions sur les nombres de Hodge pour qu’une structure de Poisson sur
une variété compacte kählérienne s’annule en un point.
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1 Introduction

In this paper, we establish several results and conjectures concerning the struc-
ture of holomorphic foliations F on compact Kähler manifolds X, under suitable
cohomological vanishing conditions on the curvature of the tangent sheaf TF .
Our main results give conditions for such foliations to be induced by a splitting
of the universal cover of X into a product of manifolds. As an application, we
obtain some interesting consequences for the structure of holomorphic Poisson
brackets on compact Kähler manifolds.

1.1 Numerically flat foliations

Our first main result, established in Section 4, describes the structure of regular
foliations whose tangent bundle is numerically flat in the sense of Demailly–
Peternell–Schneider [11], a notion we recall in Section 2.3.

Such foliations were previously analyzed by the second and fourth authors
in [27], under the additional assumptions that the ambient manifold X is pro-
jective but not uniruled. Remarkably, with these additional assumptions, the
vanishing of the first Chern class of the foliation implies both the smoothness of
the foliation and the polystability of its tangent bundle. This is established in
[27, Lemma 2.1] (see also [24, Section 5]), building on Demailly’s integrability
theorem for differential forms with coefficients in the dual of a pseudoeffective
line bundle [10] and the characterization of non-uniruled projective manifolds
by Boucksom–Demailly–Păun–Peternell [6]. Leveraging these two properties, it
is further shown (loc. cit.) that the canonical bundle of the foliation is a torsion
line bundle, its leaves are uniformized by Euclidean spaces, and their analytic
closures are quotients of abelian varieties. Similarly, and almost concurrently
with [27], the work [1] provides a precise description of smooth foliations with
trivial tangent bundle on arbitrary compact Kähler manifolds, extending previ-
ous work by Lieberman [23].

In this paper, we extend the results from [27] to smooth foliations with
numerically flat tangent bundle on arbitrary compact Kähler manifolds.

Theorem 1.1. Let X be a compact Kähler manifold, and let F be a regular
foliation of dimension p ≥ 0 on X with numerically flat tangent bundle TF .
Then the following hold.

1. The tangent bundle of F is hermitian flat, and the line bundle det TF is
torsion.

2. There exists a foliation G on X such that TX = TF ⊕ TG.

3. The universal cover X̃ of X decomposes as a product X̃ ∼= Cp × Y where
Y is a complex manifold, and the decomposition TX = TF ⊕ TG lifts to the
canonical decomposition TX̃ ∼= TCp ⊞ TY.

4. The analytic closure L ⊆ X of any leaf L of F is isomorphic to a finite
étale quotient of an equivariant compactification of an abelian Lie group
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GL, in such a way that the foliation F|L is induced by a (not necessarily
closed) subgroup of GL.

In the case of uniruled manifolds, smoothness does not follow automatically
from the triviality of the first Chern class. For example, one-dimensional folia-
tions with trivial first Chern class on simply connected manifolds are necessarily
singular, presenting a significant obstacle to adapting the arguments of [27] to
our current setting. We get around this using an alternative approach to con-
structing splittings of the tangent bundle that exploits the behaviour of the
Kähler class along the leaves of the foliation; see Section 1.3 below.

1.2 Foliations with numerically trivial canonical bunlde

Our second main result, established in Section 5, describes the structure of
smooth foliations of dimension two with numerically trivial canonical bundle on
projective manifolds. For projective threefolds, these were described using Mori
Theory in [12]. Later, a similar description was obtained for smooth codimension
one foliations on compact Kähler manifolds using entirely different methods in
[33]. In this work, we establish the following result.

Theorem 1.2. Let X be a complex projective manifold, and let F be a regular
foliation of dimension two with c1(TF ) = 0. Then the canonical bundle of F is
a torsion line bundle. Moreover, either TF is hermitian flat, or X has a finite
étale cover that decomposes as a product L×Y where L is a surface with zero first
Chern class, Y is a complex projective manifold, and the foliation is induced by
the projection to Y.

Unlike in Theorem 1.1, here we are forced to restrict to projective manifolds
due to the lack of compact Kähler analogues of the algebraicity/compactness
criteria for leaves used in the proof of Theorem 1.2.

1.3 Cohomologically Kähler foliations and splittings

A recurring theme in our arguments, and in previous works such as [16, 17, 24], is
the behaviour of the restriction of the Kähler class to the leaves of the foliation.
We have found it useful to isolate the key property in the following definition,
which we introduce and develop in Section 3.

Definition 1.3. Let F be a foliation on a compact Kähler manifold X, and let
p = dimF . We say that F is cohomologically Kähler if for every Kähler class
γ ∈ H1(X,Ω1

X), the image of γp in Hp(X, ωF ) is nonzero, where ωF = (∧pTF )∗
is the canonical line bundle of F .

This condition is readily checked in many cases, e.g. it is stable along étale
covers and embeddings, and holds automatically for codimension one foliations;
the most subtle results we obtain in this direction rely on Demailly’s integrability
theorem [10]. In fact, we conjecture that this condition holds for all regular folia-
tions on compact Kähler manifolds (Conjecture 3.8). Meanwhile, this condition
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is closely linked to the existence of a subbundle of TX that is complementary
to TF . In particular, the existence of such a complement easily implies that
the foliation is cohomologically Kähler (Lemma 3.6), and the converse holds if
c1(TF ) = 0 (Proposition 3.18).

1.4 Applications to Poisson geometry

In Section 6, we explain some consequences of our results and conjectures for
holomorphic Poisson structures. On the one hand, they suggest the following
global version of Weinstein’s splitting theorem [35], generalizing our results in
[17] (which treated the case of possibly singular Poisson structures with a simply-
connected compact leaf):

Conjecture 1.4. Let (X, π) be a compact Kähler Poisson manifold and sup-
pose that the minimal dimension of a symplectic leaf of π is equal to d. Then
there exists a holomorphic symplectic manifold Y of dimension d, a holomorphic
Poisson manifold Z, and a holomorphic Poisson covering map Y × Z → X.

Note that in the conjecture, the covering map is allowed to be infinite, i.e. Y
or Z may be noncompact.

As we explain in and around Proposition 6.3, this conjecture was previously
known to hold when the corank of π is at most one [12, 33], and our Theorem 1.2
above implies that it also holds when the minimal dimension of a leaf is equal
to two, provided X is projective. In summary, these results give the following.

Theorem 1.5. Conjecture 1.4 holds for all projective manifolds of dimension
dimX ≤ 5.

On the other hand, we conjecture a tight relationship between the Hodge
numbers of X and the existence of zeros of the Poisson structure, similar to Bon-
dal’s conjecture [5] on the dimensions of degeneracy loci of Poisson structures
on Fano manifolds.

Conjecture 1.6. Let (X, π) be a compact Kähler Poisson manifold, and let d be
the minimal dimension of a symplectic leaf of (X, π). Then the Hodge numbers
h2j,0(X) are nonzero for all j ≤ d

2 . In particular, if h2,0(X) = 0, then every
holomorphic Poisson structure on X has a zero.

We show that this conjecture would follow from our conjecture that all reg-
ular foliations are cohomologically Kähler. Exploiting our results in this paper
and previous work on Bondal’s conjecture, Proposition 6.4 and Proposition 6.5
together give the following.

Theorem 1.7. Conjecture 1.6 holds if X is projective and dimX ≤ 6; if X is
Fano and dimX = 7; or if X is Fano, dimX = 8 and b2(X) = 1.
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2 Notation, conventions, and useful facts

2.1 Global conventions

Throughout the paper, all algebraic varieties are assumed to be defined over
the field of complex numbers. We will freely switch between the algebraic and
analytic context.

2.2 Stability

The word stable will always mean slope-stable with respect to a given ample
divisor, and similarly for semistable and polystable. We refer to [21, Definition
1.2.12] for their precise definitions.

2.3 Numerically flat vector bundles

One key notion is that of a numerically flat vector bundle. We recall the defini-
tion following [11, Definition 1.17].

Definition 2.1. A vector bundle E of rank r ≥ 1 on a compact Kähler manifold
is called numerically flat if E and E∗ are nef vector bundles. Equivalently, E is
numerically flat if and only if E and det E∗ are nef vector bundles.

Remark 2.2. Let X be a compact Kähler manifold, and let E be a vector bundle
of rank r ≥ 1 on X with c1(E) = 0 ∈ H2(X,C). Then E is numerically flat if and
only if E is nef.

Theorem 2.3 ([11, Theorem 1.18]). Let X be a compact Kähler manifold, and
let E be a vector bundle of rank r ≥ 1 on X. Then E is numerically flat if and
only if E admits a filtration

{0} = E0 ⊊ E1 ⊊ · · · ⊊ Em = E

by vector subbundles such that the quotients Ek/Ek−1 are hermitian flat.
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Corollary 2.4 ([11, Corollary 1.19]). Let E be a vector bundle on a compact
Kähler manifold X. If E is numerically flat, then ci(E) = 0 ∈ H2i(X,C) for any
integer i ≥ 1.

Remark 2.5. A numerically flat vector bundle is automatically flat [30, Section
3] but is not hermitian flat in general [11, Example 1.7].

2.4 Foliations

Definition 2.6. A foliation F on a complex manifold X is determined by its
tangent sheaf TF , which is a coherent subsheaf of TX such that

1. TF is closed under the Lie bracket, and

2. TF is saturated in TX, i.e. the quotient TX/TF is torsion-free.

The dimension p of F is the generic rank of TF . The codimension of F is defined
as q = dimX− p. The normal sheaf of F is NF = (TX/TF )∗∗; by definition, it
is a torsion-free sheaf of rank q.

The cotangent sheaf Ω1
F of F is Ω1

F = T ∗
F . Its canonical line bundle ωF

is ωF = detΩ1
F = (∧p Ω1

F )
∗∗. Note that the canonical map ∧pTF → ∧pTX

determines a section
v ∈ H0(X,∧pTX ⊗ ωF ),

from which we may recover TF as the sheaf of vector fields ξ ∈ TX such that
v ∧ ξ = 0. We say that v is a p-vector defining F . Dually, we may define F by
a form

α ∈ H0(X,Ωq
X ⊗ ω∗

F )

whose kernel is TF .

Let X◦ ⊆ X be the open set where TF is a subbundle of TX. The singular
locus of F is

Sing(F) := X \ X◦.

The foliation is called regular, or smooth, if its singular locus is empty.

A leaf of F is a maximal connected and immersed holomorphic submanifold
L ⊆ X◦ such that TL = TF |L ⊆ TX◦ |L.

Lemma 2.7. Let Y ⊆ X be a submanifold that is not contained in the singular
locus of F . Then the following statements are equivalent:

1. For every y ∈ Y ∩ X◦, the leaf through y is contained in Y.

2. The defining p-vector is tangent to Y, i.e.

v|Y ∈ H0(Y,∧pTY ⊗ ωF |Y) ⊆ H0(Y,∧pTX|Y ⊗ ωF |Y).

3. The contraction ιv|Y : Ωp
X|Y → ωF |Y factors through the natural surjection

Ωp
X|Y → Ωp

Y.
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Definition 2.8. Let Y ⊆ X be a submanifold that is not contained in the
singular locus of F . We say that Y is F-invariant if any (hence all) of the
equivalent properties of Lemma 2.7 hold.

By relaxing the condition of involutiveness on the tangent sheaf of a foliation,
we arrive at the broader notion of a distribution.

Definition 2.9. A distribution D on a complex manifold X is specified by its
tangent sheaf TD, which is a coherent subsheaf of TX, saturated in TX, meaning
that the quotient TX/TD is torsion-free.

All the concepts introduced for foliations earlier in this section – such as
dimension, codimension, cotangent sheaf, singular set, invariant submanifold,...
– naturally extend to distributions. While every foliation is a distribution, the
converse is not true. The key difference is that Frobenius theorem guarantees
the existence of a leaf through any point outside the singular locus of a foliation,
whereas an arbitrary distribution might have no leaf at all.

3 Cohomologically Kähler foliations and split tan-
gent bundles

3.1 Cohomologically Kähler foliations

Throughout this section, X is a compact Kähler manifold of dimension n and
D (resp. F) is a holomorphic distribution (resp. foliation) on X of dimension p,
which we allow to be singular unless otherwise stated. We denote by q = n− p
its codimension.

The key notion is the following cohomological condition on D or F , which is
modeled on the behaviour of Kähler classes under restriction to submanifolds.

Definition 3.1. We say that D is cohomologically Kähler if, for any Kähler
class γ ∈ H1(X,Ω1

X)
∼= H1,1(X), the image of γp under the natural map

ιv : Hp(X,Ωp
X) → Hp(X, ωD)

is nonzero.
We say that D is weakly cohomologically Kähler if there exists a Kähler class

γ ∈ H1(X,Ω1
X)

∼= H1,1(X) such that ιvγ
p is nonzero.

Example 3.2. At the extremes, the foliations with TF = 0 (respectively, TF =
TX) whose leaves are points (resp. all of X) are cohomologically Kähler. ♢

We now give some useful sufficient conditions for a distribution D to be
cohomologically Kähler, starting with the following easy observations.

Lemma 3.3. If Y ⊆ X is a closed D-invariant submanifold, and D|Y is coho-
mologically Kähler, then D itself is cohomologically Kähler.
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Proof. If Y ⊆ X is a D-invariant subspace, then the restriction map Ωp
X →

ωD|Y ∼= ωD|Y factors through Ωp
Y, which immediately implies the result.

Lemma 3.4. If f : Y → X is a finite étale cover, and f−1D is (weakly) coho-
mologically Kähler, then D itself is (weakly) cohomologically Kähler.

Proof. Let E := f−1D. Notice that there is a commutative diagram

Hp(Y,Ωp
Y) Hp(Y, ωE)

Hp(X,Ωp
X) Hp(X, ωD).

ιvE

ιvD

and every Kähler class on X pulls back to a Kähler class on Y. This immediately
implies the result.

Example 3.5. If X is a finite étale quotient of a torus T, and F|X is a linear foli-
ation, i.e. its pullback to T is induced by the action of a (not necessarily closed)
subgroup of T, then F is cohomologically Kähler. Indeed, in this case, the
pullback of TF to T is trivial, and the pullback of any Kähler class γ can be rep-
resented by a Hermitian form that is nondegenerate on every trivial subbundle
of TT. The claim now follows from Lemma 3.4. ♢

Lemma 3.6. If there exists a distribution E on X such that TX = TD ⊕TE , then
D is cohomologically Kähler.

Proof. Let γ = γD + γE ∈ H1(X,Ω1
X) = H1(X,Ω1

D) ⊕ H1(X,Ω1
E). Then γp+1

D =

0 ∈ Hp+1(X,Ωp+1
D ) and γq+1

E = 0 ∈ Hq+1(X,Ωq+1
E ). As a consequence, γn =

(
n
p

)
·

γp
D ∧ γq

E . On the other hand, γp
D = ιvγ

p. In particular, if ιvγ
p = 0 ∈ Hp(X, ωD),

then γn = 0, which is impossible since γ is a Kähler class and X is compact.
This proves that D is cohomologically Kähler.

Lemma 3.7. If D is regular of dimension p = 1, then D is cohomologically
Kähler.

Proof. Let γ ∈ H1(X,Ω1
X)

∼= H1,1(X) be a Kähler class. Suppose by way of
contradiction that ιvγ = 0 ∈ Hp(X, ωF ), then γ lies in the image of the natural
map

H1(X,N ∗
F ) → H1(X,Ω1

X).

It follows that γn = 0, which is impossible since γ is a Kähler class and X is
compact.

Actually, we expect that regular foliations are always cohomologically Kähler:

Conjecture 3.8. If F is a regular foliation, then F is cohomologically Kähler.
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Remark 3.9. If we drop the condition of regularity or integrability of F , then
the conclusion of Conjecture 3.8 is easily seen to fail.

Indeed, let X = Pn be a projective space of dimension n ≥ 2. Then Pn

does not admit any regular foliations of dimension 0 < p < n, as can be seen by
applying Bott’s vanishing theorem for characteristic classes of regular foliations.
However, Pn admits many singular foliations of such dimensions, and also admits
regular distributions of codimension one when n is odd (the holomorphic contact
structures). These are never cohomologically Kähler: if D is a distribution
on Pn of dimension 0 < p < n, then ωD is a line bundle on Pn, and hence
Hp(Pn, ωD) = 0. ♢

3.2 Demailly’s integrability criterion

Next, we proceed to show how Demailly’s integrability criterion [10], or more
precisely its proof, provides a natural class of cohomologically Kähler foliations.

We maintain the notation introduced in Section 3.1. The key notion here is
the following.

Definition 3.10. Let D be a (possibly singular) distribution of codimension q
on a complex manifold M. We say that a closed positive current T of bidegree
(q, q) on M is strongly directed (with respect to D) if one can locally write

T = (
√
−1)

q2

a ω ∧ ω

where a is a positive locally finite Borel measure and ω is a local generator of
detN ∗

D.

Lemma 3.11. Let S ⊆ X be an analytic subset of codimension ≥ q + 2. If D
admits a closed strongly directed positive current T on X \S, then D is cohomo-
logically Kähler.

Proof. Set L = detN ∗
D. The closed positive current T can be alternatively

regarded as an L-valued ∂̄-closed current on X\S. Thus it defines a cohomology
class cX\S ∈ Hq(X \ S,L). Thanks to the assumption on S, the natural map

Hq(X,L) → Hq(X \ S,L|X\S)

is actually an isomorphism (see [7, Chapter 2]). Let cX ∈ Hq(X,L) be the
extension of cX\S.

Because S has codimension at least q + 2 ≥ q + 1, the current T extends by
Harvey’s Theorem [20] to a closed positive current T̄ (non necessarily strongly
directed) on X. Let

[
T̄
]
be the cohomology class defined by T̄ in Hq(X,Ωq

X). By

construction,
[
T̄
]
is the image of the class cX ∈ Hq(X,L) under the natural map

Hq(X,L) → Hq(X,Ωp
X). (1)

Now, consider a Kähler form γ on X. We argue by contradiction and assume
that [ιvγ

p] = 0 ∈ Hp(X, ωD). By Serre duality together with the adjunction
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formula ωD ∼= ωX ⊗ L∗, we have Hp(X, ωD) ∼= Hq(X, ω∗
D ⊗ ωX)∗ ∼= Hq(X,L)∗.

Hence [γp] ∧ α = 0 for any class α in the image of the map (1). In particular,
[γp] ∧

[
T̄
]
= 0. On the other hand,

∫
X
γp ∧ T̄ > 0 by the positivity of T̄ , a

contradiction. This finishes the proof of the proposition.

The following result is an easy consequence of Lemma 3.11 above together
with the proof of Demailly’s integrability criterion.

Proposition 3.12. If detN ∗
D is a pseudoeffective line bundle, then D is inte-

grable and cohomologically Kähler.

Proof. Let L = detN ∗
F . By assumption there exists a twisted q-form α ∈

H0(X,Ωq
X⊗L∗) defining D. The integrability of D follows from [10]. There, it is

also proved that if h is a singular metric on L with local psh weight φ (h exists
by assumption), then the semi-positive (q, q)-form T = {α, α}h∗ , is d-closed in
the sense of currents. Here, {·, ·}h∗ denotes the sesquilinear pairing induced by
h∗ on L∗-valued forms. Locally, T reads

µ =
√
−1

q2

eφα ∧ ᾱ,

and hence, it is a closed strongly directed positive current T on X. One concludes
by Lemma 3.11.

Proposition 3.13. If the canonical line bundle ωX is pseudo-effective and
c1(TD) = 0, then D is regular, integrable, and cohomologically Kähler.

Proof. By [24, Theorem 5.1], any p-vector v ∈ H0(X,∧pTX ⊗ ωD) defining D is
nonvanishing. In particular, the distribution D is regular. The determinant L =
detN ∗

D of the conormal bundleN ∗
D is then pseudo-effective since L ∼= ωX⊗ω∗

D by
the adjunction formula. The claim now follows from Proposition 3.12 above.

As another consequence of Lemma 3.11, one can give a version in the Kähler
setting of a result proved by Esteves and Kleiman in an algebraic context, see
[18].

Proposition 3.14. Let Y a codimension q subvariety of X such that Y\Sing(D)
is a D-invariant submanifold. Suppose that S := Sing(D) ∩ Y has codimension
≥ 2 in Y. Then D is cohomologically Kähler.

Proof. This follows immediately from Lemma 3.11 applied to the integration
current along Y \ S.

3.3 Foliations of codimension at most two

In this section, we confirm Conjecture 3.8 for regular foliations of codimension
one as well as regular foliations of codimension two with numerically trivial
canonical bundle on projective manifolds.

We maintain the notation introduced in Section 3.1.
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Proposition 3.15. If F has codimension q = 1 and its singular set has codi-
mension at least 3, then F is cohomologically Kähler.

Proof. Let γ ∈ H1(X,Ω1
X)

∼= H1,1(X) be a Kähler class. We argue by con-
tradiction and assume that ιvγ

n−1 = 0 ∈ Hn−1(X, ωF ). By Serre duality to-
gether with the adjunction formula ωF ∼= ωX ⊗ NF , we have Hn−1(X, ωF ) ∼=
H1(X, ω∗

F ⊗ωX)∗ ∼= H1(X,N ∗
F )

∗. Thus α∧γn−1 = 0 for any class α in the image
of the natural map

H1(X,N ∗
F ) → H1(X,Ω1

X).

On the other hand, if α is a class as above, then α2 = 0 ∈ H2(X,Ω2
X). Together

with the Hodge index theorem, this implies that the map

H1(X,N ∗
F ) → H1(X,Ω1

X)

vanishes.
Thanks to the assumption on the dimension of the singular set S of F , the

natural maps
H1(X,N ∗

F ) → H1(X \ S,N ∗
F |X\S)

and
H1(X,Ω1

X) → H1(X \ S,Ω1
X\S)

are isomorphisms (see [7, Chapter 2]). By Bott’s vanishing theorem applied to
F|X\S, we see that c1(NF ) lies in the image of the map

H1(X,N ∗
F ) → H1(X,Ω1

X).

This implies c1(NF ) = 0, which contradicts Proposition 3.12.

Lemma 3.16. Suppose that X is a smooth projective variety. If F is regular of
codimension q = 2 and c1(TF ) = 0, then F is cohomologically Kähler.

Proof. Let Y be a minimal F-invariant analytic subspace in X. Then TF |Y
defines a regular foliation on Y of codimension at most 2. If the codimension
is less than two, then it is either zero or one, so F|Y is cohomologically Kähler
by Example 3.2 or Proposition 3.15, respectively. Hence X is cohomologically
Kähler by Lemma 3.3.

If the codimension of F|Y is equal to two, then dimY = dimX and hence
X = Y. Thus X contains no proper invariant subspaces. If ωX is pseudo-effective,
then the result follows from Proposition 3.13 below. Suppose from now on that
ωX is not pseudo-effective. Applying [13, Theorem 1.1], we see that one of the
following holds.

1. There exists a P1-bundle structure f : X → Y over a complex projective
manifold Y, such that F is everywhere transverse to f . In particular, F
induces a regular codimension one foliation G on Y with c1(TG) = 0.

2. There exists a smooth morphism f : X → Y onto a complex projective
manifold Y of dimension dimY = dimX− 2 with c1(Y) = 0, and F gives
a flat holomorphic connection on f .
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In case (2), the result follows from Lemma 3.6, so suppose we are in case (1).
By Proposition 3.15, G is cohomologically Kähler, and hence by Proposition 3.18
below, there exists a foliation L of dimension 1 on Y such that TX ∼= TG ⊕ TL.
But then TX decomposes as a direct sum TX ∼= TF ⊕ Tf−1L. Hence the claim
follows from Lemma 3.6 again.

3.4 Splitting the tangent bundle when c1 = 0

We now describe the behaviour of cohomologically Kähler foliations whose first
Chern class is trivial.

Let X be a compact Kähler manifold, and let F be a possibly singular foli-
ation on X of dimension p with c1(TF ) = 0. Then ωF is a Hermitian flat line
bundle. Hence if γ is any Kähler form on X, and v ∈ H0(X,∧pTX ⊗ ωF ) is a
p-vector defining F , the class [ιvγ

p] ∈ Hp(X, ωF ) has an Hermitian conjugate

α := [ιvγp] ∈ H0(X,Ωp
X ⊗ ω∗

F ),

by Hodge symmetry for unitary local systems.

Lemma 3.17. If F is weakly cohomologically Kähler with respect to [γ] ∈
H1,1(X), then the contraction

ιvα ∈ H0(X,OX)

is nonvanishing.

Proof. The proof is similar to the arguments in [16, Lemma 5.25]. From the
definition of α, we have α = ιvγ

p + ∂ξ for some ξ where α is the complex
conjugate of α with respect to the Hermitian flat structure. A straightforward
calculation using Stokes’ formula and Poincaré duality for the unitary local
system ωF then implies that∫

X

α ∧ α ∧ γn−p =

∫
X

α ∧ ιvγ
p ∧ γn−p.

The integral on the left is nonzero by the Hodge–Riemann bilinear relations,
while an easy pointwise calculation shows that the integrand on the right is
given by

α ∧ ιvγ
p ∧ γn−p =

1(
n
p

) · ιvα · γn

Note that ιvα is a holomorphic function, hence constant. We therefore have

0 ̸=
(
n

p

)∫
X

α ∧ ιvγ
p ∧ γn−p = ιvα ·

∫
X

γn

and we conclude that ιvα is nonzero, hence nonvanishing, as desired.

The following result is a generalization of [24, Theorem 5.6]; see also [15,
Proposition 3.1] for a related result.
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Proposition 3.18. Let X be a compact Kähler manifold, and let F be a pos-
sibly singular foliation on X of dimension p with c1(TF ) = 0. If F is weakly
cohomologically Kähler, then the following statements hold:

1. F is regular,

2. There exists a foliation G on X such that TX = TF ⊕ TG.

3. det TF is a torsion line bundle.

Proof. For the first statement, note that by Lemma 3.17, any p-vector defining
F is nonvanishing, and hence F is regular.

For the second statement, note that contraction with α gives a morphism
∧p−1TF → Ω1

X ⊗ ω∗
F such that the composition

∧p−1TF → Ω1
X ⊗ ω∗

F → Ω1
F ⊗ ω∗

F

is an isomorphism. The kernel of the induced map TX → Ωp−1
F ⊗ω∗

F then defines
a distribution G such that TX ∼= TF ⊕ TG . Let β ∈ H0(X,Ωp

X ⊗ ω∗
F ) be a twisted

p-form defining G. Using the Kähler identities, we see that β is closed with
respect to any unitary flat connection on ω∗

F . This easily implies that G is
involutive.

For the third statement, we follow the argument in the proof of [24, Theorem
5.2]; we detail the proof for the sake of completeness. It relies on properties of
cohomology jump loci in the space of rank one local systems proved by Simpson
[31] for projective manifolds and by Wang [34] for compact Kähler spaces.

Replacing X by a finite étale cover, if necessary, we may assume without loss
of generality that ωF ∈ Pic0(X). Also, recall that H0(X,Ωp

X⊗ω∗
F )

∼= Hp(X, ωF ) by
Hodge symmetry with coefficients in unitary local systems. Let m := hp(X, ωF ),
and consider the Green–Lazarsfeld set

S = {[L] ∈ Pic0(X) | hp(X,L) ≥ m} ∋ [ωF ].

Then by [34, Theorem 1.3, Corollary 1.4], S is a finite union of translates of
subtori by torsion points. Therefore, to prove that ωF is torsion, it suffices to
show that [ωF ] is an isolated point of S. Let Σ ⊂ Pic0(X) be an irreducible
component of S passing through [ωF ]. Let P denote the restriction of the
Poincaré line bundle to Σ × X, and let π : Σ × X → Σ denote the projection
morphism. Recall that Rpπ∗P is locally free on some open neighborhood of [ωF ]
in Σ. As a consequence, we can extend the class in Hp(X, ωF ) corresponding
to γ to a holomorphic family of nonzero cohomology classes with coefficients in
line bundles L with [L] ∈ Σ sufficiently close to [ωF ]. Then Hodge symmetry
(with coefficients in local systems) gives us a family of holomorphic p-forms with
coefficients in the dual bundles L∗. Taking the wedge product of these twisted
p-forms with a twisted (n − p)-form defining F , we obtain a global section of
ωX⊗detNF ⊗L∗ ∼= ωF ⊗L∗ for any line bundle L with [L] ∈ Σ close enough to
[ωF ], which is nonzero since G is everywhere transverse to F . Therefore L ∼= ωF
is [L] ∈ Σ is sufficiently close to [ωF ], as desired.

13



Note that Conjecture 3.8 and Proposition 3.18 together imply the following.

Conjecture 3.19. Let X be a compact Kähler manifold, and let F be a regular
foliation on X with c1(TF ) = 0. Then the following statements hold.

1. There exists a foliation G on X such that TX = TF ⊕ TG; and

2. det TF is a torsion line bundle.

Note also that Beauville has conjectured that a splitting of the tangent
bundle into complementary foliations is induced by a splitting of the universal
cover as a product [3]. Combining that conjecture with the above, we arrive at
the following.

Conjecture 3.20. Let X be a compact Kähler manifold, and let F be a regular
foliation of X with c1(TF ) = 0. Then there exist possibly non-compact Kähler
manifolds Y and Z, with ωY trivial, and a covering map f : Y × Z → X such
that f−1F is induced by the projection to Z.

4 Foliations with numerically flat tangent bun-
dle

This section is mostly taken up by the proof of Theorem 4.1 below. Its statement
is almost the same as the statement of Theorem 1.1 from the Introduction. The
only difference is the inclusion of an extra item describing the analytic closure
of minimal F-invariant analytic subspaces. Before presenting the theorem, we
introduce some terminology. A compact complex manifold X is called a torus
quotient if X is a finite étale quotient of a complex torus T. A (regular) foliation
F on a torus quotient X is said to be linear if f−1F is a linear foliation on T,
where f : T → X denote the quotient map.

Theorem 4.1. Let X be a compact Kähler manifold, and let F be regular foli-
ation on X with numerically flat tangent bundle TF . Then the following hold.

1. The tangent bundle TF is hermitian flat.

2. F is cohomologically Kähler.

3. The line bundle ωF is torsion.

4. There exists a foliation G on X such that TX = TF ⊕ TG.

5. F is induced by a splitting of the universal cover X̃, i.e. X̃ is the product of
CdimF with another complex manifold Y in such a way that the decompo-
sition TX = TF ⊕TG lifts to the canonical decomposition TX̃ ∼= TCdimF ⊞TY.

6. Any minimal F-invariant closed analytic subspace Y is a torus quotient
and F|Y is a linear foliation.

14



7. The analytic closure L of any leaf L of F is a quotient of an equivariant
compactification of an abelian Lie group GL and F|L is induced by a (not
necessarily closed) subgroup of GL.

The rest of this section is devoted to the proof of this theorem. Hence for
the rest of this section we adopt the following assumptions:

• X is a compact Kähler manifold

• F is a regular foliation

• The dimension p = dimF is positive

• Y ⊆ X is a minimal F-invariant closed analytic subspace.

Here, by minimal, we mean “minimal with respect to inclusion”. Note that
since F is regular, the singular locus of an invariant subspace is also invariant,
and hence Y is automatically smooth.

For clarity, we break the proof of Theorem 4.1 into several lemmas which
address various implications. We first explain how the first statement (that TF
is hermitian flat) can be used to deduce the others, and later show that this
first statement does indeed hold (Lemma 4.7).

Lemma 4.2 (1 =⇒ 6). If TF is hermitian flat, then any minimal F-invariant
closed analytic subspace Y is a torus quotient, and F|Y is a linear foliation.

Proof. By assumption, TF is given by a unitary representation

ρ : π1(X) → U(p).

In particular, TF |Y is hermitian flat as well. Replacing X by Y, we may therefore
assume without loss of generality that there is no proper minimal F-invariant
analytic subspace in X. We now break the proof into several cases.

Case 1: TF is trivial. Suppose that TF ∼= O⊕p
X . We claim that H0(X, TF ) ⊆

H0(X, TX) is an abelian Lie subalgebra. Indeed, let vi ∈ H0(X, TF ) for i ∈ {1, 2}.
Then [v1, v2] induces the zero flow on the Albanese torus A of X. Thus, by [23,
Theorem 3.14], the vector field [v1, v2] has at least one zero. On the other hand,
[v1, v2] ∈ H0(X, TF ) since TF is involutive. Since any vector field tangent to F
has empty vanishing locus by assumption, we must have [v1, v2] = 0, proving
our claim.

Let H ⊆ Aut (X)0 be the analytic closure of the complex Lie subgroup ex-
ponentiating the Lie algebra H0(X, TF ). Note that H is an abelian complex Lie
group. By [23, Theorems 3.3, 3.12 and 3.14], there is an exact sequence

1 N H T 1

where N a closed subgroup whose Lie algebra is contained in the Lie algebra
of holomorphic vector fields with nonempty zero locus, and T is a compact
complex torus. Moreover, N is a commutative linear algebraic group. By [32,
Proposition, p. 53], the neutral component N0 of N has a fixed point x on
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X whose stabilizer in H is denoted by Hx. Then H · x is a compact analytic
subvariety which is invariant under F , and hence H · x = X. This immediately
implies that X is the quotient of the torus H/N0 by the finite group Hx/N0, and
that F is a linear foliation on X.

Case 2: F is one-dimensional. Let a : X → A be the Albanese morphism,
and let q(X) = dimA be the irregularity of X. If q(X) = 0, then TF is a torsion
line bundle, and by passing to a finite cover we reduce to the case treated in
Step 1.

Thus suppose q(X) > 0. If TF is tangent to any fiber of a, then this fiber is a
proper F-invariant subvariety contained in X, yielding a contradiction. There-
fore, the composition TF → TX → a∗A is nonvanishing, and hence TF ∼= OX.
So by Step 1 again, we deduce that X is a torus quotient, and that F a linear
foliation.

Intermezzo. To formulate the remaining cases, we need to introduce some
additional notation and simplifications. Let G ⊆ GL(p,C) be the Zariski closure
of ρ(π1(X)). This is a linear algebraic group which has finitely many connected
components. Applying Selberg’s Lemma and passing to an appropriate finite
étale cover of X, we may assume without loss of generality that G is connected,
and that the image of the induced representation

ρ1 : π1(X) → G → G/Rad(G)

is torsion-free, where Rad(G) denotes the radical of G.

Case 3: ρ1(π1(X)) is infinite. We claim that this case cannot occur. To
see this, let

f : X → Z

be the ρ1-Shafarevich morphism. We refer to [8, Definition 2.13] for this notion
and to [8, Théorème 1] for its existence. Moreover (loc. cit.), as we are assuming
that ρ1(π1(X)) is torsion free, we may assume that Z is a normal projective
variety of general type. Note that dimZ > 0 since ρ1(π1(X)) is infinite.

Observe that F is not tangent to the fibers of f since there is no proper F-
invariant analytic subspace in X. Note further that flat sections of the unitary
vector bundle TF lift to holomorphic vector fields on the universal covering of
X that have bounded norm, and are therefore complete. The orbits of these
vector fields give rise by projection to entire curves covering X as well as Z. But
according to [22, Theorem 7.4.7] varieties of general type cannot be covered by
entire curves, a contradiction. Hence ρ1(π1(X)) cannot be infinite.

Case 4: ρ1(π1(X)) is finite. If ρ1(π1(X)) finite, then it is trivial, since
it is torsion-free by construction. It follows that G is solvable. Since ρ is uni-
tary and G is connected, we deduce that ρ splits as a direct sum of rank one
representations. Thus TF ∼= F1 ⊕ · · · ⊕ Fp where dimFi = 1, and c1(Fi) = 0.

We now proceed by induction on dimX. If dimX = 1, then TF = TX and
hence c1(X) = c1(F) = 0, so that X is an elliptic curve and the statement holds.
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Now suppose that dimX > 1. If there exists i such that Fi has no proper
Fi-invariant subspace, then by Step 2, X is a torus quotient and Fi is a linear
foliation. The remaining foliations Fj are then also linear: indeed, since the
bundles TFj

are flat, their first Chern classes are zero and hence they must
correspond to trivial summands of the trivial bundle TX.

Otherwise, Fi has an invariant subspace Yi for every i. By the induction
hypothesis, Yi is a torus quotient, and hence Fi|Yi is cohomologically Kähler by
Example 3.5, so that Fi itself is cohomologically Kähler by Lemma 3.3 and thus
TFi

= det TFi
is a torsion line bundle by Proposition 3.18. Hence by passing to

a finite étale cover, we may assume that TFi
is trivial for all i, and hence TF

itself is trivial. The result therefore follows from Case 1.

Since every linear foliation on a torus quotient is cohomologically Kähler
(Example 3.5), and it suffices to check the latter condition on submanifolds
(Lemma 3.3), we deduce the following.

Corollary 4.3 (1 =⇒ 2). If TF is hermitian flat, then F is cohomologically
Kähler.

Hence by Proposition 3.18 we have the following.

Corollary 4.4 (1 =⇒ 3 and 4). If TF is hermitian flat, then ωF is a torsion
line bundle, and there exists a regular foliation G on X such that TX = TF ⊕TG.

Lemma 4.5 (1 =⇒ 5). If TF is Hermitian flat, then F is induced by a splitting

of the universal cover X̃.

Proof. This is argued in the proof of [27, Theorem A].

Lemma 4.6 (1 =⇒ 7). If TF is hermitian flat, then the leaf closures are
induced by abelian group actions as in part 7 of Theorem 4.1.

Proof. In the proof of Lemma 4.2, we saw that the leaves of F are contained
in the fibers of the Shafarevich morphism. Furthermore, the restriction of F to
a fibre of the Shafarevich morphism is defined by an analytic action of CdimF .
Therefore, the analytic closure L of any leaf L admits a locally free CdimF -action
(i.e. the stabilizer of any point is discrete) with an analytically dense orbit. To
conclude, it suffices to take GL equal to the analytic closure of the subgroup of
Aut

(
L
)
0
determined by the locally free CdimF -action defining F|L.

At this point, we have shown that all statements in Theorem 4.1 follow from
the first. It thus remains to establish the following:

Lemma 4.7 (1 holds). If TF is numerically flat, then it is hermitian flat.

Proof. Let T1 ⊆ TF be an hermitian flat subbundle of maximal rank p1. By
Theorem 2.3, we have p1 ≥ 1. We must show that T1 = TF . We do so by
treating several cases, similar to the proof of Lemma 4.2, as follows.

Case 1: T1 is involutive. In this case, by Corollary 4.4 applied to T1, there
exists a foliation G such that TX ∼= T1 ⊕ TG . Then F ∩ G ⊆ F gives a splitting
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TF ∼= T1 ⊕ TF∩G . But then F ∩ G is numerically flat as well and applying
Theorem 2.3 to TF∩G contradicts the maximality of rank T1 unless T1 = TF .

Case 2: T1 ∼= O⊕p1

X is trivial. We claim that H0(X, T1) ⊆ H0(X, TX) is
an abelian Lie subalgebra. Indeed, let vi ∈ H0(X, T1) for i ∈ {1, 2}. Then
[v1, v2] induces the zero flow on the Albanese torus A of X. Thus, by [23,
Theorem 3.14], the vector field [v1, v2] has at least one zero. On the other hand,
[v1, v2] ∈ H0(X, TF ) since F is a foliation.

Applying [11, Proposition 1.16], we see that [v1, v2] = 0, proving our claim.
In particular, T1 is involutive, and the conclusion follows from Step 1.

Intermezzo: Suppose now that the vector bundle T1 is given by an aribtrary
unitary representation

ρ : π1(X) → U(p1).

Let G ⊆ GL(p1,C) be the Zariski closure of ρ(π1(X)). As before, after passing to
an appropriate finite étale cover of X, we may assume without loss of generality
that G is connected, and that the image of the induced representation

ρ1 : π1(X) → G → G/Rad(G)

is torsion free.

Case 3: ρ1(π1(X)) is finite. Then ρ1(π1(X)) is the trivial group since
it is torsion free by construction. It follows that G is solvable. Since ρ is
unitary, we deduce that ρ splits as a direct sum of rank one representations. By
Corollary 4.4, we deduce that ρ(π1(X)) is finite as well. The conclusion now
follows from Case 2 after passing to an étale cover.

Case 4: ρ1(π1(X)) is infinite. Let

f : X → Z

be the ρ1-Shafarevich map. By [8, Théorème 1] again, we may assume without
loss of generality that Z is a (positive dimensional) normal projective variety
of general type. Arguing as in the end of the proof of Lemma 4.2, we see that
T1 is tangent to the fibers of f . By induction on dimX, we conclude that T1 is
involutive. The conclusion now follows from Case 1, proving the lemma.

Remark 4.8. One can naturally wonder if the tangent bundle of a foliation
satisfying the hypotheses of Theorem 4.1 becomes analytically trivial after some
suitable finite étale cover. It turns out that the answer is negative in general.
An example of a rank two foliation such that the above representation

ρ : π1(X) → U(2)

has infinite image is given in [27, Section 4].

The following consequence of Lemma 3.3, Proposition 3.18, Proposition 3.13
and Theorem 4.1 will be useful below and may be of independent interest.
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Proposition 4.9. Let X be a compact Kähler manifold, and let F be a pos-
sibly singular foliation on X with c1(TF ) = 0. Suppose that there exists an
F-invariant compact submanifold Y entirely contained in the regular locus of
F such that TF |Y is numerically flat. Then F is regular, ωF is a torsion line
bundle, and there exists a foliation G on X such that TX = TF ⊕ TG.

5 Foliations of dimension two with numerically
trivial canonical bundle

In this section, we describe the structure of regular foliations with zero first
Chern class and dimension at most two on complex projective manifolds (see
Theorem 5.2).

Notions of singularities coming from the minimal model program have been
shown to be very useful when studying (birational) geometry of foliations. We
refer the reader to [25, Section I] for their precise definition. The proof of Theo-
rem 5.2 below makes use of the following result, which might be of independent
interest.

Theorem 5.1. Let X be a compact Kähler manifold and let L be a foliation by
curves on X such that c1(ωL) = 0. If L has log canonical singularities, then ωL
is a torsion line bundle.

Proof. Let a : X → A be the Albanese morphism, and set Y := a(X). If q(X) = 0,
any line bundle whose first Chern class is zero in H2(X,Q) is torsion. We may
thus assume q(X) = dimA > 0, and that L is tangent to the fibers of the induced
map X → Y.

Suppose first that the singular locus Z of L maps onto a proper subset of Y.
Then a general fiber F of the map X → Y is L-invariant and L|F ⊆ TF is regular.
Proposition 4.9 then implies that ωL is a torsion line bundle.

Suppose from now on that Z maps onto Y, and let Z1 be any irreducible
component of Z mapping onto Y. There exists a positive integer m such that

ω⊗m
L ∈ a∗Pic(A).

Hence, it suffices to show that ωL|Z1
is a torsion line bundle. We now argue as

in [4, Section 4.1]. By the very definition of Z, the natural map TL → TX gives
a surjective map

Ω1
X ↠ IZ/X ⊗ ωL.

Next, consider the composition

Λ: Ω1
X|Z1

→ (IZ/X ⊗ ωL)|Z1
→ (IZ1/X ⊗ ωL)|Z1

∼= (IZ1/X/I
2
Z1/X

)⊗ ωL|Z1
→ Ω1

X|Z1
⊗ ωL|Z1

.

If z ∈ Z1 is any point and v is a local generator of L on some open neighborhood
of z, then the induced map

Λ|z : Ω1
X|z → Ω1

X|z ⊗ ωL|z ∼= Ω1
X|z
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is the linear part of v at z. By [25, Facts I.1.8 and I.1.9], the endomorphism Λ|z
of Ω1

X|z is not nilpotent since L has log canonical singularities by assumption. It
follows that there exists k ∈ {1, . . . ,dimX} such that one of the kth elementary

symmetric function sk ∈ H0(Z1, (ωL|Z1
)
⊗k

) of Λ ∈ EndOZ1
(Ω1

X|Z1
)⊗ ωL|Z1

does

not vanish at z and in particular sk is a nonzero section of ωL|⊗k
Z1

. Since c1(ωL) =
0, this implies that ωL|Z1

is torsion, as desired.

Theorem 5.2. Let X be a complex projective manifold, and let F be a regular
foliation of dimension p ∈ {1, 2} with c1(TF ) = 0. Then either F is algebraically
integrable, or TF is numerically flat. Moreover, ωF is a torsion line bundle, and
there exists a regular foliation G on X such that TX = TF ⊕ TG.

Proof. The second assertion follows from [24, Theorem 5.6] if F is algebraically
integrable and from Theorem 4.1 if TF is numerically flat, so we need only prove
the first assertion. If p = 1, TF is numerically flat by assumption. We may thus
assume that p = 2.

Let ξ be the tautological class on P(Ω1
F ). If ξ is not pseudo-effective, then

F is algebraically integrable by [14, Proposition 8.4], so suppose from now on
that ξ is pseudo-effective.

Let H be an ample divisor on X. From [9, Theorem 4.7], we deduce that TF
is H-semistable. Applying [26, Theorem IV.4.8], we see that one of the following
holds.

1. The tangent bundle TF is numerically flat.

2. There exist line bundles L and M with c1(L) = −c1(M) and slopes
µH(L) = µH(M) = 0 such that TF ∼= L ⊕M.

3. There exist a finite étale cover f : X′ → X of degree 2 and a line bundle L
on X′ such that TF ∼= f∗L.

4. There exists a foliation L by curves, defined by a saturated line bundle
TL ⊂ TF with c1(TL) = 0.

Hence it suffices to treat cases 2 through 4, which we do as follows.
Case 2: In his case, [9, Theorem 1.2] applies to show that L∗ and M∗ are

pseudo-effective line bundles. This immediately implies c1(L) = c1(M) = 0
since c1(L) = −c1(M) by our current assumption. As a consequence, TF is
numerically flat.

Case 3: Let τ be the involution of the covering f : X′ → X. By [26, Lemma
4.11], we have f∗TF ∼= L ⊕ τ∗L. Note that f−1F is a regular foliation on X′

with Tf−1F = f∗TF . In particular, c1(Tf−1F ) = 0. Then L is pseudo-effective
by [9, Theorem 1.2], and hence c1(L) = c1(τ

∗L) = 0 since c1(Tf−1F ) = 0. This
implies that TF is numerically flat in this case as well.

Case 4: This one is the most involved and occupies the rest of the proof. In
this case, F has canonical singularities by [2, Lemma 3.10]. By [24, Corollary
3.8], F is not uniruled. It follows that L is not uniruled as well, and hence it
has canonical singularities using [24, Corollary 3.8] again. Therefore ωL is a
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torsion line bundle by Theorem 5.1. Hence, replacing X by a finite étale cover
if necessary, we may assume without loss of generality that there is a nonzero
global vector field v ∈ H0(X, TF ) such that TL = OX v.

If v is nowhere vanishing, i.e L is a regular foliation, then there exists a
foliation G on X everywhere transverse to L by [23, Theorem 3.14]. The foliation
G gives a splitting TF = TL ⊕ TF∩G , and hence TF is numerically flat.

Let Y ⊆ X be a minimal F-invariant analytic subspace, which is automati-
cally smooth. Either v|Y is nowhere vanishing, nonzero but vanishing, or iden-
tically zero.

Suppose first that v|Y is nowhere vanishing. Then Proposition 4.9 applied
to L implies that L is regular, so that TF is numerically flat.

Suppose next that v|Y ̸= 0 but v(y) = 0 for some point y ∈ Y. Let G be
the Zariski closure in Aut (Y)0 of the complex Lie group exponentiating v|Y.
Notice that G is a commutative linear algebraic group by [23, Theorems 3.12
and 3.14] and that G preserves F|Y. Then G fixes y, and thus the leaf L of
F|Y though y is also G-invariant. Let g ⊆ H0(Y, TY) be the Lie algebra of
holomorphic vector fields arising from the infinitesimal action of G. The set
Z = {u ∈ Y | g(u) ⊆ TuF ⊂ TuY} ∋ y is a closed algebraic subvariety of Y
saturated by F . By minimality of Y, we have Z = Y, and hence F|Y is uniruled.
But this contradicts [24, Theorem 3.6].

Suppose finally that v|Y = 0. Notice that we must have dimY < dimX. By
induction on dimX, we can assume that either F|Y is algebraically integrable or
TF|Y is numerically flat. By [24, Theorem 5.6] if F|Y is algebraically integrable
and Proposition 4.9 if TF|Y is numerically flat, ωF is a torsion line bundle, and
there exists a foliation G on X everywhere transverse to F . Therefore, replacing
X by a further étale cover, if necessary, we may assume without loss of generality
that ωF ∼= OX . Hence, there is a 2-form Ω on X that restricts to a symplectic
form on the leaves of F . In particular, the global 1-form α := ιvΩ is nonzero.
Let a : X → A be the Albanese morphism, and set T := a(X). Notice that
dimT > 0 since α ̸= 0. Moreover, v must be tangent to the fibers of X → T
since the vanishing locus Z ⊇ Y of v is nonempty by our current assumption.
Suppose that Z maps onto a proper subset of T. Then a general fiber F of the
map X → T is L-invariant and L|F ⊆ TF is regular. Proposition 4.9 then implies
that v is nowhere vanishing, a contradiction. Therefore, Z maps onto T. Now,
α|Zreg vanishes identically by its very definition. On the other hand, α|Zreg is
the pull-back of a nonzero global 1-form on A. This immediately implies α = 0,
yielding a contradiction. This completes the proof of the theorem.

We may now finish the proof of our second main result (Theorem 1.2 from the
introduction), which describes the structure of regular foliations of dimension
two with c1 = 0 on projective manifolds.

Proof of Theorem 1.2. According to Theorem 5.2, ωF is torsion, there exists
a foliation G such that TX = TF ⊕ TG , and TF is numerically flat or F is
algebraically integrable. If TF is numerically flat, then it is hermitian flat by
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Theorem 4.1. If F is algebraically integrable then the existence of a finite étale
covering trivializing F follows from [17, Theorem 1.4 and Remark 3.17].

6 Consequences for Poisson geometry

The results and conjectures in this paper have some interesting consequences for
compact Kähler Poisson manifolds, i.e. pairs (X, π) of a compact Kähler manifold
X and a holomorphic Poisson bivector π ∈ H0(X,∧2TX). For such manifolds, the
image of the “anchor map” π♯ : Ω1

X → TX gives an involutive subsheaf, whose
integral submanifolds are the symplectic leaves of (X, π). However, this subsheaf
need not be saturated, so it may not define a foliation in the stronger sense of
the present paper. Rather, we obtain a foliation F in the present sense by taking
the saturation of img π♯ ⊂ TX. This may enlarge the leaves away from the locus
where the rank of π is constant.

Let r be the generic rank of π. (The rank is always even.) Let us assume
that the locus where π has rank less than r has codimension at least two. Then
det TF is trivialized by πr/2, and hence c1(F) = 0, so our results and conjectures
on foliations with numerically trivial canonical bundle apply.

6.1 Submanifolds and subcalibrations

We recall the definition and basic properties of subcalibrations, due to Frejlich–
Mărcuţ; see [17, §2] for details. A subcalibration of a holomorphic Poisson
manifold (X, π) is a global closed holomorphic two-form σ ∈ H0(X,Ω2

X) such that
the operator θ = π♯σ♭ ∈ End(TX) is idempotent, i.e. θ2 = θ. Here σ♭ : TX → Ω1

X

and π♯ : Ω1
X → TX are the natural maps defined by contraction. The image and

kernel of θ then define complementary smooth foliations F and G, respectively,
so that TX = TF ⊕ TG . The Poisson structure then splits as π = πF + πG where
πF ∈ H0(X,∧2TF ) and πG ∈ H0(X,∧2TG) are Poisson structures on F and G,
with πF nondegenerate.

Certain Poisson submanifolds can be used to construct subcalibrations, as
follows. Let Y ⊆ X be a closed holomorphic Poisson submanifold, i.e. a closed
complex submanifold to which π is tangent. Assume that π|Y is regular. Such
regular Poisson submanifolds always exist: for instance, if Y ⊆ X is a Poisson
subvariety that is minimal with respect to inclusions, then Y is automatically
smooth and π|Y is automatically regular, because the degeneracy and singular
loci of any Poisson variety are Poisson subvarieties [28, §2].

Definition 6.1. A subcalibration σ of (X, π) is compatible with the Poisson
submanifold Y if img θ|Y = img π♯|Y, i.e. the foliation F of X induced by the
image of θ restricts to the symplectic foliation on Y.

The following is a generalization of [17, Corollary 2.5], which treated the
case in which Y is a symplectic leaf. Note that if Conjecture 3.8 is true, then
the assumption that Y is cohomologically Kähler can be dropped.
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Proposition 6.2. Let Y ⊆ X be a regular Poisson submanifold. If X and Y
are connected and the symplectic foliation of Y is cohomologically Kähler, then
(X, π) admits a subcalibration that is compatible with Y.

Proof. In the special case where π|Y has corank zero, i.e. Y is a symplectic leaf,
this is [17, Corollary 2.5]. (In that case, the foliation is trivially cohomologically
Kähler.) The argument here is similar, with some minor changes in the details
to get around the fact that Y may have many leaves, and they need not be
compact.

Suppose that the rank of π|Y is 2k, and let FY be its symplectic foliation. Let
γ ∈ H1(X,Ω1

X) be a Kähler class, and consider the element ιπkγ2k ∈ H2k(X,OX).
Its conjugate under Hodge symmetry is a holomorphic 2k-form µ ∈ H0(X,Ω2k

X ).
Since πk|Y is a 2k-vector defining FY, it follows from Lemma 3.17 that the
element ιπkµ|Y ∈ H0(Y,OY) is a nonzero constant. Hence by rescaling µ if
necessary, we may assume that µ restricts to the leafwise Liouville volume form
on every symplectic leaf of Y. Then σ0 := 1

(k−1)! ιπk−1µ ∈ H0(X,Ω2
X) is a global

holomorphic two-form that restricts to the symplectic form on every symplectic
leaf of Y.

Applying [17, Lemma 2.4] to any symplectic leaf L ⊆ Y ⊆ X, we deduce
the existence of a subcalibration σ of π that restricts to the symplectic form on
L. Since X is connected, the rank of the associated endomorphism θ = π♯σ♭ is
constant, and must therefore be equal to 2k. But then img θ|Y ⊆ img π♯|Y are
subbundles of TY of the same rank, and hence they must be equal, so that the
subcalibration is compatible with Y, as desired.

6.2 Global Weinstein splitting

Now suppose (X, π) is a compact Kähler Poisson manifold, and let d be the
minimal dimension of a symplectic leaf of π, i.e. we have d = minx∈X(rankπ(x)).
Assuming Conjecture 3.8 that every regular foliation is cohomologically Kähler,
we may apply Proposition 6.2 to any Poisson submanifold on which π has rank
d and deduce the existence of a subcalibration of (X, π) that gives a Poisson
splitting of the tangent bundle TX = TF ⊕ TG where F is a symplectic foliation
of dimension d, and G is a Poisson foliation. Combining this with Beauville’s
conjecture, we obtain a splitting of the universal cover of X as a product of
Poisson manifolds. In other words, Conjecture 3.8, together with Beauville’s
conjecture, imply Conjecture 1.4 from the introduction, whose statement we
now recall:

Conjecture 1.4. Let (X, π) be a compact Kähler Poisson manifold and sup-
pose that the minimal dimension of a symplectic leaf of π is equal to d. Then
there exists a holomorphic symplectic manifold Y of dimension d, a holomorphic
Poisson manifold Z, and a holomorphic Poisson covering map Y × Z → X.

If d = 0, or d = dimX, the conjecture is trivially satisfied: simply take Z or
Y to be X, and the other to be a point. If d = dimX−1, then π is automatically
regular since the rank is even; the conjecture then follows from the classification
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in [12, 33]. The conjecture also holds when X has a compact leaf with finite
fundamental group as shown by the main result of our paper [17].

As a direct consequence of the results presented in this paper, we provide
further evidence supporting this conjecture.

Proposition 6.3. Conjecture 1.4 holds if d = 2 and X is projective.

Proof. By Theorem 1.2 and Lemma 3.6, the symplectic foliation of any regular
Poisson submanifold of rank two is cohomologically Kähler. Applying Proposi-
tion 6.2, we obtain a subcalibration of (X, π) for which the foliation F is sym-
plectic of dimension two. Applying Theorem 1.2 again, we obtain the desired
splitting.

6.3 Non-emptiness of vanishing loci

Note that Proposition 6.2 implies, in particular, that if X admits a regular
cohomologically Kähler Poisson submanifold of rank 2k, then there exists a
holomorphic two-form σ on X such that σk ̸= 0. Hence Proposition 6.2 and
Conjecture 3.8 (that every regular foliation is cohomologically Kähler) together
imply the following.

Conjecture 1.6. Let (X, π) be a compact Kähler Poisson manifold, and let d be
the minimal dimension of a symplectic leaf of (X, π). Then the Hodge numbers
h2j,0(X) are nonzero for all j ≤ d

2 . In particular, if h2,0(X) = 0, then every
holomorphic Poisson structure on X has a zero.

Note that if X is rational or Fano, or more generally if X is rationally con-
nected, then hq,0(X) = 0 for all q > 0, so the conjecture predicts that any
Poisson structure on such a manifold has a zero. This conjecture is thus similar
in spirit to Bondal’s conjecture [5] that if (X, π) is a Fano Poisson manifold,
then for every j < dimX/2, the degeneracy locus where π has rank at most 2j
is non-empty, and has an irreducible component of dimension at least 2j + 1.
Bondal’s conjecture is known to hold for Fano manifolds of dimension ≤ 4, as
proven in [19, 28]. In addition, Conjecture 1.6 was proven for X = P5 by the
third author in [29, Theorem 6.8.5]. Thus Conjecture 1.6 holds in all those
cases, all of which are subsumed by the following.

Proposition 6.4. Conjecture 1.6 holds if X is projective and dimX ≤ 6, or more
generally, if X contains a closed projective analytic Poisson subspace Y ⊆ X of
dimension dimY ≤ 6.

Proof. Without loss of generality, we may assume that the subspace Y is smooth
and that π|Y is regular of rank p for some p ≥ d. By Proposition 6.2, it suffices
to show that the symplectic foliation of Y is cohomologically Kähler. But either
the rank p of π|Y or the corank q = dimY−p is at most two, and the symplectic
foliation has trivial canonical bundle; these cases are covered by Example 3.2
when p = 0 or q = 0, Theorem 5.2 and Lemma 3.6 when p = 2, Proposition 3.15
when q = 1, and Lemma 3.16 when q = 2.
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Under the stronger assumption that X is Fano, we obtain further evidence
for Conjecture 1.6 (and hence also Bondal’s conjecture):

Proposition 6.5. Let X be a Fano manifold. If either dimX ≤ 7, or dimX = 8
and b2(X) = 1, then every Poisson structure on X has at least one zero.

Proof. Every Fano manifold X has h0,q(X) = 0 for q > 0. Moreover, an applica-
tion of Bott’s vanishing theorem as in [28, §9] or [19, §7.3] implies that a Poisson
structure π on such a manifold can never be regular.

If dimX ≤ 7, then the non-regular locus of π gives a nonempty closed analytic
Poisson subspace Y ⊂ X of dimension at most six, and the result follows from
Proposition 6.4.

If dimX = 8, then either there is a nonempty closed Poisson subvariety of
dimension at most six (in which case Proposition 6.4 applies), or X contains a
smooth Poisson hypersurface Y ⊂ X. Since b2(X) = 1, the divisor Y is ample and
its class is a multiple of the canonical class of X. Hence the adjunction formula
gives c1(Y) = s c1(X)|Y ∈ H2(Y,C) for some rational number s. If s > 0, then Y
is Fano of dimension seven and the result follows as above. On the other hand,
if s ≤ 0 then ωY is pseudo-effective, and since the symplectic foliation has trivial
canonical bundle, we deduce from Proposition 3.13 that it is cohomologically
Kähler, so the result follows from Proposition 6.2 and the vanishing hq,0(X) = 0
for all q > 0 as above.

References

[1] J. Amorós, M. Manjaŕın, and M. Nicolau, Deformations of Kähler man-
ifolds with nonvanishing holomorphic vector fields, J. Eur. Math. Soc.
(JEMS) 14 (2012), no. 4, 997–1040.

[2] C. Araujo and S. Druel, On Fano foliations, Adv. Math. 238 (2013), 70–
118.

[3] A. Beauville, Complex manifolds with split tangent bundle, Complex anal-
ysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 61–70.

[4] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties,
Foliation theory in algebraic geometry, Simons Symp., Springer, Cham,
2016, pp. 21–51.

[5] A. I. Bondal, Non-commutative deformations and Poisson brackets on pro-
jective spaces, Max-Planck-Institute Preprint (1993), no. 93-67.

[6] S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, The pseudo-
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