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Codimension 1 Mukai foliations on
complex projective manifolds
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Abstract. In this paper we classify codimension 1Mukai foliations on complex projec-
tive manifolds.
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1. Introduction

This paper is concerned with codimension 1 holomorphic foliations on complex pro-
jective manifolds. When the ambient space is Pn, the problem of classifying and describing
such foliations is classical. The degree deg.F / of a codimension 1 holomorphic foliation F
on Pn is defined as the number of tangencies of a general line with F . When deg.F / is low,
F presents very special behavior. In particular, those with deg.F / 6 2 have been classified.
Codimension 1 foliations on Pn with deg.F / 6 1 were classified in [31]. If deg.F / D 0,
then F is induced by a pencil of hyperplanes, i.e., it is the relative tangent sheaf to a linear
projection PnÜ P1. If deg.F / D 1, then either of the following holds:

� F is induced by a pencil of hyperquadrics containing a double hyperplane,

� F is the linear pullback of a foliation on P2 induced by a global holomorphic vector
field.
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2 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

Codimension 1 foliations of degree 2 on Pn were classified in [12]. The space of such foliations
has six irreducible components, and much is known about them. In particular, when n > 4, the
leaves of these foliations are always covered by rational curves.

In this paper we extend this classification to arbitrary complex projective manifolds.
In order to do so, we reinterpret the degree of a foliation F on Pn as a numerical invari-
ant defined in terms of its canonical class KF WD �c1.F /. For a codimension 1 foliation F
on Pn, deg.F / D n � 1C deg.KF /. So, foliations with low degree are precisely those with
�KF most positive.

Definition 1 ([3]). A Fano foliation is a holomorphic foliation F on a complex projec-
tive manifold X such that �KF is ample. The index �F of F is the largest integer dividing
�KF in Pic.X/.

It follows from [8, Theorem 0.1] that the leaves of a Fano foliation F are always
covered by positive dimensional rationally connected algebraic subvarieties of X . Recent
results suggest that the higher the index of F is, the higher the dimension of these subvari-
eties is. In order to state this precisely, we define the algebraic and transcendental parts of
a holomorphic foliation.

Definition 2. Let F be a holomorphic foliation of rank rF on a normal variety X .
There exist a normal variety Y , unique up to birational equivalence, a dominant rational map
with connected fibers ' W XÜ Y , and a holomorphic foliation G on Y of rank

rG D rF � .dim.X/ � dim.Y //

such that the following hold (see [37, Section 2.4]):

(1) G is purely transcendental, i.e., there is no positive-dimensional algebraic subvariety
through a general point of Y that is tangent to G ,

(2) F is the pullback of G via ' (see Paragraph 12 for this notion).

The foliation on X induced by ' is called the algebraic part of F , and its rank is the algebraic
rank of F , which we denote by raF . When raF D rF , we say that F is algebraically integrable.

Theorem 3. Let F be a Fano foliation of rank rF and index �F on a complex projective
manifoldX . Then �F 6 rF , and equality holds only ifX Š Pn ([6, Theorem 1.1]). In this case,
by [14, Théorème 3.8], F is induced by a linear projection PnÜ Pn�rF . In particular, one
has raF D rF .

In analogy with the case of Fano manifolds, we define del Pezzo foliations to be Fano
foliations F with index �F D rF � 1 > 1. Del Pezzo foliations were investigated in [3, 4].
By [3, Theorem 1.1], if F is a del Pezzo foliation on a complex projective manifold X ,
then raF D rF , except whenX Š Pn and F is the pullback under a linear projection of a trans-
cendental foliation on Pn�rFC1 induced by a global vector field, in which case raF D rF � 1.

The following is the complete classification of codimension 1 del Pezzo foliations on
complex projective manifolds. For manifolds with Picard number 1, the classification was
obtained in [38, Proposition 3.7], while [4, Theorem 1.3] deals with mildly singular varieties
of arbitrary Picard number.
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Theorem 4 ([4, Theorem 1.3]). Let F be a codimension 1 del Pezzo foliation on an
n-dimensional complex projective manifold X .

(1) Suppose that �.X/ D 1. Then one of the following holds:

� X Š Pn and F is a degree 1 foliation,
� X Š Qn � PnC1 and F is induced by a pencil of hyperplane sections.

(2) Suppose that �.X/ > 2. Then n 2 ¹3; 4º and there exist

� an exact sequence of vector bundles on P1,

0! K ! E ! V ! 0;

with E ample of rank n and rank.K / D 2,
� a foliation by curves C on PP1.K /, generically transverse to the natural projection
q W PP1.K /! P1, induced by a nonzero global section of TPP1 .K / ˝ q

� det.V /�,

such that X Š PP1.E /, and F is the pullback of C via the induced relative linear
projection PP1.E /Ü PP1.K /. Moreover, one of the following holds:

(a) .E ;K / Š .OP1.2/˚ OP1.a/˚2;OP1.a/˚2/ for some positive integer a,

(b) .E ;K / Š .OP1.1/˚2 ˚ OP1.a/˚2;OP1.a/˚2/ for some positive integer a,

(c) .E ;K / Š .OP1.1/˚ OP1.a/˚ OP1.b/;OP1.a/˚ OP1.b// for distinct positive
integers a and b.

Next we define Mukai foliations as Fano foliations F with index �F D rF � 2 > 1.
When X D Pn and rF D n � 1 > 3, the Mukai condition is equivalent to deg.F / D 2. One
checks from the classification in [12] that raF > rF � 2.

The aim of this paper is to classify codimension 1Mukai foliations on complex projective
manifolds X 6Š Pn. The classification is summarized in Theorems 5 and 8, distinguishing the
cases when �.X/ D 1 and �.X/ > 1.

Theorem 5. Let F be a codimension 1 Mukai foliation on an n-dimensional complex
projective manifold X 6Š Pn with �.X/ D 1, n > 4. Then the pair .X;F / satisfies one of the
following conditions:

(1) X Š Qn � PnC1 and F is one of the following:

(a) F is cut out by a pencil of hyperquadrics of PnC1 containing a double hyperplane.
In this case, raF D rF .

(b) F is the pullback under the restriction to X of a linear projection PnC1Ü P2 of
a foliation on P2 induced by a global vector field. In this case, raF > rF � 1.

(2) X is a Fano manifold with �.X/ D 1 and index �X D n � 1, and F is induced by a pencil
in jOX .1/j, where OX .1/ is the ample generator of Pic.X/. In this case, raF D rF .

Remark 6. In case (2), by Fujita’s classification (see Section 3.1), X is isomorphic to
one of the following:

� a cubic hypersurface in PnC1.

� an intersection of two hyperquadrics in PnC2.

Authenticated | druel@ujf-grenoble.fr author's copy
Download Date | 1/16/15 10:39 PM



4 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

� a linear section of the Grassmannian G.2; 5/ � P9 under the Plücker embedding.

� a hypersurface of degree 4 in the weighted projective space P .2; 1; : : : ; 1/.

� a hypersurface of degree 6 in the weighted projective space P .3; 2; 1; : : : ; 1/.

The classification of codimension 1 Mukai foliation on complex projective manifolds X
with �.X/ > 1 in Theorem 8 is much longer and intricate. For the reader’s convenience, before
stating it, we present some of its immediate consequences.

Theorem 7. Let X be an n-dimensional complex projective manifold with �.X/ > 1,
and n > 4. Let F be a codimension 1 Mukai foliation on X . Then the following hold:

(1) raF > rF � 1.

(2) If raF D rF � 1, then X is a projective space bundle over a curve or a surface, and F is
the pullback of a codimension 1 foliation on a surface or a threefold.

(3) If n > 7, then X is a Pn�1-bundle over a curve.

(4) If X is not rationally connected, then X is a Pn�1-bundle over a curve.

Theorem 8. Let X be an n-dimensional complex projective manifold with �.X/ > 1,
and n > 4. Let F be a codimension 1 Mukai foliation on X . Then one of the following holds:

(1) X admits a Pn�1-bundle structure � W X ! P1, raF D rF , and the restriction of F to
a general fiber of � is induced by a pencil of hyperquadrics of Pn�1 containing a double
hyperplane.

(2) There exist

� a complete smooth curve C , together with an exact sequence of vector bundles on C ,

0! K ! E ! V ! 0;

with E ample of rank n, and r WD rank.K / 2 ¹2; 3º,
� a codimension 1 foliation G on PC .K /, generically transverse to the natural projec-

tion p W PC .K /! C , satisfying

det.G / Š p�.det.V //˝ OPC .K /.r � 3/ and raG > rG � 1;

such that X Š PC .E /, and F is the pullback of G via the induced relative linear pro-
jection PC .E /Ü PC .K /. In this case, raF > rF � 1.

(3) X admits a Qn�1-bundle structure � W X ! P1, n 2 ¹4; 5º, raF D rF , and the restric-
tion of F to a general fiber of � is induced by a pencil of hyperplane sections of Qn�1.
More precisely, there exist

� an exact sequence of vector bundles on P1,

0! K ! E ! V ! 0;

with rank.E / D nC 1, rank.K / D 2, and natural projections � W PP1.E /! P1 and
q W PP1.K /! P1,

� an integer b and a foliation by rational curves G Š q�.det.V /˝OP1.b// on PP1.K /,
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such thatX 2 jOP.E /.2/˝ �
�O.b/j, and F is the pullback of G via the restriction toX

of the relative linear projection PP1.E /Ü PP1.K /. Moreover, one of the following
holds:

(a) .E ;K / Š .OP1.a/˚2 ˚ O˚3
P1 ;OP1.a/˚2/ for some integer a > 1, and b D 2 (with

n D 4).

(b) .E ;K / Š .OP1.a/˚2 ˚ O˚2
P1 ˚ OP1.1/;OP1.a/˚2/ for some integer a > 1, and

b D 1 (with n D 4).

(c) .E ;K / Š .OP1.a/˚2˚OP1˚OP1.1/˚2;OP1.a/˚2/ for some integer a > 1, and
b D 0 (with n D 4).

(d) K Š OP1.a/˚2 for some integer a, and E is an ample vector bundle of rank 5 or 6
with deg.E / D 2C 2a � b (with n 2 ¹4; 5º).

(e) K Š OP1.a/˚ OP1.c/ for distinct integers a and c, and E is an ample vector
bundle of rank 5 or 6 with deg.E / D 1C aC c � b (with n 2 ¹4; 5º).

(4) There exist
� a smooth projective surface S , together with an exact sequence of OS -modules,

0! K ! E ! Q! 0;

where K , E , and V WD Q�� are vector bundles on S , E is ample of rank n � 1, and
rank.K / D 2,

� a codimension 1 foliation G on PS .K /, generically transverse to the natural projec-
tion q W PS .K /! S , satisfying det.G / Š q� det.V / and raG > 1,

such that X Š PS .E /, and F is the pullback of G via the induced relative linear pro-
jection PS .E /Ü PS .K /. In this case, raF > rF � 1. Moreover, one of the following
holds:

(a) S Š P2, det.V / Š OP2.i/ for some i 2 ¹1; 2; 3º, and 4 6 n 6 3C i .
(b) S is a del Pezzo surface 6Š P2, det.V / Š OS .�KS /, and 4 6 n 6 5.

(c) S Š P1 � P1, det.V / is a line bundle of type .1; 1/, .2; 1/ or .1; 2/, and n D 4.

(d) S Š Fe for some integer e > 1, det.V / Š OFe
.C0 C .e C i/f /, where i 2 ¹1; 2º,

C0 is the minimal section of the natural morphism Fe ! P1, f is a general fiber,
and n D 4.

(5) nD 5,X is the blowup of one pointP 2 P5, and F is induced by a pencil of hyperplanes
in P5 containing P in its base locus.

(6) nD 4,X is the blowup of P4 atm6 8 points in general position on a plane P2Š S � P4,
and F is induced by the pencil of hyperplanes in P4 with base locus S .

(7) nD 4, X is the blowup of a smooth quadric Q4 at m 6 7 points in general position
on a codimension 2 linear section Q2 Š S � Q4, and F is induced by the pencil of
hyperplane sections of Q4 � P5 with base locus S .

Remark 9. Foliations G that appear in Theorem 8 (2) when r D 3 are classified in
Proposition 46. When r D 2, we construct examples in Example 48.

Foliations G that appear in Theorem 8 (4) are classified in Remark 59, Proposition 61,
Proposition 66, and Proposition 69.
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This paper is organized as follows.
In Section 2, we review basic definitions and results about holomorphic foliations and

Fano foliations.
Section 3 is devoted to Mukai foliations on manifolds with Picard number 1. First we

show that if X is a manifold with �.X/ D 1 admitting a codimension 1 Mukai foliation F ,
then X is a Fano manifold with index �X > dim.X/ � 1 (Lemma 28). The proof of Theorem 5
relies on the classification of such manifolds, which is reviewed in Section 3.1. The proof
distinguishes two cases, depending on whether or not F contains a codimension 2 del Pezzo
subfoliation G . Such foliations are classified in Section 3.2 (Theorem 29).

Section 4 is devoted to Mukai foliations on manifolds with Picard number > 1. The
existence of a codimension 1 Mukai foliation F on a manifold X with �.X/ > 1 implies the
existence of an extremal ray in NE.X/ with large length. We use adjunction theory to classify
all possible contractions of such extremal rays (Theorem 40). In order to prove Theorem 8, we
analyze the behavior of the foliation F with respect to the contraction of a large extremal ray.
This is done separately for each type of contraction. Section 4.2 deals with projective space
bundles over curves. Section 4.3 deals with quadric bundles over curves. Section 4.4 deals with
projective space bundles over surfaces. Birational contractions are treated in Section 4.5.

Notation and conventions. We always work over the field C of complex numbers.
Varieties are always assumed to be irreducible. We denote by Sing.X/ the singular locus of
a variety X .

Let F be a sheaf of OX -modules on a variety X .

� We denote by F� the sheaf HomOX
.F ;OX /.

� If r is the generic rank of F , we denote by det.F / the sheaf .^rF /��.
� If G is another sheaf of OX -modules onX , we denote by F Œ˝� G the sheaf .F ˝ G /��.

If E is a locally free sheaf of OX -modules on a variety X , we denote by PX .E / the
Grothendieck projectivization ProjX .Sym.E //, and by OP .1/ its tautological line bundle.

SupposeX is a normal variety and letX ! Y be any morphism. We denote by TX=Y the
sheaf .�1X=Y /

�. In particular, TX D .�1X /
�.

If X is a smooth variety and D is a reduced divisor on X with simple normal crossings
support, we denote by �1X .logD/ the sheaf of differential 1-forms with logarithmic poles
along D, and by TX .� logD/ its dual sheaf �1X .logD/�. Notice that

det.�1X .logD// Š OX .KX CD/:

We denote by Qn a (possibly singular) quadric hypersurface in PnC1.
Given line bundles L1 and L2 on two varieties X and Y , we denote by L1 �L2 the

line bundle ��1L1 ˝ �
�
2L2 on X � Y , where �1 and �2 are the projections onto X and Y ,

respectively.
Let L be a Cartier divisor on a projective variety. We denote by Bs.L/ the base locus of

the complete linear system jLj.

Acknowledgement. Much of this work was developed during the authors’ visits to
IMPA and Institut Fourier. We would like to thank both institutions for their support and
hospitality. We also thank the referee for their thoughtful suggestions on how to improve the
presentation of some of the results.
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2. Preliminaries

2.1. Foliations. We start with some basic definitions.

Definition 10. A foliation on a normal variety X is a (possibly zero) coherent sub-
sheaf F ¨ TX such that

� F is closed under the Lie bracket,
� F is saturated in TX (i.e., TX=F is torsion free).

The rank rF of F is the generic rank of F . The codimension of F is defined as

qF WD dim.X/ � rF > 1:

The inclusion F ,! TX induces a nonzero map

� W �
rF
X D ^

rF .�1X /! ^
rF .T �X /! ^

rF .F�/! det.F�/:

The singular locus of F is the singular scheme of this map, i.e., it is the closed subscheme
of X whose ideal sheaf is the image of the induced map �rFX Œ˝� det.F /! OX .

A closed subvariety Y of X is said to be invariant by F if it is not contained in the
singular locus of F , and the restriction �jY W �

rF
X jY

! det.F�/jY factors through the natural
map �rFX jY

! �
rF
Y .

11 (Foliations defined by q-forms). Let F be a codimension q foliation on an n-dimen-
sional normal variety X . The normal sheaf of F is

NF WD .TX=F /��:

The q-th wedge product of the inclusion N �F ,! .�1X /
�� gives rise to a nonzero global section

! 2 H 0.X;�
q
X Œ˝� det.NF // whose zero locus has codimension at least 2 in X . Such an !

is locally decomposable and integrable. To say that ! is locally decomposable means that, in
a neighborhood of a general point ofX , ! decomposes as the wedge product of q local 1-forms
! D !1 ^ � � � ^ !q . To say that it is integrable means that for this local decomposition one has
d!i ^ ! D 0 for every i 2 ¹1; : : : ; qº. The integrability condition for ! is equivalent to the
condition that F is closed under the Lie bracket.

Conversely, let L be a reflexive sheaf of rank 1 onX , q > 1, and! 2 H 0.X;�
q
X Œ˝�L /

be a global section whose zero locus has codimension at least 2 in X . Suppose that ! is locally
decomposable and integrable. Then one defines a foliation of rank r D n � q onX as the kernel
of the morphism TX ! �

q�1
X Œ˝�L given by the contraction with !. These constructions are

inverse of each other.

12 (Foliations described as pullbacks). Let X; Y be normal varieties and ' W XÜ Y

be a dominant rational map that restricts to a morphism 'ı W Xı ! Y ı, where Xı � X and
Y ı � Y are smooth open subsets.

Let G be a codimension q foliation on Y defined by a twisted q-form

! 2 H 0.Y;�
q
Y Œ˝� det.NG //:

Then ! induces a nonzero twisted q-form

!Xı 2 H
0.Xı; �

q
Xı ˝ .'

ı/�.det.NG /jY ı//;
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8 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

which in turn defines a codimension q foliation F ı onXı. We say that the saturation F of F ı

in TX is the pullback of G via ', and write F D '�1G .
Suppose that Xı is such that 'ı is an equidimensional morphism. Let .Bi /i2I be the

(possibly empty) set of hypersurfaces in Y ı contained in the set of critical values of 'ı and
invariant by G . A straightforward computation shows that

(2.1) det.NFı/ Š .'
ı/� det.NGjY ı /˝ OXı

�X
i2I

..'ı/�Bi /red � .'
ı/�Bi

�
:

Conversely, let F be a foliation on X , and suppose that the general fiber of ' is tangent
to F . This means that, for a general point x on a general fiber F of ', the linear subspace
Fx � TxX determined by the inclusion F � TX contains TxF . Suppose moreover that 'ı is
smooth with connected fibers. Then, by [3, Lemma 6.7], there is a holomorphic foliation G
on Y such that F D '�1G . Suppose that Xı can be taken so that codimX .X nXı/ > 2.
Denote by TX=Y the saturation of TXı=Y ı in TX , and by '�G an extension of .'ı/�GjY ı to X .
Then (2.1) gives

(2.2) det.F / Š det.TX=Y / Œ˝� det.'�G /:

Definition 13. Let F be a foliation on a normal projective variety X . The canonical
class KF of F is any Weil divisor on X such that OX .�KF / Š det.F /.

14 (Restricting foliations to subvarieties). Let X be a smooth variety, and let F be
a codimension q foliation on X defined by a twisted q-form ! 2 H 0.X;�

q
X ˝ det.NF //.

Let Z be a smooth subvariety with normal bundle NZ=X . Suppose that the restriction of !
to Z is nonzero. Then it induces a nonzero twisted q-form !Z 2 H

0.Z;�
q
Z ˝ det.NF /jZ/,

and a codimension q foliation FZ onZ. There is a maximal effective divisor B onZ such that

!Z 2 H
0.Z;�

q
Z ˝ det.NF /jZ.�B//:

A straightforward computation shows that

OZ.KFZ
/ Š det.NZ=X /.KF jZ � B/:

Definition 15. LetX be a normal variety. A foliation F onX is said to be algebraically
integrable if the leaf of F through a general point ofX is an algebraic variety. In this situation,
by abuse of notation we often use the word leaf to mean the closure in X of a leaf of F .

16 ([25, Theorem 3], [3, Lemma 3.2]). LetX be normal projective variety, and let F be
an algebraically integrable foliation on X . There is a unique irreducible closed subvariety W
of Chow.X/ whose general point parametrizes the closure of a general leaf of F (viewed as
a reduced and irreducible cycle in X ). In other words, if U � W �X is the universal cycle,
with universal morphisms � W U ! W and e W U ! X , then e is birational, and, for a general
point w 2 W , e.��1.w// � X is the closure of a leaf of F .

We call the normalization QW of W the space of leaves of F , and the induced rational
map XÜ QW a rational first integral for F .

We end this subsection with a useful criterion of algebraic integrability for foliations.
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Theorem 17 ([8, Theorem 0.1], [32, Theorem 1]). Let X be a normal complex projec-
tive variety, and let F be a foliation on X . Let C � X be a complete curve disjoint from the
singular loci of X and F . Suppose that the restriction FjC is an ample vector bundle on C .
Then the leaf of F through any point of C is an algebraic variety, and the leaf of F through
a general point of C is rationally connected.

2.2. Fano foliations.

Definition 18. Let F be a foliation on a normal projective variety X . We say that F
is a Fano foliation (respectively Q-Fano foliation) if �KF is an ample Cartier (respectively
Q-Cartier) divisor on X .

The index �F of a Fano foliation F on X is the largest integer dividing �KF in Pic.X/.
We say that a Fano foliation F is a del Pezzo foliation if �F D rF � 1. We say that it is a Mukai
foliation if �F D rF � 2.

The existence of a Q-Fano foliation on a variety X imposes strong restrictions on X .

Theorem 19 ([4, Theorem 1.4]). Let X be a klt projective variety, and let F ¨ TX be
a Q-Fano foliation. Then KX �KF is not pseudo-effective.

Suppose that a complex projective manifold X admits a Fano foliation F . By Theo-
rem 19, KX is not pseudo-effective, and hence X is uniruled by [9]. So we can consider
a minimal dominating family of rational curves on X . This is an irreducible component H
of RatCurvesn.X/ such that

� the curves parametrized by H sweep out a dense subset of X ,
� for a general point x 2 X , the subset of H parametrizing curves through x is proper.

To compute the intersection number �KF � `, where ` is a general curve from the family H ,
we will use the following observations.

Lemma 20. Let X be a complex projective manifold, and let F be a codimension 1
foliation on X . Let C � X be a curve not contained in the singular locus of F , and denote
by g its geometric genus. If C is not tangent to F , then �KF � C 6 �KX � C C 2g � 2.

Proof. Set n WD dim.X/, and let ! 2 H 0.X;�1X ˝ det.NF // be a 1-form defining F ,
as in Paragraph 11. Consider the normalization morphism f W QC ! C � X . The pullback of !
to QC yields a nonzero 1-form

Q! 2 H 0. QC ;�1
QC
˝ f � det.NF //:

Thus
deg.�1

QC
˝ f � det.NF // > 0;

proving the lemma.

Lemma 21. Let X be a uniruled complex projective manifold, and let F be a foliation
onX . Let ` � X be a general member of a minimal dominating family of rational curves onX .
If ` is not tangent to F , then �KF � ` 6 �KX � ` � 2.
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Proof. Set n WD dim.X/, and consider the normalization morphism f W P1 ! ` � X .
By [34, Corollary IV.2.9],

f �TX Š OP1.2/˚ OP1.1/˚d ˚ O˚.n�d�1/
P1 ;

where 0 6 d D �KX � ` � 2 6 n � 1. Write

f �F Š
rFM
iD1

OP1.ai /:

Since ` is general, f �F is a subbundle of f �TX , and since ` is not tangent to F , the inclusion
f �F ,! f �TX induces an inclusion

rFM
iD1

OP1.ai / Š f
�F ,! f �TX=TP1 Š OP1.1/˚d ˚ O˚.n�d�1/

P1 :

Thus ai 6 1 for 1 6 i 6 rF , and

�KF � ` D

rFX
iD1

ai 6 d D �KX � ` � 2:

This completes the proof of the lemma.

Definition 22. Let F be an algebraically integrable foliation on a complex projective
manifoldX . Let i W QF ! X be the normalization of the closure of a general leaf of F . There is
an effective divisor Q� on QF such that K QF C Q� � i

�KF ([3, Definition 3.4]). The pair . QF ; Q�/
is called a general log leaf of F .

In [3], we applied the notions of singularities of pairs, developed in the context of the
minimal model program, to the log leaf . QF ; Q�/. The case when . QF ; Q�/ is log canonical is
specially interesting. We refer to [35, Section 2.3] for the definition of log canonical pairs.
Here we only remark that if QF is smooth and Q� is a reduced simple normal crossing divisor,
then . QF ; Q�/ is log canonical.

Proposition 23 ([3, Proposition 5.3]). Let F be an algebraically integrable Fano
foliation on a complex projective manifold X . Suppose that the general log leaf of F is log
canonical. Then there is a common point contained in the closure of a general leaf of F .

2.3. Fano foliations with large index on Pn and Qn. Jouanolou’s classification of
codimension 1 foliations on Pn of degree 0 and 1 has been generalized to arbitrary rank in [14]
and [38], respectively. The degree deg.F / of a foliation F on Pn is defined as the degree of
the locus of tangency of F with a general linear subspace Pn�rF � Pn. By Paragraph 11,
a codimension q foliation on Pn of degree d is given by a twisted q-form

! 2 H 0.Pn; �qPn.q C d C 1//:

One easily checks that
deg.F / D deg.KF /C rF :

24 ([14, Théorème 3.8]). A codimension q foliation of degree 0 on Pn is induced by
a linear projection PnÜ Pq .
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Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds 11

25 ([38, Theorem 6.2]). A codimension q foliation F of degree 1 on Pn satisfies one
of the following conditions:

� F is induced by a dominant rational map PnÜ P .1q; 2/, defined by q linear forms
L1; : : : ; Lq and one quadratic form Q,

� F is the linear pullback of a foliation on PqC1 induced by a global holomorphic vector
field.

In the first case, F is induced by the q-form on CnC1

� D

qX
iD1

.�1/iC1LidL1 ^ � � � ^bdLi ^ � � � ^ dLq ^ dQC .�1/q2QdL1 ^ � � � ^ dLq

D .�1/q

 
nC1X
iDqC1

Lj
àQ
àLi

!
dL1 ^ � � � ^ dLq

C

qX
iD1

nC1X
jDqC1

.�1/iC1Li
àQ
àLj

dL1 ^ � � � ^bdLi ^ � � � ^ dLq ^ dLj ;

where LqC1; : : : ; LnC1 are linear forms such that L1; : : : ; LnC1 are linearly independent. The
singular locus of F is the union of the quadric

¹L1 D � � � D Lq D Q D 0º Š Q
n�q�1

and the linear subspace ²
àQ
àLqC1

D � � � D
àQ
àLnC1

D 0

³
:

In the second case, the singular locus of F is the union of linear subspaces of codimen-
sion at least 2 containing the center Pn�q�2 of the projection.

26 ([5, Proposition 3.18]). A codimension q del Pezzo foliation on a smooth quadric
hypersurface Qn � PnC1 is induced by the restriction of a linear projection PnC1Ü Pq .

3. Codimension 1Mukai foliations on Fano manifolds with � D 1

3.1. Fano manifolds of high index. A Fano manifold X is a complex projective
manifold whose anti-canonical class �KX is ample. The index �X of X is the largest integer
dividing �KX in Pic.X/. By Kobayachi–Ochiai’s theorem ([33]), �X 6 nC 1, equality holds
if and only if X Š Pn, and �X D n if and only if X Š Qn � PnC1.

Fano manifolds with �X D dimX � 1 were classified by Fujita in [18,19,21]. Those with
Picard number 1 are isomorphic to one of the following:

(1) a cubic hypersurface in PnC1.

(2) an intersection of two hyperquadrics in PnC2.

(3) a linear section of the Grassmannian G.2; 5/ � P9 under the Plücker embedding.

(4) a hypersurface of degree 4 in the weighted projective space P .2; 1; : : : ; 1/.

(5) a hypersurface of degree 6 in the weighted projective space P .3; 2; 1; : : : ; 1/.
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12 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

A Fano manifold X such that .dimX � 1/ divides �X is called a del Pezzo manifold. In this
case, either X Š P3, or �X D dimX � 1.

Fano manifolds with �X D dimX � 2 are called Mukai manifolds. Their classification
was first announced in [40]. We do not include it here. Instead, we refer to [2, Theorem 7] for
the full list of Mukai manifolds with Picard number 1, and state below the property that we
need. This property can be checked directly for each Mukai manifold in the list.

Remark 27. Let X be a Mukai manifold with �.X/ D 1 and dimX > 4. Denote by L
the ample generator of Pic.X/. Then X is covered by rational curves having degree 1 with
respect to L .

If a complex projective manifold X with �.X/ D 1 admits a Fano foliation F , then X
is a Fano manifold with index �X > �F by Theorem 19. When �F is high, we can improve
this bound.

Lemma 28. Let X be an n-dimensional Fano manifold with Picard number 1, n > 4,
and let F be a Fano foliation on X . Suppose that �F > n � 3. Then �X > �F C 2.

Proof. By Theorem 3, we have that �F 6 rF , and equality holds only if X Š Pn.
If �F D rF � 1 D n � 2, then either X Š Pn or X Š Qn � PnC1 by Theorem 4. In all these
cases, �X > �F C 2. So we may assume from now on that �F D n � 3 and rF 2 ¹n � 2; n � 1º.

Let L be the ample generator of Pic.X/. Let H be a minimal dominating family of
rational curves onX , and let ` be a general curve parametrized byH . By [13],�KX �` D nC1
if and only if X Š Pn. So we may assume that �KX � ` 6 n. Set � WD L � `.

By [29, Proposition 2], ` is not tangent to F . Hence, by Lemma 21,

�.n � 3/ D �KF � ` 6 �KX � ` � 2 6 n � 2:
If � > 1, then � D 2, n D 4 and �X D 2, contradicting Remark 27. So we conclude that � D 1,
and thus

�X D �KX � ` > �KF � `C 2 D �F C 2:

This completes the proof of the lemma.

3.2. Del Pezzo foliations of codimension 2. When proving Theorem 5, we distinguish
two cases, depending on whether or not the codimension 1 Mukai foliation F contains a codi-
mension 2 del Pezzo subfoliation. The aim of this subsection is to provide a classification
of these.

Theorem 29. Let X be an n-dimensional Fano manifold with �.X/ D 1, n > 4, and
let G be a codimension 2 del Pezzo foliation on X . Then the pair .X;G / satisfies one of the
following conditions:

(1) X Š Pn and G is the pullback under a linear projection of a foliation on P3 induced by
a global vector field.

(2) X Š Pn and G is induced by a rational map PnÜ P .2; 1; 1/ defined by one quadratic
form and two linear forms.

(3) X Š Qn � PnC1 and G is induced by the restriction to the manifold X of a linear
projection PnC1Ü P2.
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Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds 13

Throughout this subsection, we will use the following notation.

Notation. Let X be an n-dimensional Fano manifold with �.X/ D 1 and let L be an
ample line bundle on X such that Pic.X/ D ZŒL �. Given a sheaf of OX -modules E on X and
an integer m, we denote by E .m/ the twisted sheaf E ˝L˝m.

Under the assumptions of Theorem 29, G is defined by a nonzero section

! 2 H 0.X;�2X .�X � nC 3//

as in Paragraph 11. In order to compute these cohomology groups, we will use the knowledge
of several cohomology groups of special Fano manifolds, which we gather below.

30 (Bott’s formulas). Let p; q and k be integers, with p and q non-negative. Then

hp.Pn; �qPn.k// D

8̂̂̂̂
<̂
ˆ̂̂:

�kCn�q
k

��
k�1
q

�
for p D 0; 0 6 q 6 n and k > q;

1 for k D 0 and 0 6 p D q 6 n;�
�kCq
�k

��
�k�1
n�q

�
for p D n; 0 6 q 6 n and k < q � n;

0 otherwise.

31 ([17, Satz 8.11]). Suppose X is a smooth n-dimensional complete intersection in
a weighted projective space. Then

(1) hq.X;�qX / D 1 for 0 6 q 6 n, q ¤ n
2

.

(2) hp.X;�qX .t// D 0 in the following cases:
� 0 < p < n, p C q ¤ n and either p ¤ q or t ¤ 0,
� p C q > n and t > q � p,
� p C q < n and t < q � p.

32 ([6, Theorem 1.1]). Let X be an n-dimensional Fano manifold with �.X/ D 1.
Then h0.X;�qX .�X � nC q// D 0 unless X Š Pn, or X Š Qn and q D n. In particular for
a smooth hyperquadric Q D Qn � PnC1, n > 3, we have h0.Q;�2Q.2// D 0.

33 ([3, Lemma 4.5]). Let X � PnC1 be a smooth hypersurface of degree d > 3. Sup-
pose that q > 1 and t 6 q 6 n � 2. Then h0.X;�qX .t// D 0.

34. Let Y be an n-dimensional Fano manifold with �.Y / D 1, and let X 2 jOY .d/j be
a smooth divisor. The following exact sequences will be used to relate foliations on X with
foliations on Y :

0! �
q
Y .t � d/! �

q
Y .t/! �

q
Y .t/jX ! 0;(3.1)

0! �
q�1
X .t � d/! �

q
Y .t/jX ! �

q
X .t/! 0:(3.2)

By [41, Lemma 1.2], if hp.Y;�q�1Y / ¤ 0 and p C q � 1 < n, then the map in cohomology
induced by the exact sequence (3.2) (with t D d )

Hp.X;�
q�1
X /! Hp.X;�

q
Y .d/jX /

is nonzero.
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14 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

35. Let a0; : : : ; an be positive integers such that gcd.a0; : : : ; Oai ; : : : ; an/ D 1 for every
i 2 ¹0; : : : ; nº. Denote by S D S.a0; : : : ; an/ the polynomial ring CŒx0; : : : ; xn� graded by
deg xi D ai , and by P WD P .a0; : : : ; an/ the weighted projective space Proj.S.a0; : : : ; an//.
For each t 2 Z, let OP .t/ be the OP -module associated to the graded S -module S.t/.

Consider the sheaves of OP -modules �
q

P .t/ defined in [15, 2.1.5] for q; t 2 Z, q > 0.
If U � P denotes the smooth locus of P , and OU .t/ is the line bundle obtained by restricting
OP .t/ to U , then

�
q

P .t/jU D �
q
U ˝ OU .t/:

The cohomology groups Hp.P ; �
q

P .t// are described in [15, 2.3.2]. We need the following:

� for J � ¹0; : : : ; nº and aJ WD
P
i2J ai ,

h0.P ; �
q

P .t// D

qX
iD0

�
.�1/iCq

X
#JDi

dimC.St�aJ
/

�
;

� hp.P ; �
q

P .t// D 0 if p 62 ¹0; q; nº.

Now suppose that P has only isolated singularities, let d > 0 be such that OP .d/ is
a line bundle generated by global sections, and let X 2 jOP .d/j be a smooth hypersurface.
We will use the cohomology groups Hp.P ; �

q

P .t// to compute some cohomology groups
Hp.X;�

q
X .t//. Note that X is contained in the smooth locus of P , so we have an exact

sequence as in (3.2):

(3.3) 0! �
q�1
X .t � d/! �

q

P .t/jX ! �
q
X .t/! 0:

Tensoring the sequence
0! OP .�d/! OP ! OX ! 0

with the sheaf �
q

P .t/, and noting that

�
q

P .t/˝ OP .�d/ Š �
q

P .t � d/;

we get an exact sequence as in (3.1):

(3.4) 0! �
q

P .t � d/! �
q

P .t/! �
q

P .t/jX ! 0:

Proof of Theorem 29. By Lemma 28, �X > n � 1. Recall the classification of Fano
manifolds of high index discussed in Section 3.1. We will go through the manifolds in that
list, and determine all codimension 2 del Pezzo foliations on them.

Suppose first that X Š Pn. Then G is a codimension 2 foliation of degree 1 on Pn. Such
foliations are described in Paragraph 25.

Suppose that X is a smooth hyperquadric Q D Qn � PnC1. Codimension 2 del Pezzo
foliation on Qn are described in Paragraph 26.

From now on we suppose that �X D n � 1. We consider the five possibilities for X
described in Section 3.1. If we show that h0.X;�2X .2// D 0, then it follows from Paragraph 11
that X does not admit del Pezzo foliations of codimension 2.

(1) X is a cubic hypersurface in PnC1. The vanishing h0.X;�2X .2// D 0 follows from
Paragraph 33 above.
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(2) X is the intersection of two hyperquadrics in PnC2. Let Q and Q0 be smooth hyper-
quadrics in PnC2 such that X D Q \Q0. Consider the exact sequences of Paragraph 34
for Y D Q, d D 2, q D 2 and t D 2. They induce maps of cohomology groups:

H 0.Q;�2Q.2//! H 0.X;�2Q.2/jX /! H 0.X;�2X .2//:

We will show that the composed map H 0.Q;�2Q.2//! H 0.X;�2X .2// is surjective. Since
h0.Q;�2Q.2// D 0 by Paragraph 32, the required vanishing

h0.X;�2X .2// D 0

will follow.
Surjectivity of the first map

H 0.Q;�2Q.2//! H 0.X;�2Q.2/jX /

follows from the vanishing of H 1.Q;�2Q/ granted by Paragraph 31. To prove surjectivity of
the second map, we consider the long exact sequence in cohomology associated to the sequence
in (3.2). By Paragraph 31, H 1.Q;�1Q/ Š C. So, as we noted in Paragraph 34 above, the map

H 1.X;�1X /! H 1.X;�2Q.2/jX /

is nonzero. Since H 1.X;�1X / Š C by Paragraph 31, we conclude that the map

H 1.X;�1X /! H 1.X;�2Q.2/jX /

is injective, and thus the map

H 0.X;�2Q.2/jX /! H 0.X;�2X .2//

is surjective.
(3) X is a linear section of the Grassmannian G.2; 5/ � P9 of codimension c 6 2.

We will show that X does not admit del Pezzo foliations of codimension 2. By Paragraphs 14
and 32, it is enough to prove this in the case c D 2.

By [19, Theorem 10.26], X can be described as follows. There is a plane P2 Š P � X
such that the blowup f W Y ! X of X along P admits a morphism g W Y ! P4. Moreover,
g is the blowup of P4 along a rational normal curve C of degree 3 contained in an hyperplane
H � P4. Denote by E and F the exceptional loci of f and g, respectively. Then q.E/ D H ,
f �OX .1/ Š g

�OP4.2/˝ OY .�F /, and g�OP4.1/ Š OY .E C F /.
Suppose that X admits a codimension 2 del Pezzo foliation G , which is defined by

a twisted 2-form ! 2 H 0.X;�2X .2//. Then ! induces a twisted 2-form

˛ 2 H 0.Y;�2Y ˝ f
�OX .2// Š H

0.Y;�2Y ˝ g
�OP4.4/˝ OY .�2F //:

The restriction of ˛ to Y n F induces a twisted 2-form

Q̨ 2 H 0.P4; �2P4.4//

vanishing along C . Denote by QG the foliation on P4 induced by Q̨ . There are two possibilities:

� Q̨ vanishes along H , and hence QG is a degree 0 foliation on P4,

� QG is a degree 1 foliation on P4 containing C in its singular locus.
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16 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

In the first case, ˛ vanishes along E, and thus

˛ 2 H 0.Y;�2Y ˝ f
�OX .2/˝ OY .�E// Š H

0.Y;�2Y ˝ g
�OP4.3/˝ OY .�F //:

Therefore C must be tangent to QG , which is impossible since QG is induced by a linear projec-
tion P4Ü P2.

To see that the second case cannot occur either, recall the description of the two types
of codimension 2 degree 1 foliations on P4 from Paragraph 25. In all these foliations, any
irreducible component of the singular locus is either a linear subspace of dimension at most 2,
or a conic. This proves the claim.

(4)–(5) X is a hypersurface of degree 4 in the weighted projective space P .2; 1; : : : ; 1/
or a hypersurface of degree 6 in the weighted projective space P .3; 2; 1; : : : ; 1/. Consider the
exact sequences of Paragraph 35 for P WD P .2; 1; : : : ; 1/, d D 4, q D 2 and t D 2 (respec-
tively P WD P .3; 2; 1; : : : ; 1/, d D 6, q D 2 and t D 2). They induce maps of cohomology
groups:

H 0.P ; �
2

P .2//! H 0.X;�
2

P .2/jX /! H 0.X;�2X .2//:

We will show that the composed map

H 0.P ; �
2

P .2//! H 0.X;�2X .2//

is surjective. Since h0.P ; �
2

P .2// D 0 by Dolgachev’s formulas described in Paragraph 35,
the required vanishing h0.X;�2X .2// D 0 follows.

Surjectivity of the first map

H 0.P ; �
2

P .2//! H 0.X;�
2

P .2/jX /

follows from the vanishing of H 1.P ; �
2

P .2 � d//, granted by Dolgachev’s formulas. Surjec-
tivity of the second map

H 0.X;�
2

P .2/jX /! H 0.X;�2X .2//

follows from the vanishing of H 1.X;�1X .2 � d//, granted by Paragraph 31.

3.3. Proof of Theorem 5. The next result is a slight variation of [38, Proposition 3.5].

Lemma 36. Let X be a Fano manifold with �.X/ D 1, and let F be a codimension 1
Fano foliation onX . Suppose that for each proper Fano subfoliation G ¨ F , we have �G < �F .
Then F is induced by a dominant rational map of the form

' D .s
˝m1

1 W s
˝m2

2 / W XÜ P1;

where m1 and m2 are relatively prime positive integers, and s1 and s2 are sections of two line
bundles L1 and L2 such that L˝m1

1 Š L˝m2

2 , and L1 ˝L2 Š OX .�KX CKF /.

Proof. By [3, Proposition 7.5], F is algebraically integrable. Let ' W XÜ C be a rati-
onal first integral, where C is a normal complete curve, and ' has irreducible general fibers.
As X is rationally connected, we have C Š P1. From [38, Theorem 3.3] and [4, Lemma 5.4],
we conclude that any fiber of ' is irreducible and that ' has at most two multiple fibers. The
proof of [38, Proposition 3.5] then shows that ' satisfies the conclusion of the lemma.
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To prove Theorem 5, let F be a codimension 1 Mukai foliation on an n-dimensional
complex projective manifold X 6Š Pn with �.X/ D 1, and n > 4. Denote by L the ample
generator of Pic.X/.

Suppose first that F satisfies the conclusion of Lemma 36. Then there are positive inte-
gers � and a > b such that a and b are relatively prime, �.aCb/ D �X � �F , and F is induced
by a pencil of hypersurfaces generated by b �F and a �G, where F 2 jL˝�aj andG 2 jL˝�bj.

If X Š Qn � PnC1, then a D 2 and b D 1. Thus F is cut out by a pencil of hyper-
quadrics of PnC1 containing a double hyperplane.

If X is a del Pezzo manifold, then a D b D 1, and F is induced by a pencil in jL j.
From now on, we assume that there exists a Fano subfoliation G ¨ F with the property

that �G > �F D n � 3. By Theorem 3, �G D n � 3, and rG D n � 2, i.e., G is a codimension 2
del Pezzo foliation on X . By Theorem 29, X Š Qn � PnC1, and G is induced by the restric-
tion to Qn of a linear projection ' W PnC1Ü P2. By (2.2), F is the pullback via 'jQn of
a foliation on P2 induced by a global vector field. This completes the proof of Theorem 5.

4. Codimension 1Mukai foliations on manifolds with � > 1

In this section we prove Theorem 8. Our setup is the following.

Assumptions 37. Let X be an n-dimensional complex projective manifold with Picard
number �.X/ > 1, and let F be a codimension 1 Mukai foliation on X (n > 4). Let L be an
ample divisor on X such that �KF � .n � 3/L, and set L WD OX .L/.

Under Assumptions 37, Theorem 19 implies that KX C .n � 3/L is not nef. Smooth
polarized varieties .X;L/ satisfying this condition have been classified. We explain this classi-
fication in Section 4.1, and then use it in the following subsections to prove Theorem 8.

4.1. Adjunction theory. We will need the following classification of Fano manifolds
with large index with respect to the dimension. For n > 5, the list follows from [42]. The
classification for n D 4 can be found in [30, Table 12.7].

Theorem 38. LetX be an n-dimensional Fano manifold with Picard number �.X/ > 1,
and n > 4. Let L be an ample line bundle such that OX .�KX / Š L˝�X .

� If �X D n � 1, then n D 4 and

.X;L / Š .P2 � P2;OP2.1/�OP2.1//:

� If �X D n � 2, then n 2 ¹4; 5; 6º.

(1) If n D 6, then
.X;L / Š .P3 � P3;OP3.1/�OP3.1//:

(2) If n D 5, then one of the following holds:

(a) .X;L / Š .P2 �Q3;OP2.1/�OQ3.1//.
(b) .X;L / Š .PP3.TP3/;OP.TP3 /.1//.

(c) .X;L / Š .PP3.OP3.2/˚OP3.1/˚2/;OP.OP3 .2/˚OP3 .1/˚2/.1//.
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18 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

(3) If n D 4, then X is isomorphic to one of the following:

(a) P1 � Y , where Y is a Fano 3-fold with index 2, or Y Š P3.
(b) a double cover of P2 � P2 branched along a divisor of bidegree .2; 2/.
(c) a divisor of P2 � P3 of bidegree .1; 2/.
(d) an intersection of two divisors of bidegree .1; 1/ on P3 � P3.
(e) a divisor of P2 �Q3 of bidegree .1; 1/.
(f) the blowup of Q4 along a conic C which is not contained in a plane in Q4.
(g) PP3.E /, where E is the null-correlation bundle on P3.
(h) the blowup of Q4 along a line.
(i) PQ3.OQ3.�1/˚ OQ3/.
(j) PP3.OP3.�1/˚ OP3.1//.

39 (Nef values). Let X be a Q-factorial terminal n-dimensional projective variety, and
let L be an ample Q-divisor on X . The nef value of L is defined as

�.L/ WD min¹t > 0 W KX C tL is nefº:

It is a rational number by the Rationality Theorem ([35, Theorem 3.5]). By the Basepoint
Free Theorem ([35, Theorem 3.7.3]), for m sufficiently large and divisible, the linear system
jm.KX C �.L/L/j defines a morphism 'L W X ! X 0 with connected fibers onto a normal
variety. We refer to 'L as the nef value morphism of the polarized variety .X;L/.

The next theorem summarizes the classification of smooth polarized varieties .X;L/ such
that KX C .n � 3/L is not nef, i.e., �.L/ > n � 3.

Theorem 40. Let .X;L/ be an n-dimensional smooth polarized variety, with �.X/ > 1
and n > 4. Set L WD OX .L/. Suppose that �.L/ > n � 3. Then �.L/ 2 ¹n � 2; n � 1; nº,
unless .n; �.L// 2 ¹.5; 5

2
/; .4; 3

2
/; .4; 4

3
/º.

(1) Suppose that �.L/ D n. Then 'L makes X a Pn�1-bundle over a smooth curve C , and
for a general fiber F Š Pn�1 of 'L, LjF Š OPn�1.1/.

(2) Suppose that �.L/ D n � 1. Then .X;L / satisfies one of the following conditions:

(a) .X;L / Š .P2 � P2;OP2.1/�OP2.1//.

(b) 'L makes X a quadric bundle over a smooth curve C , and for a general fiber
F Š Qn�1 of 'L, LjF Š OQn�1.1/.

(c) 'L makes X a Pn�2-bundle over a smooth surface S , and for a general fiber
F Š Pn�2 of 'L, LjF Š OPn�2.1/.

(d) 'L is the blowup of a smooth projective variety at finitely many points, and for any
component E Š Pn�1 of the exceptional locus of 'L, LjE Š OPn�1.1/.

(3) Suppose that �.L/ D n � 2. Then .X;L / satisfies one of the following conditions.

(a) �KX � .n � 2/L, and .X;L / is as in Theorem 38.

(b) 'L makes X a generic del Pezzo fibration over a smooth curve C , and for a general
fiberF of 'L, either Pic.F / D ZŒLjF � or .F;LjF / Š .P2�P2;OP2.1/�OP2.1//.
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(c) 'L makes X a generic quadric bundle over a normal surface S , and for a general
fiber F Š Qn�2 of 'L, LjF Š OQn�2.1/.

(d) 'L makes X a generic Pn�3-bundle over a normal 3-fold Y , and for a general fiber
F Š Pn�3 of 'L, LjF Š OPn�3.1/.

(e) 'L W X ! X 0 is the composition of finitely many disjoint divisorial contractions.
In particular, X 0 is Q-factorial and terminal (see Proposition 41 below for the
description of the possible divisorial contractions).

(4) Suppose that nD 5 and �.L/D 5
2

. Then 'L makesX a P4-bundle over a smooth curveC
and for a general fiber F Š P4 of 'L, LjF Š OP4.2/.

(5) Suppose that n D 4 and �.L/ D 3
2

. Then .X;L / satisfies one of the following conditions:

(a) .X;L / Š .P2 � P2;OP2.2/�OP2.2//.

(b) 'L makes X a generic quadric bundle over a smooth curve C , and for a general
fiber F Š Q3 of 'L, LjF Š OQ3.2/.

(c) 'L makes X a generic P2-bundle over a normal surface S , and for a general fiber
F Š P2 of 'L, LjF Š OP2.2/.

(6) Suppose that n D 4 and �.L/ D 4
3

. Then 'L makes X a P3-bundle over a smooth
curve C , and for a general fiber F Š P3 of 'L, LjF Š OP3.3/.

Proof. The main references for the proof of Theorem 40 are [7, Chapter 7] and [1].
By [7, Proposition 7.2.2, Theorems 7.2.3 and 7.2.4], either �.L/ D n and .X;L/ is as

in (1) above, or �.L/ 6 n � 1.
Suppose that �.L/ 6 n � 1. By [7, Theorems 7.3.2 and 7.3.4], one of the following holds:

(2a) �KX � .n � 1/L, and hence .X;L / Š .P2 � P2;OP2.1/�OP2.1// by Theorem 38.

(2b) 'L makes X a generic quadric bundle over a smooth curve C , and for a general fiber
F Š Qn�1 of 'L, LjF Š OQn�1.1/.

(2c) 'L makes X a generic Pn�2-bundle over a normal surface S , and for a general fiber
F Š Pn�2 of 'L, LjF Š OPn�2.1/.

(2d) 'L is the blowup of a smooth projective variety at finitely many points, and for any
component E Š Pn�1 of the exceptional locus of 'L, LjE Š OPn�1.1/.

(e) �.L/ 6 n � 2.

In case (2b), it follows from [1, Theorem 5.1] that X is in fact a quadric bundle over C . In
case (2c), it follows from [1, Theorem 5.1] that S is smooth and X is in fact a Pn�2-bundle
over S .

If �.L/ D n � 2, the classification under (3) follows from [7, Theorem 7.5.3].
If �.L/ < n � 2, then, by [7, Theorems 7.7.2, 7.7.3, 7.7.5 and 7.7.8]

.n; �.L// 2

²�
5;
5

2

�
;

�
4;
3

2

�
;

�
4;
4

3

�³
and .X;L/ is as in (4)–(6) above.

We will also need the following result.
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Proposition 41 ([7, Theorems 7.5.3, 7.5.6, 7.7.2, 7.7.3, 7.7.5 and 7.7.8]). Let .X;L/ be
an n-dimensional smooth polarized variety, with n > 4. Suppose that �.L/ D n � 2, and the
nef value morphism 'L W X ! X 0 is birational. Then 'L is the composition of finitely many dis-
joint divisorial contractions 'i W X ! Xi , with exceptional divisor Ei , of the following types:

� 'i W X ! Xi is the blowup of a smooth curve Ci � Xi . In this caseXi is smooth and the
restriction of L to a fiber F Š Pn�2 of .'i /jEi

W Ei ! Ci satisfies LjF Š OPn�2.1/.
� .Ei ;NEi=X ;LjEi

/ Š .Pn�1;OPn�1.�2/;OPn�1.1//. In this case Xi is 2-factorial. In
even dimension it is Gorenstein.

� .Ei ;NEi=X ;LjEi
/ Š .Qn�1;OQn�1.�1/;OQn�1.1//. In this case Xi is singular and

factorial.

Set L0 WD .'L/�.L/. Then KX 0 C .n � 3/L0 is nef except in the following cases:

(1) n D 6 and .X 0;OX 0.L0// Š .P6;OP6.2//.

(2) n D 5 and one of the following holds:

(a) .X 0;OX 0.L0// Š .Q5;OQ5.2//.
(b) X 0 is a P4-bundle over a smooth curve, and the restriction of OX 0.L

0/ to a general
fiber is OP4.2/.

(c) .X;OX .L// Š .PP4.OP4.3/˚ OP4.1//;OP .1//.

(3) n D 4 and one of the following holds:

(a) .X 0;OX 0.L0// Š .P4;OP4.3//.
(b) X 0 is a Gorenstein del Pezzo 4-fold and 3L0 �Q �2KX 0 .
(c) 'L0 makes X 0 a generic quadric bundle over a smooth curve C , and for a general

fiber F Š Q3 of 'L0 , OF .L
0
jF
/ Š OQ3.2/.

(d) 'L0 makes X 0 a generic P2-bundle over a normal surface S , and for a general fiber
F Š P2 of 'L0 , OF .L

0
jF
/ Š OP2.2/.

(e) .X 0;OX 0.L0// Š .Q4;OQ4.3//.

(f) 'L W X ! X 0 factors through QX , the blowup of P4 along a cubic surface contained
in a hyperplane E � P4. Denote by QE � QX the strict transform of E, and by QL the
push-forward of L to QX . Then N QE= QX Š OP3.�2/, O QE .

QL
j QE
/ Š OP3.1/, and only

QE is contracted by QX ! X 0.
(g) 'L W X ! X 0 factors through QX , a conic bundle over P3. Denote by QL the push-

forward of L to QX . The morphism QX ! X 0 only contracts a subvariety QE Š P3

such that N QE= QX Š OP3.�2/ and O QE .
QL
j QE
/ Š OP3.1/.

(h) 'L0 makes X 0 a P3-bundle over a smooth curve C , and for a general fiber F Š P3

of 'L0 , OF .L
0
jF
/ Š OP3.3/.

(i) .X 0;OX 0.L0// Š .P4;OP4.4//.
(j) X 0 � P10 is a cone over .P3;OP3.2// and L0 �Q 2H , where H denotes a hyper-

plane section in P10.

Remark 42. In [7, Theorems 7.5.3], the description of the first type of divisorial con-
traction is as follows: Xi is smooth, and 'i W X ! Xi contracts a smooth divisor Ei � X onto
a smooth curve Ci � Xi . By [39, Theorem 2], 'i is a smooth blowup.
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4.2. Codimension 1 Mukai foliations on projective space bundles over curves. In
this subsection, we work under Assumptions 37, supposing moreover that �.L/ D n, and thus
'L makes X a Pn�1-bundle over a smooth curve C . We start with the following observation,
which is a special case of Proposition 23.

Proposition 43. Let F be a codimension 1 Fano foliation on a smooth projective
variety X . Then F is not the relative tangent sheaf of any surjective morphism � W X ! C

onto a smooth curve.

As a consequence of Proposition 43, H WD TX=C \F is a codimension 2 foliation
on X . The restriction of H to the general fiber F Š Pn�1 of 'L inherits positivity of F ,
which allows us to describe it explicitly. In order to do so, we recall the description of families
of degree 0 foliations on projective spaces from [3, 7.8].

44 (Families of degree 0 foliations on Pm). Let Y be a positive-dimensional smooth
projective variety, and let E be a locally free sheaf of rank mC 1 > 2 on Y . Set X WD PY .E /,
denote by OX .1/ the tautological line bundle on X , by � W X ! Y the natural projection, and
by F Š Pm a general fiber of � . Let H ¨ TX=Y be a foliation of rank r 6 m � 1 on X , and
suppose that H jF Š OPm.1/˚r � TPm .

Let V � be the saturation of ��.H ˝ OX .�1// in E � Š ��.TX=Y ˝ OX .�1//, and
set V WD .V �/�. Then

H Š .��V �/˝ OX .1/:

In particular, det.H / Š �� det.V �/˝ OX .r/.
The description of H jF as the relative tangent sheaf of a linear projection PmÜ Pm�r

globalizes as follows. Let K be the (rank mC 1 � r) kernel of the dual map E ! V . Then
there exists an open subset Y ı � Y , with codimY .Y n Y ı/ > 2, over which we have an exact
sequence of vector bundles

0! K jY ı ! E jY ı ! V jY ı ! 0:

This induces a relative linear projection ' W PY ı.E jY ı/Ü PY ı.K jY ı/ DW Z, which restricts
to a smooth morphism 'ı W Xı ! Z, where Xı � X is an open subset with the property that
codimX .X nXı/ > 2. The restriction of H to Xı is precisely TXı=Z .

Proposition 45. Let X , F , L and L be as in Assumptions 37. Suppose that �.L/ D n,
and thus 'L makes X a Pn�1-bundle over a smooth curve C . Set E WD .'L/�L , so that
X Š PC .E /. Then one of the following holds:

(1) C Š P1, F is algebraically integrable, and its restriction to a general fiber is induced
by a pencil of hyperquadrics in Pn�1 containing a double hyperplane.

(2) There exist
� an exact sequence

0! K ! E ! V ! 0

of vector bundles on C , with rank.K / D 3,
� a rank 2 foliation G on PC .K /, generically transverse to the natural projection
p W PC .K /! C , satisfying det.G / Š p�.det.V // and raG > 1,
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such that F is the pullback of G via the induced relative linear projection

PC .E /Ü PC .K /:

In this case, raF > rF � 1.

(3) There exist
� an exact sequence

0! K ! E ! V ! 0

of vector bundles on C , with rank.K / D 2,
� a foliation by curves G on PC .K /, generically transverse to the natural projection
p W PC .K /! C , and satisfying G Š p�.det.V //˝ OP.K /.�1/,

such that F is the pullback of G via the induced relative linear projection

PC .E /Ü PC .K /:

In this case, raF > rF � 1.

Proof. By Proposition 43, F ¤ TX=C . So H WD F \ TX=C is a codimension 2 folia-
tion on X . Set Q WD .F=H /��. It is an invertible subsheaf of .'L/�TC , and we have

(4.1) det.H / Š det.F /˝Q�:

We want to describe the codimension 1 foliation HF obtained by restricting H to a gen-
eral fiber F Š Pn�1 of 'L. By Paragraph 14, there exists a non-negative integer b such that

�KHF
D .n � 3C b/H;

where H denotes a hyperplane in F Š Pn�1. By Theorem 3, we must have b 2 ¹0; 1º.
First we suppose that bD 0, i.e., HF is a degree 1 foliation on Pn�1. Then QjF ŠOPn�1

and thus Q Š .'L/
�C for some line bundle C � TC on C . Recall that there are two types of

codimension 1 degree 1 foliations on Pn�1:

(i) HF is induced by pencil of hyperquadrics containing a double hyperplane,

(ii) HF is the linear pullback of a foliation on P2 induced by a global holomorphic vector
field.

Suppose that we are in case (i). Then H is algebraically integrable, and its general
log leaf is .Qn�2;H/, where Qn�2 � F Š Pn�1 is an irreducible (possibly singular) hyper-
quadric, and H is a hyperplane section. Note that .Qn�2;H/ is log canonical, unless Qn�2 is
a cone over a conic curve andH is a tangent hyperplane through the .n�4/-dimensional vertex.
The latter situation falls under case (ii), treated below. So we may assume that the general log
leaf of H is log canonical. By Proposition 23, det.H / cannot be ample. By (4.1), we must
have deg.C / > 0, and hence C Š P1.

Next we show that F is algebraically integrable. It then follows that we are in case (1)
in the statement of Proposition 45. Since H is algebraically integrable, there is a smooth
surface S with a generic P1-bundle structure p W S ! P1, and a rational map  W XÜ S

over P1 inducing H . By Paragraph 12, F is the pullback via  of a rank 1 foliation G on S .
Moreover, there is an inclusion p�C � G . It follows from Theorem 17 that the leaves of G are
algebraic, and so are the leaves of F .
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Suppose that we are in case (ii). Then there exists a codimension 3 foliation W �H
whose restriction to F Š Pn�1 is a degree 0 foliation on Pn�1. By Paragraph 44, there exists
an exact sequence of vector bundles on C

0! K ! E ! V ! 0;

with rank.K / D 3, such that W Š ..'L/
�V �/˝L is the tangent sheaf to the relative linear

projection ' W X Š PC .E /Ü PC .K /. Denote by p W PC .K /! C the natural projection.
By (2.2), there is a codimension 1 foliation G on PC .K / such that F is the pullback of G
via ', and det.G / Š p�.det.V //. Note that det.V / is an ample line bundle on C . Thus, apply-
ing Theorem 17 to a suitable destabilizing subsheaf of G , we conclude that raG > 1. We are in
case (2) in the statement of Proposition 45.

From now on we assume that b D 1, i.e., HF is a degree 0 foliation on Pn�1. By Para-
graph 44, there exists an exact sequence of vector bundles on C

0! K ! E ! V ! 0;

with rank.K / D 2, such that H Š ..'L/
�V �/˝L is the tangent sheaf to the relative linear

projection ' W X Š PC .E /Ü PC .K /. Denote by p W PC .K /! C the natural projection.
By (2.2), there is a foliation by curves on PC .K /

G Š p�.det.V //˝ OP.K /.�1/ ,! TP.K /

such that F is the pullback of G via '. We are in case (3) in the statement of Proposition 45.

We describe the codimension 1 foliations on PC .K / that appear in Proposition 45 (2).

Proposition 46. Let K be a rank 3 vector bundle on a smooth complete curve C , and
set Y WD PC .K /, with natural projection p W Y ! C . Let G be a rank 2 foliation on Y , gener-
ically transverse to p W Y ! C , and satisfying det.G / Š p�A for some ample line bundle A
on C . Then one of the following holds:

(1) There exist
� an exact sequence

0! K1 ! K ! B ! 0

of vector bundles on C , with rank.K1/ D 2,
� a rank 1 foliation N on PC .K1/, generically transverse to the natural projection
p1 W PC .K1/! C , and satisfying N Š p�1 .A ˝B/˝ OP.K1/.�1/,

such that G is the pullback of N via the induced relative linear projection

Y D PC .K /Ü PC .K1/:

(2) There exist
� a P1-bundle q W S ! C ,
� a rational map  W Y Ü S over C whose restriction to a general fiber F Š P2 of p

is given by a pencil of conics containing a double line,
� a rank 1 foliation N on S , generically transverse to q W S ! C , and satisfying

N Š q�.TC .�B// for some effective divisor B on C ,

such that G is the pullback of N via  . Moreover, the set of critical values of  is
invariant by N .
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(3) C Š P1, and there exist
� a rational map  W Y Ü P2, which restricts to an isomorphism on all but possibly

one fiber of p W Y ! C ,
� a rank 1 foliation N on P2 induced by a global vector field,

such that G is the pullback of N via  .

Proof. Consider the rank 1 foliation C WD G \ TY=C ¨ TPC .K /. It induces a rank 1
foliation CF on a general fiber F Š P2 of p. By Paragraph 14, there exists a non-negative
integer b such that

�KCF
D bH;

where H denotes a hyperplane in F Š P2. By Theorem 3, we must have b 2 ¹0; 1º.
First we suppose that b D 1, i.e., CF is a degree 0 foliation on P2. The same argument

used in the last paragraph of the proof of Proposition 45 shows that .K ;G / satisfies condi-
tion (1) in the statement of Proposition 46.

From now on we assume that b D 0, i.e., CF is a degree 1 foliation on P2. It follows
that CjF Š OP2 and there exists an effective divisor B on C such that

C Š p�.A ˝ OC .KC C B//:

We will distinguish two cases, depending on whether or not C is algebraically integrable.
Suppose first that C is algebraically integrable. Then CF is induced by a pencil of

conics containing a double line. We will show that G satisfies condition (2) in the statement of
Proposition 46.

Let S be the space of leaves of C . Then S comes with a natural morphism onto C ,
whose general fiber parametrizes a pencil of conics in F Š P2. We conclude that S ! C

is a P1-bundle.
So C is induced by a rational map  W Y Ü S over C , and the restriction of  to

a general fiber F Š P2 of p,  jF W F Š P2 ! P1, is given by a pencil of conics containing
a double line 2`F . Let R � Y be the closure of the union of the lines `F when F runs through
general fibers of p W Y ! C . Then pjR W R! C is a P1-bundle.

Next we show that R is the singular locus of  . Let F 0 Š P2 be a special fiber of p such
that CjF 0 ,! TF 0 vanishes in codimension 1. Then the foliation CF 0 on F 0 induced by C is
a degree 0 foliation on P2, and the cycle in S corresponding to the leaf ` of CF 0 isR \ F 0 C `.
We conclude that R is the singular locus of  .

By Paragraph 12, there is a foliation by curves N on S such that G is the pullback of N
via  . If  .R/ is not invariant by N , then

 �N Š OPC .K /.R/˝ p
�OC .�KC � B/ D OPC .K /.R/˝  

�.q�OC .�KC � B//

by (2.1). Thus
OPC .K /.R/ Š  

�.N ˝ q�OC .�KC � B//;

yielding a contradiction. Therefore  .R/ is invariant by N . Moreover,

 �N Š p�OC .�KC � B/:

Suppose from now on that C is not algebraically integrable, and hence neither is G .
We will show that G satisfies condition (3) in the statement of Proposition 46.
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Let L be a very ample line bundle on Y . By [3, Proposition 7.5], there exists an alge-
braically integrable subfoliation by curves M � G , M 6� TY=C , such that

M �L 2 > det.G / �L 2 > 1:

Moreover, the general leaf of M is a rational curve. Since M 6� TY=C , the general leaf of M
dominates C , and we conclude that C Š P1.

Next we show that M Š p�OP1.c/, with c 2 ¹1; 2º. Write

M Š OPC .K /.a/˝ p
�OP1.c/

for some integers a and c. First note that, for a general line ` � F , Cj` � Gj` is a subbundle.
Since Cj` Š det.G /j` Š O`, we must have G` Š O` ˚ O`. This implies that a 6 0. Now ob-
serve that, since G is not algebraically integrable, M does not depend on the choice of L .
Therefore

M � .OY .kF /˝L /2 > det.G / � .OY .kF /˝L /2 > 0 for all k > 1.

Thus M � F �L > 0, and hence a > 0. We conclude that a D 0 and M Š p�OP1.c/. Since
M �L 2 > 1, we have c > 1. Since M � p�TP1 , we conclude that c 2 ¹1; 2º.

If c D 2, then M yields a flat connection on p. Hence,

K Š OP1.d/˚ OP1.d/˚ OP1.d/

for some integer d , and M is induced by the projection  W Y Š P1 � P2 ! P2.
Now suppose that c D 1. We may assume that K is of the form

K Š OP1 ˚ OP1.�a1/˚ OP1.�a2/

for some integers a2 > a1 > 0. Let QC � Y be the closure of a general leaf of M . We will
show that QC is a section of p. Suppose to the contrary that QC has degree > 2 over P1. By
[16, Lemme 1.2 and Corollaire 1.3], QC has degree 2 over P1, and M is regular in a neighbor-
hood of QC . In particular, we have N QC=Y Š O QC ˚ O QC . Write QC � 2� C kf , where � is the
section of p corresponding to the surjection K � OP1.�a2/, and f is a line on a fiber of p.
Let E � Y be the divisor corresponding to the surjection K � OP1.�a1/˚ OP1.�a2/, so
that OY .E/ Š OPC .K /.1/. Since the deformations of QC sweep out a dense open subset of Y ,
we must have

(4.2) E � QC D �2a2 C k > 0:

On the other hand, since N QC=Y Š O QC ˚ O QC , we have

(4.3) 0 D deg.N QC=Y / D deg..TY /j QC / � 2 D 2C 2a1 � 4a2 C 3k:

Equations (4.2) and (4.3) together yield a contradiction, proving that QC is a section of p. The
map M Š p�OP1.1/! p�TP1 vanishes exactly along one fiber F0 of p. This implies that
M � TY restricts to a regular foliation (with algebraic leaves) over Y n F0. This foliation is
induced by a smooth morphism  W Y n F0 ! P2, which restricts to an isomorphism on all
fibers F ¤ F0 of p W Y ! P1.

In either case, by Paragraph 12, G is the pullback via  of a rank 1 foliation N on P2.
A straightforward computation shows that N Š OP2 . This completes the proof of the propo-
sition.
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We construct examples of foliations described in Proposition 46 (2).

Example 47. Let C be a smooth complete curve, let A be an ample line bundle on C ,
and let P 2 C . Set

L WD A ˝ OC .KC C P /;

K WD L˝2 ˚L ˚ OC ;

W WD L˝4 ˚L˝2:

Suppose that deg.L / ¤ 0.
Let s be a local frame for L . It induces local frames .k1; k2; k3/ and .w1; w2/ for K

and W , respectively. We view W as a subbundle of Sym2K by mapping w1 to k1 ˝ k1,
and w2 to k2 ˝ k2 � k1 ˝ k3. This gives rise to a rational map  W PC .K /Ü PC .W / such
that  �OPC .W /.1/ Š OPC .K /.2/. Note that the set � of critical values of  is the section of q
corresponding to W D L˝4 ˚L˝2� L˝2.

Denote by q W PC .W /! C the natural morphism. By [3, Lemma 9.5], the inclusion
N WD q�.TC .�P // ,! p�TC lifts to an inclusion � W N ,! TPC .W /. We claim that the
cokernel of � is torsion-free, and thus it defines a foliation on PC .W /. Indeed, if TPC .W /=N is
not torsion-free, then we get an inclusion N � TPC .W / ˝ q

�OC .�P / (see [3, Lemma 9.7]).
Thus p�TC Š N ˝ q�OC .P / � TPC .W /, and the natural exact sequence

0! TPC .W /=C ! TPC .W / ! p�TC ! 0

splits. This implies that K admits a flat projective connection, which is absurd. This proves
the claim. An easy computation shows that deg.!� ˝Nj� / D � deg.A / � deg.L / < 0, and
thus � is invariant under N .

Now set G WD  �1.N /. Then G is a rank 2 foliation on PC .K /, generically transverse
to the natural projection p W PC .K /! C , and satisfies det.G / Š p�A .

Next we construct examples of foliations described in Proposition 45 (3).

Example 48. Let C be a smooth complete curve and let V be an ample vector bundle
of rank n � 2 on C . Let K0 be a vector bundle of rank 2 on C , and suppose that K0 does not
admit a flat projective connection. Choose a sufficiently ample line bundle A on C such that
the following conditions hold:

(1) K WD K0 ˝A is an ample vector bundle,

(2) there is a nowhere vanishing section ˛ 2 H 0.C; TC ˝ det.V �/˝K0 ˝A /,

(3) h1.C; det.V �/˝ Sym3.K0/˝ det.K �
0 /˝A / D 0.

Set S WD PC .K /, denote by p W S ! C the natural projection, and by OS .1/ the tauto-
logical line bundle. The section ˛ from condition (2) yields an inclusion

G WD p�.det.V //˝ OS .�1/ ,! p�TC ;

which does not vanish identically on any fiber of p. Notice that G ˝ OS .B/ Š p
�TC for some

section B of p. By Lemma 50 below, condition (3) implies that the inclusion G ,! p�TC can
be lifted to an inclusion

� W G ,! TS :
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We claim that the cokernel of � is torsion-free, and thus it defines a foliation on S . Indeed,
if TS=G is not torsion-free, then we get an inclusion G � TS .�B/ (see [3, Lemma 9.7]). Thus

p�TC Š G ˝ OS .B/ � TS ;

and the natural exact sequence

0! TS=C ! TS ! p�TC ! 0

splits. This implies that K admits a flat projective connection, contradicting our assumption.
This proves the claim.

Now set E WD V ˚K , X WD PC .E /, denote by � W X ! C the natural projection, and
by OX .1/ the tautological line bundle. Condition (1) above implies that OX .1/ is an ample line
bundle on X . The natural quotient E ! V defines a relative linear projection ' W XÜ S .
Let F be the codimension 1 foliation on X obtained as pullback of G via '. Recall that
TX=S Š �

� det.V �/˝ OX .1/, and thus, by (2.2),

det.F / Š OX .n � 3/;

i.e., F is a codimension 1 Mukai foliation on X .

Remark 49. In Example 48, one can choose the ample line bundle A so that KG is
ample. In this case, the resulting Mukai foliation F presents a behavior very different than all
other cases described in Theorem 8: it is the pullback of a foliation of general type on a surface.

Lemma 50. Let K be a vector bundle of rank 2 on a smooth projective curve C ,
let p W S D PC .K /! C be the corresponding ruled surface, and let OS .1/ be the tauto-
logical line bundle. Let B be a line bundle on C such that there is an inclusion

j W p�B ˝ OS .�1/ ,! p�TC :

If h1.C;B ˝ Sym3.K /˝ det.K �// D 0, then j can be lifted to an inclusion

p�B ˝ OS .�1/ ,! TS :

Proof. Let e be the class inH 1.S; TS=C ˝ p
�!C / corresponding to the exact sequence

0! TS=C ! TS ! p�TC ! 0:

An inclusion of line bundles j W G ,! p�TC extends to an inclusion G ,! TS if and only if
the induced section j �e 2 H 1.S; TS=C ˝ G �/ vanishes identically.

Setting G WD p�B ˝ OS .�1/, we get

H 1.S; TS=C ˝ G �/ D H 1.C; p�.TS=C ˝ OS .1//˝B/:

Since TS=C Š p�.det.K �//˝ OS .2/, this gives

H 1.S; TS=C ˝ G �/ D H 1.C; p�OS .3/˝ det.K �/˝B/

D H 1.C;Sym3.K /˝ det.K �/˝B/:

The latter vanishes by assumption, and thus j W p�B ˝ OS .�1/ ,! p�TC extends to an in-
clusion p�B ˝ OS .�1/ ,! TS .
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4.3. Codimension 1 Mukai foliations on quadric bundles over curves. In this sub-
section, we work under Assumptions 37, supposing moreover that �.L/ D n � 1 and 'L makes
X a quadric bundle over a smooth curve C . This is case (2b) of Theorem 40.

We start with two useful observations.

Remark 51. Let ' W X ! C be a quadric bundle over a smooth curve, with X smooth.
An easy computation shows that the (finitely many) singular fibers of � have only isolated
singularities.

Lemma 52. Let T be a complex variety, and let ' W X ! T be a flat projective
morphism whose fibers are all irreducible and reduced. Let Q be a line bundle on X such
that QjF Š OF for a general fiber F of '. Then there exists a line bundle M on T such
that Q Š '�M .

Proof. Let t 2 T be any point, and denote by Xt the corresponding fiber of '. By the
Semicontinuity Theorem, h0.Xt ;QjXt

/ > 1, and h0.Xt ;Q�jXt
/ > 1. It follows that

QjXt
Š OXt

;

since Xt is irreducible and reduced. By [26, Corollary III.12.9], M WD '�Q is a line bundle
on T , and the evaluation map '�M D '�'�Q! Q is an isomorphism.

Proposition 53. LetX , F and L be as in Assumptions 37. Suppose that �.L/ D n � 1,
and 'L makes X a quadric bundle over a smooth curve C . Then C Š P1, and there exist

� an exact sequence of vector bundles on P1

0! K ! E ! V ! 0;

with rank.E / D nC 1, rank.K / D 2, and natural projections � W PP1.E /! P1 and
q W PP1.K /! P1,

� an integer b and a foliation by rational curves G Š q�.det.V /˝ OP1.b// on PP1.K /,

such that X 2 jOPP1 .E /.2/˝ �
�O.b/j, and F is the pullback of G via the restriction to X of

the relative linear projection PP1.E /Ü PP1.K /. Moreover, one of the following holds:

(1) .E ;K / Š .OP1.a/˚2 ˚ O˚3
P1 ;OP1.a/˚2/ for some integer a > 1 and b D 2.

(2) .E ;K / Š .OP1.a/˚2˚O˚2
P1 ˚OP1.1/;OP1.a/˚2/ for some integer a > 1 and b D 1.

(3) .E ;K /Š .OP1.a/˚2˚OP1˚OP1.1/˚2;OP1.a/˚2/ for some integer a > 1 and b D 0.

(4) K Š OP1.a/˚2 for some integer a, and E is an ample vector bundle of rank 5 or 6
with deg.E / D 2C 2a � b.

(5) K Š OP1.a/˚ OP1.c/ for distinct integers a and c, and E is an ample vector bundle
of rank 5 or 6 with deg.E / D 1C aC c � b.

In particular, n 2 ¹4; 5º and F is algebraically integrable.
Conversely, given K , E and b satisfying any of the conditions (1)–(5), and a smooth

member X 2 jOPP1 .E /.2/˝ �
�OP1.b/j, there exists a codimension 1 Mukai foliation on X

as described above.
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Proof. Denote by F Š Qn�1 � Pn a general (smooth) fiber of 'L, and recall from
Theorem 40 (2b) that LjF Š OQn�1.1/. Set E WD .'L/�L , and denote by � W PC .E /! C

the natural projection. Then X is a divisor of relative degree 2 on PC .E /, that is, we have
X 2 jOPC .E /.2/˝ �

�Bj for some line bundle B on C .
By Proposition 43, F ¤ TX=C . So H WD F \ TX=C is a codimension 2 foliation onX .

Set Q WD .F=H /��. It is an invertible subsheaf of .'L/�TC , and det.H / Š det.F /˝Q�.
Denote by HF the codimension 1 foliation on F Š Qn�1 obtained by restriction of H . By
Paragraph 14, there exists a non-negative integer d such that�KHF

D .n�3Cd/H , whereH
denotes a hyperplane section of Qn�1 � Pn. By Theorem 3, we must have d D 0. Hence:

� HF is induced by a pencil of hyperplane sections on Qn�1 � Pn by Theorem 4. In
particular the general log leaf of H is log canonical.

� det.H /jF Š det.F /jF , and thus Q Š .'L/
�M for some line bundle M � TC by

Lemma 52.

By Proposition 23, det.H / is not ample. Since det.H / Š det.F /˝ .'L/
�.M �/ and

det.F / is ample, the line bundle M has positive degree. Hence C Š P1, B Š OP1.b/ for
some b 2 Z, and deg.M / 2 ¹1; 2º.

The linear span of Sing.HF / in Pn is the base locus of the pencil of hyperplanes in Pn

inducing HF on F Š Qn�1 � Pn. So H is the restriction to X of a foliation QH on PP1.E /
whose restriction to a general fiber of � is a degree 0 foliation on Pn. By Paragraph 44, there
is a sequence of vector bundles on P1,

(4.4) 0! K ! E ! V ! 0;

with rank.K / D 2 and natural projection q W PP1.K /! P1, such that QH is induced by the
relative linear projection Q W PP1.E /Ü PP1.K /. So H is induced by the restriction

 D Q jX W XÜ PP1.K /:

By Remark 51, there is an open subset Xı � X with codimX .X nXı/ > 2 such that

 ı D  jXı W X
ı
! PP1.K /

is a smooth morphism with connected fibers. In particular, we have H Š TX=PP1 .K /, where
TX=PP1 .K / denotes the saturation of TXı=PP1 .K / in TX . By Paragraph 12, F is the pullback
via  of a rank 1 foliation G on PP1.K /. By (2.2), G Š q�M and

L˝n�3 Š det.F / Š det.TX=P.K //˝ .'L/
�M :

Since deg.M / > 0, the leaves of G are rational curves by Theorem 17. A straightforward
computation gives M Š det.V /˝ OP1.b/, and so

(4.5) deg.M / D deg.V /C b 2 ¹1; 2º:

If deg.M / D 2, i.e., if M Š TC , then q�M � TPP1 .K / yields a flat connection on the
natural projection q W PP1.K /! P1. Hence,

PP1.K / Š P1 � P1;

and G is induced by the projection to P1 transversal to q. In this case, K Š OP1.a/˚2

for some integer a. If deg.M / D 1, then one has K Š OP1.a/˚ OP1.c/ for distinct inte-
gers a and c. This can be seen from the explicit description of the Atiyah classes in the proof
of [3, Theorem 9.6].
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By [10, Theorem 4.13], the vector bundle

.'L/�OX .KX=P1 CmL/ Š Sm�nC1E ˝ det.E /˝ OP1.b/

is nef for all m > n � 1. Therefore E is a nef vector bundle on P1, and we write

E Š OP1.a1/˚ � � � ˚ OP1.anC1/;

with 0 6 a1 6 � � � 6 anC1.
First suppose that E is not ample. Let r 2 ¹1; : : : ; nC 1º be the largest positive integer

such that a1 D � � � D ar D 0. Let

$ W PP1.E /! P .H 0.PP1.E /;OPP1 .E /.1//
�/

be the morphism induced by the complete linear system jOPP1 .E /.1/j. If r D nC 1, then

PP1.E / Š P1 � Pn;

and$ is induced by the projection morphism P1 � Pn ! Pn. If r 6 n, then$ is a birational
morphism, and its restriction to the exceptional locus

Exc.$/ D PP1.OP1.a1/˚ � � � ˚ OP1.ar// Š P1 � P r�1

corresponds to the projection P1 � P r�1 ! P r�1. Thus, if Z � PP1.E / is any closed subset,
then OPP1 .E /.1/jZ

is ample if and only if Z does not contain any fiber of

Exc.$/ Š P1 � P r�1 ! P r�1:

Since OPP1 .E /.1/jX
Š L is ample, X does not contain any fiber of

Exc.$/ Š P1 � P r�1 ! P r�1:

Since
.OPP1 .E /.2/˝ �

�OP1.b//jExc.$/ Š OP1.b/� OPr�1.2/

and X 2 jOPP1 .E /.2/˝ �
�OP1.b/j, we must have b > 0 and

(4.6) h0.P1;OP1.b// D b C 1 > r:

If deg.V / D 0, then
V Š O˚.n�1/

P1

and the exact sequence (4.4) splits. This implies that r > n � 1. On the other hand, by (4.5)
and (4.6), r 6 b C 1 6 3. Therefore n D 4, r D 3, b D 2, and deg.M / D 2. This is case (1)
described in the statement of Proposition 53.

If deg.V / > 1, then b 2 ¹0; 1º by (4.5).
Suppose that b D 1. Then deg.V / D 1 by (4.5). Thus

V Š O˚.n�2/
P1 ˚ OP1.1/;

and the exact sequence (4.4) splits. By (4.6), we have n � 2 6 2. This implies n D 4, and
deg.M / D 2. This is case (2) described in the statement of Proposition 53.

Suppose that b D 0. Then we must have r D 1 by (4.6). By (4.5), we have deg.V / 6 2.
On the other hand, deg.V / > a1 C � � � C an�1 > n � 2. Thus n D 4, V Š OP1 ˚ OP1.1/2,
the exact sequence (4.4) splits, and deg.M / D 2. This is case (3) described in the statement
of Proposition 53.
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Suppose from now on that E is an ample vector bundle on P1. Since

deg.V / > a1 C � � � C an�1;

we have b 6 2 � .a1 C � � � C an�1/ by (4.5).
We claim that n 2 ¹4; 5º. Suppose to the contrary that n > 6. Then

h0.P1;OP1.ai C aj C b// D 0

if either 1 6 i; j 6 n � 2, or 1 6 i 6 n � 2 and j D n � 1. This implies that in suitable homo-
geneous coordinates .x1 W � � � W xnC1/, F Š Qn�1 � Pn is given by equation

cn�1x
2
n�1 C xnln.x1; : : : ; xnC1/C xnC1lnC1.x1; : : : ; xnC1/ D 0;

where cn�1 2 C, and ln and lnC1 are linear forms. This contradicts the fact that F is smooth,
and proves the claim. So we are in one of cases (4) and (5) of Proposition 53, depending on
whether deg.M / is 2 or 1, respectively.

Now we proceed to prove the converse statement. Let K , E and b satisfy one of the
conditions (1)–(5) in the statement of Proposition 53, and let X 2 jOPP1 .E /.2/˝ �

�OP1.b/j

be a smooth member. Then, one easily checks that OPP1 .E /.1/jX is an ample line bundle
on X . We shall construct a codimension 1 Mukai foliation F on X such that

OX .�KF / Š OPP1 .E /.1/jX :

First, let V be a vector bundle of rank n � 1 on P1 fitting into an exact sequence of vector
bundles

0! K ! E ! V ! 0;

and consider the induced rational map

Q W PP1.E /Ü PP1.K /:

Let WD Q jX W XÜ PP1.K / be the restriction of Q toX , and let q W PP1.K /! P1 be the
natural projection. By Remark 51, there is an open subset Xı � X with codimX .X nXı/ > 2
such that  ı D  jXı W Xı ! PP1.K / is a smooth morphism with connected fibers. Set

M WD det.V /˝ OP1.b/ � TP1 :

This inclusion lifts to an inclusion of vector bundles q�M � TPP1 .K /. Let F be the pullback
via  of the foliation defined by q�M on PP1.K /. One computes that

OX .�KF / Š OPP1 .E /.1/jX :

Example 54. Set E D OP1.a1/˚ � � � ˚ OP1.a6/, with

1 D a1 D a2 6 a3 6 a4 6 a5 D a6 D a and a3 C a4 6 aC 1:

Set K D OP1.a/˚2 and b D �.a3 C a4/. Then we have that E and b satisfy condition (4)
in Proposition 53. Let �4;4 2 H 0.P1;OP1.2a4Cb//, �2;5 2 H 0.P1;OP1.a2Ca5Cb// and
�1;6 2 H

0.P1;OP1.a1 C a6 C b// be general sections. Then

�4;4 C �2;5 C �1;6 2 H
0.P1; S2E ˝ OP1.b// Š H 0.PP1.E /;OPP1 .E /.2/˝ �

�O.b//

defines a smooth hypersurface X � PP1.E /.
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4.4. Codimension 1Mukai foliations on projective space bundles over surfaces. In
this subsection, we work under Assumptions 37, supposing moreover that �.L/ D n � 1 and
'L makes X a Pn�2-bundle over a smooth surface S . This is case (2c) of Theorem 40.

We start with some easy observations.

Lemma 55. Let C be a smooth proper curve of genus g > 0, and let p W S ! C be
a ruled surface. Suppose that �KS � AC B where A is an ample divisor, and B is effective.
Then g D 0. If moreover B is nonzero and supported on fibers of p, then S Š P1 � P1.

Proof. Let E be a normalized vector bundle on the curve C such that S Š PC .E /,
and set e WD � deg.E /, as in [26, Notation V.2.8.1]. Denote by f a general fiber, and by C0
a minimal section of p W S ! C . Let a and b be integers such that A � aC0 C bf . We have
�KS � 2C0C .2�2gC e/f , and hence a 2 ¹1; 2º, and B � .2�a/C0C .e�2gC2�b/f .
Since B is effective, e � 2g C 2 � b > 0.

We claim that e > 0. Suppose to the contrary that e < 0. By [26, Proposition V.2.21],
we have b > 1

2
ae. Thus

2g � 2 6 e � b < e �
1

2
ae < 0;

and g D 0. But this contradicts [26, Theorem V.2.12], proving the claim.
By [26, Proposition V.2.20], we must have b > ae C 1, and thus

�2 6 2g � 2 6 e � b 6 .1 � a/e � 1 < 0:

This implies g D 0, and b � e 2 ¹1; 2º. If moreover a D 2 and B ¤ 0, then e D 0, completing
the proof of the lemma.

Lemma 56. Let S be a smooth projective surface such that �KS � AC B where A is
ample, and B ¤ 0 is effective. Then either S Š P2, or S is a Hirzebruch surface.

Proof. It is enough to show that either S is minimal, or S Š F1. Suppose otherwise, and
let c W S ! T be a proper birational morphism onto a ruled surface q W T ! C . Set AT WD c�A
and BT WD c�B . Then AT is ample, BT is effective, and �KT � AT C BT . By Lemma 55,
C Š P1 and T Š Fe for some e > 0.

Let p W S ! C be the induced morphism, and denote by f a fiber of p or q. Since c
is not an isomorphism by assumption, A � f > 2. On the other hand, �KS � f D 2, and thus
A � f D �KS � f � B � f 6 2. Hence A � f D AT � f D 2, and B � f D BT � f D 0. These
equalities, together with the fact that AT is ample and �KT � AT C BT , imply that one of
the following holds:

(1) T Š F1 and BT D 0,

(2) T Š P1 � P1 and either BT D 0 or B D f .

Suppose that BT D 0. Intersecting �KS with the (disjoint) curves Ei contracted by c
gives that

A D c�AT �
X
i

Ei D �KS :

But this forces B D 0, contrary to our assumptions.
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So we must have T Š P1�P1 andB D f . Intersecting�KS with the (disjoint) curvesEi
contracted by c gives that A D c�AT �

P
i Ei and B D f . Let ` � T be a fiber of the

projection T Š P1 � P1 ! P1 transversal to q W T ! P1. Then AT � ` D 1. We choose ` to
contain the image of some Ei , and let Q̀ � S be its strict transform. Then A � Q̀ 6 0, contrary to
our assumptions.

We conclude that either S is minimal, or S Š F1.

Proposition 57. LetX , F and L be as in Assumptions 37. Suppose that �.L/ D n � 1,
and 'L makes X a Pn�2-bundle over a smooth surface S . Then there exist

� an exact sequence of sheaves of OS -modules

0! K ! E ! Q! 0;

where K , E , and V WD Q�� are vector bundles on S , E is ample of rank n � 1, and
rank.K / D 2,

� a codimension 1 foliation G on PS .K /, generically transverse to the natural projection
q W PS .K /! S , satisfying det.G / Š q� det.V / and raG > 1,

such that X Š PS .E /, and F is the pullback of G via the induced relative linear projection
PS .E /Ü PS .K /. In this case, raF > rF � 1. Moreover, one of the following holds:

(1) S Š P2, det.V / Š OP2.i/ for some i 2 ¹1; 2; 3º, and 4 6 n 6 3C i .
(2) S is a del Pezzo surface 6Š P2, det.V / Š OS .�KS / , and 4 6 n 6 5.

(3) S Š P1 � P1, det.V / is a line bundle of type .1; 1/, .2; 1/ or .1; 2/, and n D 4.

(4) S Š Fe for some integer e > 1, det.V / Š OFe
.C0 C .e C i/f /, where i 2 ¹1; 2º, C0 is

the minimal section of the natural morphism Fe ! P1, f is a general fiber, and n D 4.

Conversely, given S , K , E , V as above, and a codimension 1 foliation G � TPS .K /

satisfying det.G / Š q� det.V /, the pullback of G via the relative linear projection

X Š PS .E /Ü PS .K /

is a codimension 1 Mukai foliation on X .

Proof. Denote by F Š Pn�2 a general fiber of 'L, and recall from Theorem 40 (2c)
that LjF Š OPn�2.1/. Set E WD .'L/�L . Then E is an ample vector bundle of rank n � 1,
and X Š PS .E /.

We claim that TX=S 6� F . Indeed, if TX=S � F , then F would be the pullback via 'L of
a foliation on S , and so L˝n�3jF Š det.F /jF Š det.TX=S /jF ŠL˝n�1jF by Paragraph 12,
which is absurd. Hence H WD F \ TX=S is a codimension 3 foliation on X . Denote by HF

the codimension 1 foliation on F Š Pn�2 obtained by restriction of H . By Paragraph 14,
there exists a non-negative integer c such that �KHF

D .n � 3C c/H , where H denotes
a hyperplane in Pn�2. By Theorem 3, c D 0, and HF is a degree 0 foliation on F Š Pn�2.

Let K and V be as defined in Paragraph 44. By [27, Corollary 1.4] and [3, Remark 2.3],
K and V are vector bundles on S , and there is an exact sequence

0! K ! E ! Q! 0

with Q�� Š V . The foliation H is induced by the relative linear projection

 W X Š PS .E /Ü PS .K /:
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So, by Paragraph 12, F is the pullback via  of a rank 2 foliation G on PS .K /. There is
an open subset Xı � X with codimX .X nXı/ > 2 such that  ı D  jXı W Xı ! PS .K / is
a smooth morphism with connected fibers. So, by (2.2),

L˝n�3 Š det.F / Š det.TX=PS .K //˝ '
� det.G /;

where TX=PS .K / denotes the saturation of TXı=PS .K / in TX . A straightforward computa-
tion gives det.G / Š q� det.V /, where q W PS .K /! S denotes the natural projection. By
Lemma 58, det.V / is an ample line bundle on S . Thus, applying Theorem 17 to a suitable
destabilizing subsheaf of G , we conclude that raG > 1.

The natural morphism G ! q�TS is injective since TPS .K /=S 6� G . Let q�B be the
divisor of zeroes of the induced map q� det.V / Š det.G /! q� det.TS /.

Suppose first that B D 0. Then det.V / Š OS .�KS /, and hence S is a del Pezzo surface.
If S Š P2, then det.V / Š OP2.3/. Since the restriction of V to a general line on P2 is an
ample vector bundle, it follows that rank.V / 6 3, and hence 4 6 n 6 6. Suppose that S 6Š P2,
and let ` � S be a general free rational curve of minimal anticanonical degree. Then we have
det.V / � ` D �KS � ` D 2. Since Vj` is an ample vector bundle, it follows that rank.V / 6 2,
and hence 4 6 n 6 5.

Suppose now that B ¤ 0. By Lemma 56, either S Š P2, or S is a Hirzebruch surface.
If S Š P2, then det.V / Š OP2.i/, with i 2 ¹1; 2º. As above, we see that rank.V / 6 i , and
hence 4 6 n 6 3C i . If S Š Fe for some e > 0, then a straightforward computation gives that
either det.V / Š OFe

.C0C .eC i/f /, with i 2 ¹1; 2º, or e D 0 and det.V / Š OFe
.2C0Cf /.

In any case, det.V / � ` D 1 for a suitable free rational curve ` � Fe. Since Vj` is an ample
vector bundle, it follows that rank.V / D 1, and hence n D 4.

Conversely, given S , K , E , and V satisfying one the conditions in the statement of
Proposition 57, and a codimension 1 foliation G � TPS .K / satisfying det.G / Š q� det.V /,
a straightforward computation shows that the pullback of G via the relative linear projection

X Š PS .E /Ü PS .K /

is a codimension 1 foliation on X with determinant OPS .E /.n � 3/.

Lemma 58. Let S be a smooth projective surface, let W � S be a closed subscheme
with codimS W > 2, let E be an ample vector bundle on S , and let V be a vector bundle on S
such that there exists a surjective morphism of sheaves of OS -modules E � IW V . Then
det.V / is an ample line bundle.

Proof. Let r be the rank of V . The r-th wedge product of the morphism E � IW V
gives rise to a surjective morphism ^rEjSnSupp.W /� det.V /jSnSupp.W /. It follows that

det.V / � C > 1

for any curve C � S . To conclude that det.V / is ample, it is enough to show that

h0.S; det.V /˝m/ > 1

for some integer m > 1 by the Nakai–Moishezon Criterion.
Set Y WD PS .^rE /. Denote by OY .1/ the tautological line bundle on Y and by q W Y ! S

the natural projection. Let T � Y be the closure of the section of qjSnSupp.W / corresponding
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to ^rEjSnSupp.W /� det.V /jSnSupp.W /. Then

OY .1/jT Š .qjT /
� det.V /˝ OT .E/

for some divisorE � T with Supp.E/ � T \ q�1.Supp.W //. Since OY .1/jT is an ample line
bundle, we must have

h0.S n Supp.W /; det.V /˝mjSnSupp.W // > h0.T n Supp.E/;OY .m/jT nSupp.E//

> h0.T;OY .m/jT /
> 1

for some m > 1, and hence h0.S; det.V /˝m/ > 1.

Our next goal is to classify pairs .K ;G / that appear in Proposition 57. When

det.G / Š q�OS .�KS /;

the situation is easily described as follows. This includes the cases described in Proposi-
tion 57 (1, i D 3) and (2).

Remark 59. Let Z be a simply connected smooth projective variety, and let K be
a rank 2 vector bundle on Z. Set Y WD PZ.K /, with natural projection q W Y ! Z. Denote
by OY .1/ the tautological line bundle on Y . Let G � TY be a codimension 1 foliation on Y
such that G Š q�OZ.�KZ/. Then G � TY induces a flat connection on q. Thus

K ŠM ˚M

for some line bundle M on Z, and G is induced by the natural morphism

PZ.K / Š Z � P1 ! P1:

Suppose now that S Š P2 or Fe, and det.G / 6Š q�OS .�KS /. We will describe K and G
that appear in Proposition 57 by restricting them to special rational curves on S . Our analysis
will rely on the following result.

Lemma 60. Let m > 0 be an integer, and consider the ruled surface q W Fm ! P1.
Let C Š q�OP1.a/ be a foliation by curves on Fm with a > 0. Then a 2 ¹1; 2º, and one of the
following holds:

(1) If a D 2, then m D 0, and C is induced by the projection F0 Š P1 � P1 ! P1 trans-
versal to q.

(2) If a D 1, then m > 1, and C is induced by a pencil containing C0 Cmf0, where C0
denotes the minimal section and f0 a fiber of q W Fm ! P1.

Proof. Notice that C ¤ TFm=P1 , thus the natural map

q�OP1.a/ Š C ! q�TP1 Š q�OP1.2/

is nonzero, and hence a 2 ¹1; 2º. If a D 2, then, as in Remark 59, C yields a flat connec-
tion on q, m D 0, and C is induced by the projection F0 Š P1 � P1 ! P1 transversal to q,
proving (1).

Authenticated | druel@ujf-grenoble.fr author's copy
Download Date | 1/16/15 10:39 PM



36 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

From now on we assume that a D 1. Then we must havem > 1, since the map C ! TFm

does not vanish in codimension 1. Denote by C0 the minimal section, and by f a fiber
of q W Fm ! P1.

By Theorem 17, C is algebraically integrable and its leaves are rational curves. So it is
induced by a rational map with irreducible general fibers � W FmÜ P1. Let C be the closure
of a general leaf of C . As in the proof of Proposition 46, one shows that C is a section of q,
and C is not regular along C . Write C � C0 C bf with b > m (see [26, Proposition V.2.20]).

The foliation C is induced by a pencil … of members of jOFm
.C /j. Observe that the

space of reducible members of jOFm
.C /j is a codimension 1 linear subspace. Therefore,… has

a unique reducible member.
Let f0 be the divisor of zeroes of q�OP1.1/ Š C ! q�TP1 Š q�OP1.2/. It is a fiber

of q. Note that C induces a flat connection on q over Fm n f0. In particular, C is regular
over Fm n f0. Let R.�/ be the ramification divisor of � , and notice that R.�/ is supported
on f0. A straightforward computation gives

R.�/ � .2b � .mC 1//f :

Let C1 C kf0 be the reducible member of … (with k > 1), where C1 is irreducible. Write
C1 � C0 C b1f . Then

k D 2b � .mC 1/C 1 and b1 C k D b:

Thus
b � k D m � b 6 0 and b � k D b1 > 0:

Hence b1 D 0, and k D b D m. This proves (2).

Proposition 61. Let K be a rank 2 vector bundle on a ruled surface p W Fe ! P1,
with e > 0. Set Y WD PFe

.K /, with natural projection q W Y ! Fe, and tautological line
bundle OY .1/. Let G � TY be a codimension 1 foliation on Y with det.G / Š q�A for some
ample line bundle A on Fe. Then one of the following holds:

(1) e 2 ¹0; 1º and there exists a line bundle B on Fe such that
� K Š B ˚B,
� G is induced by the natural morphism Y Š Fe � P1 ! P1 and thus

det.G / Š q�OFe
.�KFe

/:

(2) There exist a line bundle B on Fe, integers s > 1 and t > 0, a minimal section C0 and
a fiber f of p W Fe ! P1 such that
� K Š B ˝ .OFe

˚ OFe
.sC0 C tf //,

� G is induced by a pencil in jOY .1/˝ q�B�j containing †C q�.sC0 C tf /, where
† is the section of q W Y ! Fe corresponding to the surjection

OFe
˚ OFe

.sC0 C tf /� OFe
;

� one has

det.G / Š

´
q�OFe

.C0 C .e C 2/f / if t D 0,

q�OFe
.C0 C .e C 1/f / if t > 0.
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(3) e 2 ¹0; 1º, there exist a line bundle B on Fe, an integer s > 1, and an irreducible divi-
sor B � C0 C f on Fe, where C0 is a minimal section and f a fiber of p W Fe ! P1,
such that
� K Š B ˝ .OFe

˚ OFe
.s.C0 C f ///,

� G is induced by a pencil in jOY .1/˝ q�B�j containing †C sq�B , where † is the
section of q W Y ! Fe corresponding to the surjection

OFe
˚ OFe

.s.C0 C f //� OFe
;

� det.G / Š q�OFe
.C0 C .e C 1/f /.

(4) There exist a line bundle B on Fe, integers s; t > 1, a minimal section C0 and a fiber f
of p W Fe ! P1 such that
� K Š B ˝ .OFe

.sC0/˚ OFe
.tf //,

� G is induced by a pencil in jOY .1/˝q�B�j generated by†Csq�C0 and†0C tq�f ,
where † and †0 are sections of q W Y ! Fe corresponding to the surjections

OFe
.sC0/˚ OFe

.tf /� OFe
.tf /

and
OFe

.sC0/˚ OFe
.tf /� OFe

.sC0/;

respectively,
� det.G / Š q�OFe

.C0 C .e C 1/f /.

(5) There exist a line bundle B on Fe, integers s > 1 and � > 0, a minimal section C0 and
a fiber f of p W Fe ! P1 such that
� K fits into an exact sequence

0! OFe
˚ OFe

.sC0/! K ˝B� ! Of .��/! 0;

� G is induced by a pencil in jOY .1/˝ q�B�j generated by†C sq�C0 and†0, where
† is the zero locus of the section of OY .1/˝ q

�.B� ˝ OFe
.�sC0// corresponding

to
OFe

.sC0/! OFe
˚ OFe

.sC0/! K ˝B�;

and †0 corresponds to

OFe
! OFe

˚ OFe
.sC0/! K ˝B�;

� det.G / Š q�OFe
.C0 C .e C 1/f /.

(6) There exist a line bundle B on Fe, an integer t > 0, a minimal section C0 and a fiber f
of p W Fe ! P1, and a local complete intersection subschemeƒ � Fe of codimension 2,
with h0.Fe;IƒOFe

.C0// > 1, such that
� K fits into an exact sequence

0! OFe
.tf /! K ˝B� ! IƒOFe

.C0/! 0;

� G is induced by a pencil in jOY .1/˝ q�B�j containing †C tq�f , where † is the
zero locus of the section of OY .1/˝ q

�.B� ˝ OFe
.�tf // corresponding to

OFe
.tf /! K ˝B�;

� det.G / Š q�OFe
.C0 C .e C 1/f /.
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(7) There exist a line bundle B on Fe, a minimal section C0 and a fiber f of p W Fe ! P1,
and a local complete intersection subscheme ƒ � Fe of codimension 2 such that
� there exists a curve C � C0 C f with ƒ � C and ƒ 6� C 0 for any proper subcurve
C 0 � C ,

� K fits into an exact sequence

0! OFe
! K ˝B� ! IƒOFe

.C0 C f /! 0;

� G is induced by a pencil of irreducible members of jOY .1/˝ q�B�j containing †,
the zero locus of the section of OY .1/˝ q

�B� corresponding to OFe
! K ˝B�,

� det.G / Š q�OFe
.C0 C .e C 1/f /.

Proof. To ease notation, set S WD Fe. Denote by C0 a minimal section, and by f a gen-
eral fiber of p W S ! P1. Denote by F Š P1 a general fiber of q W Y ! S . Given any curve
C � S , we set YC WD q�1.C /, and denote by qC W YC ! C the restriction of q to YC .

We claim that TY=S 6� G . Indeed, if TY=S � G , then G would be the pullback via q of
a foliation on S , and so OP1 Š det.G /jF Š .TY=S /jF Š OP1.2/ by Paragraph 12, which is ab-
surd. Thus, the natural map TY ! q�TS induces an injective morphism of sheaves G ! q�TS .
Let q�B be the divisor of zeroes of the induced map q� det.A / Š det.G /! q� det.TS /.

Suppose that B D 0. Then A Š OS .�KS / is ample, and hence e 2 ¹0; 1º. Moreover,
G � TY induces a flat connection on q. Thus K Š B ˚B for some line bundle B on S ,
and G is induced by the natural morphism Y Š S � P1 ! P1. This is case (1) in the statement
of Proposition 61.

Suppose from now on that B ¤ 0. A straightforward computation shows that one of the
following holds (up to possibly exchanging C0 and f when e D 0):

� A Š OS .C0 C .e C 1/f / and B � C0 C f ,

� A Š OS .C0 C .e C 2/f / and B � C0.

In either case, B contains a unique irreducible component dominating P1. We denote this
irreducible component by B1, and set B2 WD B � B1.

Let C Š P1 be a general member of jOS .C0 C ef /j. Since TY=S 6� G , G induces folia-
tions by curves Cf � TYf

and CC � TYC
on Yf and YC , respectively. By Paragraph 14, there

exist effective divisors Df on Yf and DC on YC such that

OYf
.�KCf

/ Š .q�A /jYf
˝ OYf

.Df /;(4.7)

OYC
.�KCC

/ Š q�.A ˝ OS .�C0 � ef //jYC
˝ OYC

.DC /:

Claim. The following hold:

(a) One has Cf Š q
�
f

OP1.1/, Yf Š Fm withm > 1, and Cf is induced by a pencil contain-
ing �0 Cm`0, where �0 denotes the minimal section and `0 a fiber of qf W Yf ! P1.

(b) IfB � C0Cf (and soC\Supp.B/ ¤ ;), then CC Š q
�
COP1.1/, YC Š Fm withm > 1,

and CC is induced by a pencil containing �0 Cm`0, where �0 denotes the minimal sec-
tion and `0 a fiber of qC W YC ! P1.

(c) If B � C0 (and so C \ Supp.B/ D ;), then CC Š q
�
COP1.2/, YC Š C � P1, and CC

is induced by the projection morphism C � P1 ! P1.
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On the open subset Y n q�1.Supp.B//, G is regular and induces a flat connection. There-
fore GjYf

intersects TYf =f transversely over f n ¹f \ Supp.B/º, and thus the support ofDf is
contained in q�1.f \ Supp.B//. It follows from (4.7) that Cf Š q

�
f

OP1.k/ for some positive
integer k. Since the natural map Cf ! q�

f
Tf is injective, we must have k 2 ¹1; 2º. The same

argument shows that CC Š q
�
COP1.l/ with l 2 ¹1; 2º. If Cf Š q

�
f

OP1.2/, then Cf is a regular
foliation, Yf Š f � P1, and Cf is induced by the projection morphism f � P1 ! P1. On the
other hand, if b is a general point in Supp.B/, then q�1.b/ is tangent to G , while G is regular
at a general point of q�1.b/. Since f is assumed to be general, f \ Supp.B/ is a general point
b 2 Supp.B/, and we conclude from this observation that Yf must be a leaf of G , which is
absurd. Therefore we must have Cf Š q

�
f

OP1.1/ and Df D 0. Analogously, we prove that
if C \ Supp.B/ ¤ ;, then CC Š q

�
COP1.1/ and DC D 0. The description of .Yf ;Cf / and

.YC ;CC / in this case follow from Lemma 60. Finally, if B � C0, then DC D 0, and CC in-
duces a flat connection on qC . Therefore CC Š q

�
COP1.2/, YC Š C � P1, and CC is induced

by the projection morphism C � P1 ! P1. This proves the claim.
Next we show that G has algebraic leaves, and that a general leaf has relative degree 1

over S . From the claim, we know that the general leaves of Cf and CC are sections of
qf W Yf ! f and qC W YC ! C , respectively. LetFC be a general leaf of CC mapping ontoC .
For a general fiber f of p W S ! P1, Yf meets FC in a single point, and there is a unique
leaf Ff of Cf through this point. We let† be the closure of the union of the leaves Ff obtained
in this way, as f varies through general fibers of p W S ! P1. It is a general leaf of G , and has
relative degree 1 over S .

Since G is algebraically integrable, we can consider the rational first integral for G ,
� W Y Ü QW , as described in Paragraph 16. Since Y is a rational variety, QW Š P1. So G
is induced by a pencil … in the linear system jOY .1/˝ q�M j for some line bundle M on S .
Notice that �f WD �jYf

W Yf Ü P1 and �C WD �jYC
W YC Ü P1 are rational first integrals

for Cf and CC , respectively, and Cf and CC are induced by the restricted pencils …jYf

and …jYC
, respectively.

Our next task is to determine the line bundle M . From Claim (a)–(c), there are integers
a; b; s; t , with s > 1 and t > 0 such that

Kjf Š OP1.a/˚ OP1.aC s/ and KjC Š OP1.b/˚ OP1.b C t /:

Moreover, Mjf Š OP1.�a/ and MjC Š OP1.�b/. This implies that M Š OS .�aC0 � bf /.
Any member of … can be written as †C uq�B1 C vq�B2, where † is irreducible and

has relative degree 1 over S , and u; v > 0 are integers. In particular, the ramification divisor
R.�/ of � must be of the form R.�/ D cq�B1 C dq

�B2, with c; d > 0 integers. We have

NG Š .�
��1P1 ˝ OY .R.�///

�
Š OY .2/˝ q

�M˝2
˝ OY .�R.�//:

On the other hand,

NG Š OY .�KY /˝ OY .KG /

Š OY .2/˝ q
�.det.K �/˝ OS .�KS /˝A �/

Š OY .2/˝ q
�.det.K �/˝ OS .B//;

and hence
OY .R.�// Š q

�.M˝2
˝ det.K /˝ OS .�B//

Š q�.OS .sC0 C tf /˝ OS .�B//:
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It follows from Claim (b)–(c) that, if B � C0, then t D d D 0, and if B 6� C0, then c D s � 1
and d D t � 1. Notice also that, if s > 2, then the pencil … contains a member of the form
†C sq�B1 C vq

�B2, where † is irreducible and has relative degree 1 over S , and v > 0.
Similarly, if t > 2, then the pencil … contains a member of the form †C uq�B1 C tq

�B2,
where † is irreducible and has relative degree 1 over S , and u > 0.

Case 1. Suppose that… contains a member of the form†C uq�B1 C vq
�B2, where†

is irreducible and has relative degree 1 over S , B2 ¤ 0, and u; v > 0.
Up to replacing C0 and f with linearly equivalent curves on S , we may write

B D C0 C f :

It follows from Claim (a)–(b) that u D s and v D t . Moreover† \ Yf and† \ YC are the min-
imal sections of qf W Yf ! f and qC W YC ! C , respectively. If†0 is the closure of a general
leaf of G , then† \†0 \ Yf D ; D † \†0 \ YC . This implies that† \†0 \ q�1.b/ D ; for
a general point b 2 Supp.B/. One can find an open subset V � S , with codimS .S n V / > 2,
such that † \ q�1.V / and †0 \ q�1.V / are sections of qjq�1.V /, and † \†0 \ q�1.V / D ;.
Therefore, there are line bundles B1 and B2 on S such that K Š B1 ˚B2, and † corre-
sponds to the surjection B1 ˚B2� B1. From the description of Kjf and KjC above, we
see that B1jf Š OP1.a/, B1jC Š OP1.b/, B2jf Š OP1.aC s/, and B2jC Š OP1.b C t /.
Thus B1 Š OS .aC0 C bf /, and B2 Š OS ..aC s/C0 C .b C t /f /. We are in case (2) in the
statement of Proposition 61, with t > 1.

Case 2. Suppose that … contains a member of the form †C uq�B1, where † is irre-
ducible and has relative degree 1 over S , and u > 0.

It follows from Claim (a) that u D s. Next we prove that any other reducible divisor
of … must be of the form †0 C tq�B2, where †0 is irreducible and has relative degree 1
over S . In particular, if there exists such a divisor in …, we must have B2 ¤ 0 and t > 0.
Indeed, let D D †0 C iq�B1 C jq�B2 be a reducible member of …, where †0 is irreducible
and has relative degree 1 over S . If i > 0, then it follows from the claim that i D s and† D †0.
Since D � †C sq�B1, we must have D D †C sq�B1. If i D 0, then we must have B2 ¤ 0
and j > 0. It follows from Claim (b) that j D t , and so D D †0 C tq�B2.

We consider three cases.

Case 2.1. Suppose thatB2 D 0, andB D B1 � C0Cf . Then we must have e 2 ¹0; 1º.
Let †0 be the closure of a general leaf of G . It follows from Claim (a) that † \ Yf is the

minimal section of qf , and † \†0 \ Yf D ;. Proceeding as in case 1, we show that we must
be in case (3) in the statement of Proposition 61.

Case 2.2. Suppose that B2 D 0, and B D B1 � C0.
Up to replacing C0 with a linearly equivalent curve on S , we may writeB D C0. Since†

is irreducible and has relative degree 1 over S , it contains only finitely many fibers of q, and
corresponds to a surjective morphism of sheaves K � IƒS , where S is a line bundle
on S , and ƒ � S is a closed subscheme with codimS ƒ > 2. Denote by T the kernel of this
morphism. Then T is a line bundle on S , and

T ˝S Š det.K / Š OS ..2aC s/C0 C 2bf /:
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Since †C sq�C0 2 … � jOY .1/˝ q�OS .�aC0 � bf /j, we must have

T ˝ OS .�aC0 � bf / Š OS .sC0/ and S ˝ OS .�aC0 � bf / Š OS :

Let†0 be the closure of a general leaf of G , and let � 0 2 H 0.Y;OY .1/˝ q
�OS .�aC0 � bf //

be a nonzero section vanishing along †0. We claim that � 0 is mapped to a nonzero element
in H 0.S;IƒS ˝ OS .�aC0 � bf // Š H

0.S;Iƒ/ under the natural morphism

H 0.S;K ˝ OS .�aC0 � bf //! H 0.S;IƒS ˝ OS .�aC0 � bf //:

Indeed, if 0 ¤ � 2 H 0.Y;OY .1/˝ q
�OS .�aC0 � bf /// comes from

H 0.S;T ˝ OS .�aC0 � bf // � H
0.S;K ˝ OS .�aC0 � bf //

Š H 0.Y;OY .1/˝ q
�OS .�aC0 � bf //;

then its zero locus on Y must be reducible, yielding a contradiction. We conclude that ƒ D ;,
and the exact sequence 0! T ! K ! S ! 0 splits. So we are in case (2) in the statement
of Proposition 61, with s > 0 and t D 0.

Case 2.3. Suppose that B2 ¤ 0.
Up to replacing C0 and f with linearly equivalent curves on S , we may write

B D C0 C f :

As in Case 2.2, † corresponds to a surjective morphism of sheaves K � IƒS , where S is
a line bundle on S , and ƒ � S is a closed subscheme with codimS ƒ > 2. Denote by T the
kernel of this morphism. Then T is a line bundle on S , and

T ˝S Š det.K / Š OS ..2aC s/C0 C .2b C t /f /

Š OS .sC0 C tf /˝ OS .2aC0 C 2bf /:

Since †C sq�C0 2 jOY .1/˝ q�OS .�aC0 � bf /j, we must have

T ˝ OS .�aC0 � bf / Š OS .sC0/ and S ˝ OS .�aC0 � bf / Š OS .tf /:

Thus, we have an exact sequence

0! OS .sC0/! K ˝ OS .�aC0 � bf /! IƒOS .tf /! 0;

where OS .sC0/! K ˝ OS .�aC0 � bf / is the map corresponding to †C sq�C0 2 ….
Suppose that †C sq�C0 is the only reducible member of …. Then we must have t D 1.

Let†0 be the closure of a general leaf of G , and let � 0 2 H 0.Y;OY .1/˝ q
�OS .�aC0 � bf //

be a nonzero section vanishing along†0. As in Case 2.2, we see that � 0 is mapped to a nonzero
element N� 0 2 H 0.S;IƒS ˝ OS .�aC0 � bf // Š H

0.S;IƒOS .f // under the natural mor-
phism

H 0.S;K ˝ OS .�aC0 � bf //! H 0.S;IƒS ˝ OS .�aC0 � bf //:

Let f 0 � f be the divisor of zeroes of N� 0. Then ƒ � f 0. Since † \†0 \ q�1.b/ D ; for any
point b 2 C0 n f , we must have f D f 0. We obtain an exact sequence

0! OS ˚ OS .sC0/! K ˝ OS .�aC0 � bf /! Of .�ƒ/! 0;

where OS ! K ˝ OS .�aC0 � bf / is the map given by � 0. We are in case (5) in the state-
ment of Proposition 61.
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Now suppose that… contains a second reducible divisor. We have seen above that it must
be of the form†0 C tq�f , where†0 is irreducible and has relative degree 1 over S . As before,
it gives rise to an exact sequence

0! OS .tf /! K ˝ OS .�aC0 � bf /! Iƒ0OS .sC0/! 0;

where ƒ0 � S is a closed subscheme with codimS ƒ0 > 2. Notice that † ¤ †0, and so the
induced morphism

OS .sC0/˚ OS .tf /! K ˝ OS .�aC0 � bf /

is injective. Since det.OS .sC0/˚ OS .tf // Š det.K ˝ OS .�aC0 � bf //, it is in fact an
isomorphism. We are in case (4) in the statement of Proposition 61.

Case 3. Suppose that … contains a member of the form †C vq�B2, where † is irre-
ducible and has relative degree 1 over S , B2 ¤ 0, and v > 0.

Up to replacing C0 and f with linearly equivalent curves on S , we may write

B D C0 C f :

It follows from Claim (b) that v D t .
As in Case 2, we see that any other reducible divisor of…must be of the form†0Csq�C0,

where †0 is irreducible and has relative degree 1 over S . If there exists such a divisor, we are
in Case 2.3 above. So we may assume that†C tq�f is the only reducible member of…. This
implies that s D 1, and † gives rise to an exact sequence

0! OS .tf /! K ˝ OS .�aC0 � bf /! IƒOS .C0/! 0;

where ƒ � S is a closed subscheme with codimS ƒ > 2. If ƒ D ;, then the sequence splits
since h1.S;OS .�C0 C tf // D 0, and we are in case (4) in the statement of Proposition 61,
with s D 1. Ifƒ ¤ ;, thenƒ is a local complete intersection subscheme, and we are in case (6)
in the statement of Proposition 61, with t > 1.

Case 4. Suppose that all members of … are irreducible. Then s D 1 and t 6 1.
Let †0 be the closure of a general leaf of G . It gives rise to an exact sequence

0! OS ! K ˝ OS .�aC0 � bf /! IƒOS .C0 C tf /! 0;

where ƒ � S is a closed subscheme with codimS ƒ > 2. We claim that ƒ ¤ ;. Indeed, if
ƒ D ;, then the sequence splits since h1.S;OS .�C0 � f // D 0. But this implies that … con-
tains a reducible member, contrary to our assumptions. Hence codimS ƒ D 2, and ƒ is a local
complete intersection subscheme.

If t D 0, then we are in case (6) in the statement of Proposition 61.
Suppose from now on that t D 1. Then we must have h0.S;IƒOS .C0 C f // > 1.

We will show that, there exists a curve C � C0 C f with ƒ � C such that, for any proper
subcurve C 0 ¨ C , ƒ 6� C 0. Suppose to the contrary that any curve C � C0 C f with ƒ � C
can be written as C D C1 [ f1 with C1 � C0, f1 � f , and either ƒ � C1, or ƒ � f1. This
implies that the set of reducible members of jOY .1/˝ q�OS .�aC0 � bf /j has codimension 1
since h0.S;OS .�f // D 0 D h0.S;OS .�C0//. This contradicts the fact that all members of…
are irreducible. We are in case (7) in the statement of Proposition 61.
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Next we investigate whether all the seven cases described in Proposition 61 in fact occur.

62 (Proposition 61 (1)–(4)). Let K be a rank 2 vector bundle on a ruled surface

p W Fe ! P1;

with e > 0. Set Y WD PFe
.K /, with natural projection q W Y ! Fe, and denote by OY .1/ the

tautological line bundle on Y . Suppose that K satisfies one of the conditions (1)–(4) in the
statement of Proposition 61. Then the pencil … described in the statement yields a codimen-
sion 1 foliation G on Y with det.G / Š q�A where A is an ample line bundle.

63 (Proposition 61 (5)). Consider the ruled surface p W Fe ! P1, with e > 0, denote
by C0 a minimal section, and by f a fiber of p. Let s; � > 0 be integers, and suppose that K
is a coherent sheaf on Fe fitting into an exact sequence

(4.8) 0! K ! OFe
.f /˚ OFe

.sC0 C f /! Of0
.s C �C 1/! 0:

By [28, Proposition 5.2.2], K is a rank 2 vector bundle on Fe. Since

det.K / Š OFe
.sC0 C f /;

we have
K �
Š K ˝ OFe

.�sC0 � f /:

Dualizing sequence (4.8), and twisting it with OFe
.sC0 C f / yields

(4.9) 0! OFe
˚ OFe

.sC0/! K ! Of0
.��/! 0:

Conversely, dualizing sequence (4.9), and twisting it with OFe
.sC0Cf / yields sequence (4.8).

Now set Y WD PFe
.K /, with natural projection q W Y ! Fe and tautological line

bundle OY .1/. Let† be the zero locus of the section of OY .1/˝q
�OFe

.�sC0/ corresponding
to the map OFe

.sC0/! OFe
˚ OFe

.sC0/! K induced by (4.9). Similarly, let †0 be the
zero locus of the section of OY .1/ corresponding to the map OFe

! OFe
˚ OFe

.sC0/! K
induced by (4.9). Let … be the pencil in jOY .1/j generated by †C sq�C0 and †0.

If †C sq�C0 is the only reducible member of …, then this pencil induces a foliation G
on Y as in Proposition 61 (5). So we investigate this condition. Suppose that there exists
another reducible divisor in…, and write it as†00Cq�D ¤ †Csq�C0, whereD � uC0Cvf
is a nonzero effective divisor on Fe. By restricting … to Yf D q�1.f /, we see that u D 0
and v > 0. Thus

h0.Fe;K ˝ OFe
.�vf0// > 1:

On the other hand,
h0.Fe;OFe

.�vf0/˚ OFe
.sC0 � vf0// D 0:

This implies � D 0, and thus K Š OFe
.f /˚ OFe

.sC0/.

64 (Proposition 61 (6)). Consider the ruled surface p W Fe ! P1, with e > 0, denote
by C0 a minimal section, and by f a fiber of p. Let ƒ � Fe be a local complete intersection
subscheme of codimension 2, and let t > 0 be an integer. By [28, Theorem 5.1.1], there exists
a vector bundle K on Fe fitting into an exact sequence

0! OFe
.tf /! K ! IƒOFe

.C0/! 0:

Set Y WD PFe
.K /, with natural projection q W Y ! Fe and tautological line bundle OY .1/.
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Note that the map

H 0.Fe;K /! H 0.Fe;IƒOFe
.C0//

is surjective since h1.Fe;OFe
.tf // D 0. Suppose moreover that h0.Fe;IƒOFe

.C0// > 1. Let
s0 2 H 0.Y;OY .1// be a section mapping to a nonzero section in H 0.Fe;IƒOFe

.C0//, and
denote by †0 its zero locus. We claim that †0 is irreducible. Indeed, if †0 is reducible, then, up
to replacingC0 by a linearly equivalent curve, we see that s0 must vanish along q�1.C0/. There-
fore, h0.Fe;K ˝OFe

.�C0// > 1, and hence h0.Fe;OFe
.tf �C0// > 1, which is absurd. This

shows that †0 is irreducible. Let † be the zero locus of the section of OY .1/˝ q
�OFe

.�tf /

corresponding to OFe
.tf /! K . Then the pencil … � jOY .1/j generated by †C tq�f0 and

†0 induces a foliation G on Y as in Proposition 61 (6).

65 (Proposition 61 (7)). Consider the ruled surface p W Fe ! P1, with e > 0, denote
by C0 a minimal section, and by f a fiber of p. Let ƒ � Fe be a local complete intersection
subscheme of codimension 2. By [28, Theorem 5.1.1], there exists a vector bundle K on Fe
fitting into an exact sequence

0! OFe
! K ! IƒOFe

.C0 C f /! 0:

Set Y WD PFe
.K /, with natural projection q W Y ! Fe and tautological line bundle OY .1/.

Note that the map

H 0.Fe;K /! H 0.Fe;IƒOFe
.C0 C f //

is surjective since h1.Fe;OFe
/ D 0. We assume moreover that h0.Fe;IƒOFe

.C0 C f // > 1,
and that there exists a curve C � C0 C f with ƒ � C such that ƒ 6� C 0 for any proper sub-
curve C 0 � C .

Let † be the zero locus of the section of OY .1/ corresponding to the map OFe
! K .

Then † is a section of q over q�1.Supp.ƒ//, and hence it is irreducible. Let †0 be the zero
locus of the section s0 2 H 0.Fe;OY .1// that lifts the section of H 0.Fe;IƒOFe

.C0 C f //

whose divisor of zeroes is C . We claim that†0 is irreducible. Suppose otherwise. Then s0 must
vanish along a subcurve C 0 of C . This implies that h0.S;IƒOFe

.C0 C f � C
0// ¤ 0. There-

fore, C 0 is a proper subcurve of C , andƒ � C 00 where C 00 is such that C D C 0 [ C 00, contrary
to our assumptions. This shows that†0 is irreducible. The pencil… � jOY .1/j generated by†
and †0 has only irreducible members, and induces a foliation G on Y as in Proposition 61 (7).

Now we go back to the problem of describing K and G that appear in Proposition 57.
It remains to consider the case when S Š P2, and det.G / Š q�OP2.a/with a 2 ¹1; 2º. Propo-
sition 66 below addresses the case a D 2, while Proposition 69 addresses the case a D 1.

Proposition 66. Let K be a rank 2 vector bundle on P2. Set Y WD PP2.K /, with
natural projection q W Y ! P2 and tautological line bundle OY .1/. Let G � TY be a codi-
mension 1 foliation on Y with det.G / Š q�OP2.2/. Then one of the following holds:

(1) There exist integers a and s, with s > 1, such that K Š OP2.a/˚OP2.aC s/, and G is
induced by a pencil in jOY .1/˝q�OP2.�a/j containing a divisor of the form†Csq�`0,
where† is the section of q corresponding to the map OP2.a/˚ OP2.aC s/� OP2.a/,
and `0 � P2 is a line.
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(2) There exist an integer a and a local complete intersection subscheme ƒ � P2 of codi-
mension 2 such that h0.P2;IƒOP2.1// > 1, K fits into an exact sequence

0! OP2 ! K ˝ OP2.�a/! IƒOP2.1/! 0;

and G is induced by a pencil of irreducible members of jOY .1/˝ q�OP2.�a/j con-
taining the zero locus of the section of OY .1/˝ q

�OP2.�a/ corresponding to the map
OP2 ! K ˝ OP2.�a/.

Proof. The proof is very similar to that of Proposition 61, and so we leave some easy
details to the reader. To ease notation, set S WD P2, and write OS .1/ for OP2.1/.

Since TY=S 6� G , the natural map TY ! q�TS induces an injective morphism of sheaves
G ! q�TS . There is a line `0 � P2 such that the divisor of zeroes of the induced map

q�OP2.2/ Š det.G /! q� det.TS /

is q�`0. Note that G induces a flat connection on q W Y ! S over q�1.Supp.`0//.
Let `� P2 be a general line, set Y` WD q�1.`/ and q` WD qjY`

W Y`! `. Since TY=S 6� G ,
G induces a foliation by curves C` � TY`

. As in the claim in the proof of Proposition 61, one
checks that C` Š q

�
`
OP1.1/, Y` Š Fs with s > 1, and C` is induced by a pencil containing

�0 C sf , where �0 denotes the minimal section, and f a fiber of q` W Y` ! `.
One then shows that G has algebraic leaves, and it is induced by a pencil

… � jOY .1/˝ q
�OS .�a/j;

where a is such that Kj` Š OP1.a/˚ OP1.aC s/.
Any member of … is of the form †C uq�`0, where † is irreducible and has relative

degree 1 over S , and u > 0 is an integer. In particular, the ramification divisor of the rational
first integral for G , � W Y Ü P1, must be of the form R.�/ D cq�`0, with c > 0. An easy
computation shows that c D s � 1. In particular, if s > 2, then … contains a member of the
form †C sq�`0, where † is irreducible and has relative degree 1 over S .

Case 1. Suppose that … contains a member of the form †C uq�`0, where † is irre-
ducible and has relative degree 1 over S , and u > 1 is an integer. It follows from the description
of C` above that u D s, and † \ Y` is the minimal section of q` W Y` Š Fs ! `. If †0 is the
closure of a general leaf of G , then†\†0\Y` D ;. This implies that†\†0\q�1.b/ D ; for
a general point b 2 `0. One can find an open subset V � S , with codimS .S n V / > 2, such that
† \ q�1.V / and †0 \ q�1.V / are sections of qjq�1.V /, and † \†0 \ q�1.V / D ;. There-
fore, there are line bundles B1 and B2 on S such that K Š B1 ˚B2, and † corresponds to
the surjection B1 ˚B2� B1. From the description of Kj`, we see that B1 Š OS .a/ and
B2 Š OS .aC s/. This is case (1) in the statement of Proposition 66.

Case 2. Suppose then that all members of … are irreducible. In particular, we must
have s D 1. Then the section † gives rise to an exact sequence

0! OS ! K ˝M ! IƒOS .1/! 0;

where ƒ � S is a closed subscheme with codimS ƒ > 2. If ƒ D ;, then the sequence splits
since h1.S;OS .�1// D 0. But then … contains a reducible member, a contradiction. Thus
ƒ ¤ ;, and ƒ is a local complete intersection subscheme. This is case (2) in the statement
of Proposition 66.
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Next we give examples of foliations of the type described in Proposition 66 (2).

67. Let ƒ � P2 be a local complete intersection subscheme of codimension 2. Then,
by [28, Theorem 5.1.1], there exists a vector bundle K on P2 fitting into an exact sequence

0! OP2 ! K ! IƒOP2.1/! 0:

Set Y WD PFe
.K /, with natural projection q W Y ! P2 and tautological line bundle OY .1/.

Note that the map

H 0.P2;K /! H 0.P2;IƒOP2.1//

is surjective since H 1.P2;OP2/ vanishes. We assume moreover that h0.P2;IƒOP2.1// > 1,
and let `0 be a line in P2 such that ƒ � `0. Let † be the zero locus of the section of OY .1/
corresponding to OP2 ! K . Then † is a section of q over q�1.Supp.ƒ//, and hence it is
irreducible. Let s0 2 H 0.P2;OY .1// be a section lifting the section H 0.P2;IƒOP2.1// cor-
responding to `0, and denote by†0 its zero locus. We claim that†0 is irreducible. Indeed, if†0

is reducible, then s0 must vanish along `0. On the other hand,

h0.P2;OP2.�1// D h0.P2;Iƒ/ D 0;

and hence h0.P2;K ˝ OP2.�1// D 0, yielding a contradiction.
Therefore, the pencil … � jOY .1/j generated by † and †0 induces a foliation G on Y as

in Proposition 66 (2).

Example 68. Set Y WD PP2.TP2/, denote by q W Y ! P2 the natural projection, and
by OY .1/ the tautological line bundle. Let p W Y ! P2 be the morphism induced by the
linear system jOY .1/˝ q�OP2.�1/j. If C � TP2 is a degree 0 foliation, then G WD p�1.C /
is a codimension 1 foliation on Y with det.G / Š q�OP2.2/ as in Proposition 66 (2). Let F
be the closure of a leaf of G . Then qjF W F ! P2 is the blowup of P2 at a point on the
line q.p�1.Sing.C ///.

Proposition 69. Let K be a rank 2 vector bundle on P2. Set Y WD PP2.K /, with
natural projection q W Y ! P2 and tautological line bundle OY .1/. Let G be a codimension 1
foliation on Y with det.G / Š q�OP2.1/, and suppose that G is not algebraically integrable.
Then there exist

� a rational map  W Y Ü S D P`.Kj`/, where ` � P2 is a general line, giving rise to
a foliation by rational curves M Š q�OP2.1/ on Y , which lifts a degree 0 foliation
on P2,

� a rank 1 foliation N on S induced by a global vector field,

such that G is the pullback of N via  .

Proof. First note that TY=P2 6� G . Indeed, if TY=P2 � G , then G would be the pull-
back via q of a foliation on P2. Denote by f Š P1 a general fiber of q W Y ! P2. Then, by
Paragraph 12, OP1 Š det.G /jf Š .TY=S /jf Š OP1.2/ which is absurd.

Let A be a very ample line bundle on Y . Since G is not algebraically integrable, by
[3, Proposition 7.5], there exists an algebraically integrable subfoliation by curves M � G
such that M �A 2 > det.G / �A 2 > 1. Moreover, M does not depend on the choice of the
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very ample line bundle A on Y . Therefore

M � .q�OP2.k/˝A /2 > det.G / � .q�OP2.k/˝A /2 > 0 for all k > 1,

and hence M � f > 0.
So we can write M Š OY .a/˝ q

�OP2.b/ for some integers a and b, with a > 0. Since
TY=P2 6� G , there exists an injection of sheaves M ! q�TP2 , and hence we must have a D 0.
On the other hand, since M �A 2 > 1, we must have b > 1. Since the map M ! q�TP2

induces a nonzero map OP2.b/! TP2 , we conclude that b D 1 by Bott’s formulas. So

M Š q�OP2.1/:

Let p 2 P2 be the singular locus of the degree 0 foliation OP2.1/ � TP2 induced by
the map M ! q�TP2 . It follows that M � TY is a regular foliation (with algebraic leaves)
over q�1.P2 n ¹pº/. By Lemma 60, a general leaf of M maps isomorphically to a line in P2

through the point p. This implies that the space of leaves of M can be naturally identi-
fied with S D P`.Kj`/, where ` � P2 is a general line. Moreover, the natural morphism
q�1.P2 n ¹pº/! S is smooth. Hence, by Paragraph 12, G is the pullback of a rank 1 foli-
ation N Š OS on S .

Remark 70. Let E be a vector bundle on a smooth complex varietyZ. Set Y WD PZ.E /,
with natural projection q W Y ! Z. Let W be a line bundle onZ, and let V 2 H 0.Z; TZ ˝W /

be a twisted vector field onZ. By [11, Proposition 1.1] and [3, Lemma 9.5], the map W � � TZ
induced by V lifts to a map q�W � ! TY if and only if E is V -equivariant, i.e., if there exists
a C-linear map QV W E ! W ˝ E lifting the derivation V W OT ! W .

Example 71. Set Y WD PP2.OP2 ˚ OP2.1//, with natural projection q W Y ! P2 and
tautological line bundle OY .1/. Let p W Y ! P3 be the morphism induced by the linear
system jOY .1/j. Note that it is the blowup of P3 at a point x. Let y 2 P3 n ¹xº, and denote
by $ W P3Ü P2 the linear projection from y. Let C Š OP2 � TP2 be a degree 1 foliation
on P2, singular at the point $.x/, and let G � TY be the pullback of C via $ ı p. It is
a codimension 1 foliation on Y . An easy computation shows that det.G / Š q�OP2.1/. The
rational map $ W P3Ü P2 induces a foliation by curves M Š q�OP2.1/ on Y , which lifts
the degree 0 foliation on P2 given by the linear projection from the point q.p�1.y// 2 P2.
The space T of leaves of M can be naturally identified with S D F1, and G is the pullback via
the induced rational map Y Ü S of a foliation induced by a global vector field on S .

4.5. Proof of Theorem 8. Let X , F and L be as in Assumptions 37. By Theorem 19,
KXC .n�3/L is not nef, i.e., �.L/ > n�3. By Theorem 40, one has �.L/ 2 ¹n�2; n�1; nº,
unless .n; �.L// 2 ¹.5; 5

2
/; .4; 3

2
/; .4; 4

3
/º.

Step 1. We show that �.L/ > n � 2.
Suppose to the contrary that .n; �.L// 2 ¹.5; 5

2
/; .4; 3

2
/; .4; 4

3
/º (Theorem 40 (4)–(6)).

In cases (4), (5b) and (6) described in Theorem 40, 'L makesX a fibration over a smooth
curve C . Denote by F the general fiber of 'L, which is either a projective space or a quadric.
By Proposition 43, F ¤ TX=C . Therefore, if ` � X is a general line on F , then ` is not tangent
to F . By Lemma 21, .n � 3/L � ` D �KF � ` 6 �KF � ` � 2. One easily checks that this
inequality is violated for those .X;L/ in Theorem 40 (4), (5b) and (6), yielding a contradiction.

Authenticated | druel@ujf-grenoble.fr author's copy
Download Date | 1/16/15 10:39 PM



48 Araujo and Druel, Codimension 1 Mukai foliations on complex projective manifolds

It remains to consider the two cases (5a) and (5c) described in Theorem 40. In both
cases, X admits a morphism � W X ! S onto a normal surface with general fiber F Š P2,
and LjF Š OP2.2/. Let ` � X be a general line on F Š P2. Then L � ` D 2. It follows from
Lemma 21 that ` is tangent to F . By Paragraph 12, F is the pullback via � of a foliation by
curves G on S . Thus

LjF D .�KF /jF D .�KX=S /jF ;

which is a contradiction.
We conclude that �.L/ > n � 2.

Step 2. We show that �.L/ > n � 1.
Suppose to the contrary that �.L/ D n � 2. Then one of the following holds:

� .X;L/ is as in Theorem 40 (3a–d),
� 'L W X ! X 0 is birational.

Suppose that .X;L/ is one of the pairs described in Theorem 40 (3a–d) and Theorem 38.
Then X admits a morphism � W X ! Y onto a normal variety of dimension d , 1 6 d 6 3,
with general fiber F a Fano manifold of dimension n � d , index �F D n � 2, and

(4.10) �KF D .n � 2/LjF :

Since �F > dim.F / � 1, F is covered by rational curves of L-degree 1. So we can apply
Lemma 21, and conclude that F is tangent to F . By Paragraph 12, F is the pullback via � of
a codimension 1 foliation G on Y . So

.n � 3/LjF D .�KF /jF D .�KX=Y /jF ;

which contradicts (4.10).
Suppose now that 'L W X ! X 0 is birational. By Proposition 41, 'L is the composition

of finitely many disjoint divisorial contractions 'i W X ! Xi of the following types:

(E) 'i W X ! Xi is the blowup of a smooth curve Ci � Xi , with exceptional divisor Ei .
In this case Xi is smooth, and the restriction of L to a fiber of .'i /jEi

W Ei ! Ci is
isomorphic to OPn�2.1/.

(F) 'i W X ! Xi contracts a divisor Fi Š Pn�1 to a singular point, and

.Fi ;NFi=X ;LjFi
/ Š .Pn�1;OPn�1.�2/;OPn�1.1//:

In this case Xi is 2-factorial. In even dimension it is Gorenstein.

(G) 'i W X ! Xi contracts a divisor Gi Š Qn�1 to a singular point, and

.Gi ;NGi=X ;LjGi
/ Š .Qn�1;OQn�1.�1/;OQn�1.1//:

In this case Xi factorial.

In particular X 0 is Q-factorial and terminal.
Set L0 WD .'L/�.L/. The Mukai foliation F induces a foliation F 0 on X 0 such that

�KF 0 � .n � 3/L
0:

We claim thatKX 0 C .n � 3/L0 is not pseudo-effective. To prove this, let� �Q .n�3/L

be an effective Q-divisor on X such that .X;�/ is klt, and set�0 WD .'L/�.�/ �Q .n � 3/L0.
Since�.KXC�/ is 'L-ample, .X 0; �0/ is also klt. Suppose thatKX 0C.n�3/L0 �Q KX 0C�

0

is pseudo-effective. Under these assumptions, [4, Theorem 2.11] states that for any integral
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divisorD onX 0 such thatD �Q KX 0 C�
0, h0.X;�1X 0 Œ˝�OX 0.�D// D 0. On the other hand,

by Paragraph 11, F 0 gives rise to a nonzero global section

! 2 H 0.X;�1X 0 Œ˝� OX 0.�.KX 0 � .n � 3/L
0///;

yielding a contradiction and proving the claim. In particular, KX 0 C .n � 3/L0 is not nef, and
Proposition 41 implies that one of the following holds:

(1) n D 6 and .X 0;OX 0.L0// Š .P6;OP6.2//.

(2) n D 5 and one of the following holds:

(a) .X 0;OX 0.L0// Š .Q5;OQ5.2//.
(b) X 0 is a P4-bundle over a smooth curve, and the restriction of OX 0.L

0/ to a general
fiber is OP4.2/.

(c) .X;OX .L// Š .PP4.OP4.3/˚ OP4.1//;OP .1//.

(3) n D 4 and one of the following holds:

(a) .X 0;OX 0.L0// Š .P4;OP4.3//.
(b) X 0 is a Gorenstein del Pezzo 4-fold and 3L0 �Q �2KX 0 .
(c) 'L0 makes X 0 a generic quadric bundle over a smooth curve C , and for a general

fiber F Š Q3 of 'L0 , OF .L
0
jF
/ Š OQ3.2/.

(d) 'L0 makes X 0 a generic P2-bundle over a normal surface S , and for a general fiber
F Š P2 of 'L0 , OF .L

0
jF
/ Š OP2.2/.

(e) .X 0;OX 0.L0// Š .Q4;OQ4.3//.

(f) 'L W X ! X 0 factors through QX , the blowup of P4 along a cubic surface S con-
tained in a hyperplane. The exceptional locus of the contraction QX ! X 0 is the
strict transform of the hyperplane of P4 containing S , and it is of type (F) above.

(g) 'L W X ! X 0 factors through QX , a conic bundle over P3. The exceptional locus of
the contraction QX ! X 0 consists of a single prime divisor of type (F) above.

(h) 'L0 makes X 0 a P3-bundle over a smooth curve C , and for a general fiber F Š P3

of 'L0 , OF .L
0
jF
/ Š OP3.3/.

(i) .X 0;OX 0.L0// Š .P4;OP4.4//.
(j) X 0 � P10 is a cone over .P3;OP3.2// and L0 �Q 2H , where H denotes a hyper-

plane section in P10.

If X 0 is a Fano manifold with �.X 0/ D 1, then F 0 is a Fano foliation with

�KF 0 � .n � 3/L
0:

By Theorem 3, �F 0 6 n � 1, and equality holds only if X 0 Š Pn, in which case F 0 is induced
by a pencil of hyperplanes. As a consequence, .X 0; L0/ cannot be as in (1), (2a), (3e) and (3i).

Suppose that .X 0;O.L0// Š .P4;OP4.3//, i.e., .X;L/ is as in (3a). Then F 0 is induced
by a pencil of hyperplanes in P4. Denote by H Š P2 the base locus of this pencil. Since
X 0 Š P4 is smooth, by Proposition 41, 'L W X ! P4 is the blowup of finitely many disjoint
smooth curves Ci � P4, 1 6 i 6 k. Denote by Ei � X the exceptional divisor over Ci , and
by Fi Š Pn�2 a fiber of .'L/jEi

. Let

! 2 H 0.P4; �1P4 ˝ OP4.2//

be the 1-form defining F 0. An easy computation shows that .'L/�! vanishes along Ei (with
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multiplicity exactly 2) if and only if Ci � H . So .'L/�! induces a section that does not vanish
in codimension 1

!F 2 H
0

 
X;�1X ˝ .'L/

�.OP4.2//˝ OX

 
�

kX
iD1

�iEi

!!
;

where �i D 2 if Ci � H , and �i D 0 otherwise. This is precisely the 1-form defining F .
Hence,

NF Š OX .�KX CKF / Š .'L/
�.OP4.2//˝ OX

 
�

kX
iD1

�iEi

!
;

and thus
OPn�2.1/ Š OX .�KX CKF /jFi

Š OPn�2.�i /;

yielding a contradiction. We conclude that .X 0; L0/ cannot be as in (3a).
Next we consider the cases in which X 0 admits a morphism � W X 0 ! C onto a smooth

curve, with general fiber F isomorphic to either Pn�1 or Qn�1 (these are the three cases (2b),
(3c) and (3h)). By Proposition 43, F is not the relative tangent to the composed morphism
'L ı � W X ! C . Hence, F 0 ¤ TX 0=C , and a general line ` � F is not tangent to F 0. By
Lemma 20,

.n � 3/L0 � ` D �KF 0 � ` 6 �KF � ` � 2:

One easily checks that this inequality is violated for those .X 0; L0/ in cases (2b), (3c) and (3h).
Next we show that .X;L/ cannot be as in (2c). Suppose to the contrary that

.X;OX .L// Š .PP4.OP4.3/˚ OP4.1//;OP .1//:

Let ` � X be a general fiber of the natural projection � W X D PP4.OP4.3/˚ OP4.1//! P4.
Since �KF � ` D 2, ` is tangent to F by Lemma 21. By Paragraph 12, F is the pullback
via � of a codimension 1 foliation G on P4. By (2.2), det.G / Š OP4.4/, which is impossible
by Theorem 3.

We show that .X 0; L0/ cannot be as in (3b). Suppose to the contrary that X 0 is a Goren-
stein del Pezzo 4-fold and 3L0 �Q �2KX 0 . Then there is an ample Cartier divisor H 0 on X 0

such thatL0 �Q 2H
0 and�KX 0 � 3H 0. Notice thatX 0 has isolated singularities. Let Y 2 jH 0j

be a general member.
We claim that Y is a smooth 3-fold. Suppose first that .H 0/4 > 2. Then jH 0j is basepoint

free by [23, Corollary 1.5], and hence Y is smooth by Bertini’s Theorem. Suppose now that
.H 0/4 D 1. By [22, Theorem 4.2] (see also [22, 6.3 and 6.4]), one has dim.Bs.H 0// 6 0. Thus,
if H 01; : : : ;H

0
4 are general members of jH 0j, then H 01; : : : ;H

0
4 meets properly in a (possibly

empty) finite set of points, and .H 0/4 D deg.H 01 \ � � � \H
0
4/ (see [24, Example 2.4.8]). Since

.H 0/4 D 1, it follows thatH 01 \ � � � \H
0
4 is a reduced point x, X 0 is smooth at x, and the local

equations of H 01; : : : ;H
0
4 at x form a regular sequence in OX 0;x . In particular, H 0i is smooth

at x for all i 2 ¹1; : : : ; 4º. By Bertini’s Theorem again, we conclude that Y is smooth.
SetHY WD H 0jY , and denote by H the codimension 1 foliation on Y induced by F 0. By

the adjunction formula, �KY D 2HY , and hence Y is a del Pezzo threefold. By Paragraph 14,
there exists a non-negative integer b such that �KH D .1C b/HY . By Theorem 3, we must
have b 2 ¹0; 1º, and hence H is a Fano foliation. It follows from Theorem 4 and the classifi-
cation of del Pezzo manifolds that Y Š P3, b D 0, and .HY /3 D .H 0/4 D 8. Therefore,H 0 is
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very ample by [22, 6.2.3], so that we can apply [20, Theorem 3] to conclude that one of the
following holds:

� X 0 is a cubic hypersurface in P5.
� X 0 is a complete intersection of two quadric hypersurfaces in P6.
� X 0 is a cone over a Gorenstein del Pezzo 3-fold.
� dim.Sing.X 0// > 1.

In the first two cases, .H 0/4 D 3 and .H 0/4 D 4, respectively. Since X 0 has isolated singu-
larities, we conclude that X 0 must be a cone over .P3;OP3.2//. Denote by � W X ! P3 the
induced map, and by ` a general fiber of � . One computes that L � ` D 1. By Lemma 21, ` is
tangent to F . So, by Paragraph 12, F is the pullback via � of a codimension 1 foliation G
on P3. Thus

Lj` D .�KF /j` D .�KX=P3/j` D �K`;

which is absurd. This shows that .X 0; L0/ cannot be as in (3b).
We show that .X 0; L0/ cannot be as in (3d). Suppose to the contrary that 'L0 makes X 0

a generic P2-bundle over a normal surface S , and for a general fiber F Š P2 of 'L0 one has
OF .L

0
jF
/ Š OP2.2/. Lemma 20 implies that F is tangent to F 0. By Paragraph 12, F 0 is the

pullback via 'L0 of foliation by curves G on S , and thus

L0
jF D .�KF 0/jF D .�KX 0=S /jF ;

which is a contradiction.
In cases (3f), (3g) and (3j), 'L W X ! X 0 factors through a factorial 4-fold QX . Denote

by QL the push-forward of L to QX . The Mukai foliation F induces a foliation QF on QX such
that �K QF � QL.

In case (3f), QX is the blowup of P4 along a cubic surface S contained in a hyperplane
F � P4. Denote by QF � QX the strict transform of F , so that

N QF = QX Š OP3.�2/ and O QF .
QL
j QF
/ Š OP3.1/:

We will reach a contradiction by exhibiting a family H of rational curves on QX such that the
following hold:

(1) the general member of H is a curve tangent to QF ,

(2) two general points of QX can be connected by a chain of curves from H avoiding the
singular locus of QF .

We take H to be the family of strict transforms of lines in P4 meeting S and not contained
in F Š P3. It is a minimal dominating family of rational curves on QX satisfying condition (2)
above. Let ` � QX be a general member of H . One computes that

�K QX � ` D 4 and �K QF � ` D
QL � ` > 3:

For the latter, notice that ` � `1C2`2, where `1 � QF is a line under the isomorphism QF Š P3,
and `2 is a nontrivial fiber of the blowup QX ! P4. Condition (1) above then follows from
Lemma 21. We conclude that .X 0; L0/ cannot be as in (3f).

In case (3g), QX is a conic bundle over P3. Moreover, there is a divisor F � X mapping
isomorphically onto its image byX ! QX , and such that .F;NF=X / Š .P3;OP3.�2//. Denote
by � W X ! QX ! P3 the composite map, and by ` a general fiber of � . By Lemma 21,
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` is tangent to F . So, by Paragraph 12, F is the pullback via � of a codimension 1 foli-
ation G on P3. Let C � P3 be a general line, and set S WD ��1.C /. Note that S is smooth,
�C WD �jC W S ! C is a conic bundle, and the foliation on S induced by F is precisely TS=C .
Hence, by Paragraph 14, there is an effective divisor B on S such that

(4.11) �KS D LjS C B:

On the other hand, by Paragraph 12,

(4.12) LjS D �KS=C C .�C /
�c1.GjC /:

Equations (4.11) and (4.12) together imply that B D .�C /�BC for some effective divisor BC
on C , and thus �KS is ample. We will reach a contradiction by exhibiting a curve � � S
such that �KS � � 6 0. We take � WD F \ S . Using that OF .F / Š OP3.�2/, the adjunction
formula implies that �KS � � 6 0. We conclude that .X 0; L0/ cannot be as in (3g).

In case (3j),
QX D PP3.OP3 ˚ OP3.�2//:

Denote by � W X ! QX ! P3 the composite map, and by ` a general fiber of � . One computes
that L � ` D 1. By Lemma 21, ` is tangent to F . So, by Paragraph 12, F is the pullback via �
of a codimension 1 foliation G on P3. Thus

Lj` D .�KF /j` D .�KX=P3/j` D �K`;

which is a contradiction.
We conclude that �.L/ > n � 1.

Step 3. We show that if �.L/ D n � 1, then one of the following conditions holds:

(i) X admits a structure of quadric bundle over a smooth curve. In this case, by Proposi-
tion 53, X and F are as described in Theorem 8 (3).

(ii) X admits a structure of Pn�2-bundle over a smooth surface. In this case, by Section 4.4,
X and F are as described in Theorem 8 (4).

(iii) n D 5, 'L W X ! P5 is the blowup of one point P 2 P5, and F is induced by a pencil
of hyperplanes in P5 containing P in its base locus. This gives Theorem 8 (5).

(iv) n D 4, 'L W X ! P4 is the blowup of at most eight points in general position on a plane
P2 Š S � P4, and F is induced by the pencil of hyperplanes in P4 with base locus S .
This gives Theorem 8 (6).

(v) n D 4, 'L W X ! Q4 is the blowup of at most seven points in general position on a codi-
mension 2 linear section Q2 Š S � Q4, and F is induced by the pencil of hyperplanes
sections of Q4 � P5 with base locus S . This gives Theorem 8 (7).

Suppose that �.L/ D n � 1. By Theorem 40, one of the following holds:

� X admits a structure of quadric bundle over a smooth curve. This is case (i).

� X admits a structure of Pn�2-bundle over a smooth surface. This is case (ii).

� The morphism 'L W X ! X 0 is the blowup of a smooth projective variety at finitely many
points P1; : : : ; Pk 2 X 0.
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Suppose that we are in the latter case, and denote the exceptional prime divisors of 'L
by Ei , 1 6 i 6 k. Set L0 WD .'L/�.L/. It is an ample divisor on X 0 and

(4.13) LC

kX
iD1

Ei D .'L/
�L0:

The Mukai foliation F induces a Fano foliation F 0 on X 0 such that �KF 0 � .n � 3/L
0.

From Theorem 19, we know that KX 0 C .n � 3/L0 is not nef, i.e., �.L0/ > n � 3. On the other
hand, since KX 0 C .n � 1/L0 D .'L/�.KX C .n � 1/L/ is ample, �.L0/ < n � 1. It follows
from Theorem 40, together with Steps 1 and 2 above, that �.X 0/ D 1. Let H 0 be the ample
generator of Pic.X 0/, and writeL0 � �H 0, � > 1. Then�KX 0 D �X 0H 0,�KF 0 D �.n � 3/H

0

and

(4.14) �.L0/ D
�X 0

�
< n � 1:

By Lemma 28,

(4.15) �X 0 > �.n � 3/C 2:

Inequalities (4.14) and (4.15) together yield that � > 2. On the other hand, by Theorem 3,
�F 0 D �.n � 3/ 6 n � 1. Thus .n; �/ 2 ¹.5; 2/; .4; 3/; .4; 2/º.

Let !0 2 H 0.X 0; �1X 0.�KX 0 � .n � 3/L
0// be the twisted 1-form defining F 0. The

induced twisted 1-form .'L/
�!0 2 H 0.X;�1X ..'L/

�.�KX 0 � .n � 3/L
0/// saturates to give

the twisted 1-form defining F , !F 2 H
0.X;�1X .�KX � .n � 3/L//. Using (4.13), one com-

putes that

�KX � .n � 3/L D .'L/
�.�KX 0 � .n � 3/L

0/C 2

kX
iD1

Ei :

Thus .'L/�!0 must vanish along each Ei with multiplicity exactly 2.
Suppose that .n; �/D .5; 2/. Then �F 0 D rank.F 0/ and, by Theorem 3,X 0 Š P5, and F 0

is a foliation induced by a pencil of hyperplanes in P5. We claim that 'L W X ! P5 is the
blowup of only one point. Indeed, if 'L W X ! P5 blows up at least two points P and Q, let `
be a line connecting P and Q, and Q̀ � X its strict transform. We get a contradiction by inter-
secting (4.13) with Q̀, and conclude that 'L W X ! P5 is the blowup of a single point P 2 P5,
with exceptional divisor E. Moreover, .'L/�!0 vanishes along E with multiplicity exactly 2.
A local computation shows that this happens precisely when P is in the base locus of the pencil
of hyperplanes defining F 0.

Suppose that .n; �/D .4; 3/. Then �F 0 D rank.F 0/ and, by Theorem 3,X 0 Š P4, and F 0

is a foliation induced by a pencil of hyperplanes in P4. Moreover, .'L/�!0 vanishes along
each Ei with multiplicity exactly 2. A local computation shows that this happens precisely
when the points Pi all lie in the base locus of the pencil of hyperplanes defining F 0, which is
a codimension 2 linear subspace. Since

L D .'L/
�L0 �

kX
iD1

Ei

is ample, we must have k 6 8 and the points Pi are in general position by Lemma 72 below.
Suppose that .n; �/ D .4; 2/. Then F 0 is a codimension 1 del Pezzo foliation on X 0.

By Theorem 4, either X 0 Š P4 and F 0 is a degree 1 foliation, or X 0 Š Q4 � P5 and F 0 is
induced by a pencil of hyperplane sections.
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Suppose first that X 0 Š P4 and F 0 is a degree 1 foliation. The same argument used in
the case .n; �/ D .5; 2/ shows that 'L W X ! P4 is the blowup of only one point P 2 P4,
with exceptional divisor E. Moreover, .'L/�!0 vanishes along E with multiplicity exactly 2.
A local computation shows that this cannot happen.

Finally suppose that X 0 Š Q4 � P5 and F 0 is induced by a pencil of hyperplane
sections. Moreover, .'L/�!0 vanishes along each Ei with multiplicity exactly 2. A local
computation shows that this happens precisely when the points Pi all lie in the base locus
of the pencil defining F 0, which is a codimension 2 linear section of Q4. Since

L D .'L/
�L0 �

kX
iD1

Ei

is ample, we must have k 6 7 and the points Pi are in general position by Lemma 72 below.

Step 4. Suppose that �.L/ D n. By Theorem 40, X admits a structure of Pn�1-bundle
over a smooth curve. In this case, by Proposition 45,X and F are as described in Theorem 8 (1)
or (2).

Lemma 72. The following hold:

(1) Let � W X ! P4 be the blowup of finitely many points P1; : : : ; Pk contained in a codi-
mension 2 linear subspace S Š P2, and denote by Ei the exceptional divisor over Pi .
Then the line bundle ��OP4.3/˝ OX .�

Pk
iD1Ei / is ample if and only if k 6 8 and the

points Pi are in general position in P2.

(2) Let � W X ! Q4 be the blowup of a smooth quadric at finitely many points P1; : : : ; Pk
contained in a codimension 2 linear section S , and denote by Ei the exceptional divisor
overPi . Then the line bundle ��OQ4.2/˝ OX .�

Pk
iD1Ei / is ample if and only if k 6 7

and the points Pi are in general position in S .

Proof. Under the assumptions of (1) above, write L D ��3H �
Pk
iD1Ei , where H is

a hyperplane in P4. The divisorL is ample if and only if jmLj separates points inX form� 1.
Notice that jLj always separates points outside the strict transform QS of the plane S � P4.
Moreover, form > 0, any global section of O QS .mLj QS / extends to a global section of OX .mL/.
Hence, L is ample if and only if L

j QS
is ample. Now notice that

L
j QS
D p�.�KS / �

kX
iD1

Ei j QS D �K QS ;

where p D �
j QS
W QS ! S Š P2 is the blowup of P2 at the points P1; : : : ; Pk . Therefore, L is

ample if and only if �K QS is ample, i.e., k 6 8 and the points Pi are in general position in P2.
Now we proceed to prove (2). Let QS be the strict transform of the (possibly singular)

irreducible quadric surface S � Q4. Write as above L D ��2H �
Pk
iD1Ei , where H � Q4

is a hyperplane section. Notice that jLj always separates points outside QS . Moreover, any
global section of O QS .Lj QS / extends to a global section of OX .L/. Suppose that L is ample,
so that L

j QS
D �K QS is ample as well. Then k 6 7 and the points Pi are in general position

in S . Conversely, suppose that k 6 7, and the points Pi are in general position in S . Then
dim.Bs.�K QS // 6 0, and hence dim.Bs.L// 6 0. We conclude that L is ample by Zariski’s
theorem ([36, Remark 2.1.32]).
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