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10123 Torino, Italy and 2Institut Fourier, UMR 5582 du CNRS, Université
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In this paper, we address Fano manifolds of dimension n≥ 3 with a locally unsplit dom-

inating family of rational curves of anticanonical degree n. We first observe that their

Picard number is at most 3, and then we provide a classification of all cases with max-

imal Picard number. We also give examples of locally unsplit dominating families of

rational curves whose varieties of minimal tangents at a general point are singular.

1 Introduction

Let X be a Fano manifold, and let V be a dominating family of rational curves on X. By

this, we mean that V is an irreducible component of RatCurvesn(X), the scheme param-

eterizing integral rational curves on X, and that the union of the curves parameterized

by V is dense in X.

We say that V is locally unsplit if for general x ∈ X, the subfamily Vx of curves

containing x is proper. This is true, for instance, if V is a dominating family with mini-

mal degree with respect to some ample line bundle on X.

When V is locally unsplit, the anticanonical degree of the curves of the family

can vary between 2 and n+ 1, where n is the dimension of X.
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2 C. Casagrande and S. Druel

Following Miyaoka [30], we define lX to be the minimal anticanonical degree of

a locally unsplit dominating family of rational curves in X, so that lX ∈ {2, . . . ,n+ 1}.
Equivalently, lX is the minimal anticanonical degree of a free rational curve in X (see

Remark 4.2).

In this paper, we study Fano manifolds with a locally unsplit dominating family

of rational curves of anticanonical degree n, including in particular Fano manifolds X

with lX = n.

Let us recall the following results, due, respectively, to Cho, Miyaoka, and

Shepherd-Barron (see also [24]), and to Miyaoka.

Theorem 1.1 ([8]). Let X be a Fano manifold of dimension n. The following properties

are equivalent:

(i) X has a locally unsplit dominating family of rational curves of maximal anti-

canonical degree n+ 1;

(ii) X ∼= Pn.

In particular, lX = n+ 1 if and only if X ∼= Pn. �

Theorem 1.2 ([30]). Let X be a Fano manifold of dimension n≥ 3, and with Picard num-

ber ρX = 1. Then lX = n if and only if X is isomorphic to a quadric. �

On the other hand, there are also cases where lX = n and ρX > 1.

Example 1.3 ([30, Remark 4.2]). Let A⊂ Pn be a smooth subvariety, of dimension n− 2

and degree d∈ {1, . . . ,n}, contained in a hyperplane. Let X be the blow-up of Pn along A.

Then X is Fano with ρX = 2 and lX = n. The locally unsplit dominating family of rational

curves of anticanonical degree n is given by the strict transforms of lines intersecting A

in one point. �

First of all, we show that in fact these are the only examples.

Theorem 1.4. Let X be a Fano manifold of dimension n≥ 3, with ρX > 1 and lX = n. Then

there exists a smooth subvariety A⊂ Pn of dimension n− 2 and degree d∈ {1, . . . ,n}, con-

tained in a hyperplane, such that X is isomorphic to the blow-up of Pn along A. �

Together with Miyaoka’s result (Theorem 1.2), this gives a complete classification

of Fano manifolds with lX = n.
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Locally Unsplit Families of Rational Curves 3

Then we turn to the case where X is a Fano manifold having a locally unsplit

dominating family of rational curves of anticanonical degree n, where n≥ 3 is the dimen-

sion of X. Note that this assumption is easier to check than the condition lX = n, as it

involves only one family of rational curves.

In the toric case, these varieties have been classified by Chen, Fu, and Hwang.

Proposition 1.5 ([7, Proposition 3.8]). Let X be a toric Fano manifold, of dimension n≥ 3,

having a locally unsplit dominating family of rational curves of anticanonical degree n.

Then X is one of the following:

(1) the blow-up of Pn at a linear Pn−2 (here ρ = 2 and lX = n);

(2) P1 × Pn−1 (here ρ = 2 and lX = 2);

(3) the blow-up of Pn at A∪ {p}, where A is a linear Pn−2, and p a point not in A

(here ρ = 3 and lX = 2). �

We show that if X has a locally unsplit dominating family V of rational curves

of anticanonical degree n, then the Picard number of X is at most 3 (see Proposition 4.7).

Moreover, we classify all cases with ρX = 3, giving a complete description of X and V .

Let us describe our results.

We first construct and study a family of examples.

Example 1.6. Fix integers n,a, and d such that n≥ 3, d≥ 1, and 0 ≤ a≤ d. Let moreover

A⊂ Pn−1 be a smooth hypersurface of degree d.

Set Y := PPn−1(OPn−1 ⊕ OPn−1(a)), and let ĜY
∼= Pn−1 ⊂ Y be a section of the P1-bundle

Y → Pn−1 with normal bundle NĜY/Y
∼= OPn−1(a).

Finally, set AY := ĜY ∩ π−1(A) (so that AY
∼= A), and let σ : X → Y be the blow-up

of AY.

Then X is smooth of dimension nand Picard number 3, and it is Fano if and only

if a≤ n− 1 and d− a≤ n− 1. In the Fano case, these varieties appear in [31], where the

author classifies Fano manifolds containing a divisor G ∼= Pn−1 and with negative normal

bundle. �

Proposition 1.7. Let X be as in Example 1.6. Then X has a locally unsplit dominating

family V of rational curves of anticanonical degree n. �

Then we show that these are all the examples with ρ ≥ 3.
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4 C. Casagrande and S. Druel

Theorem 1.8. Let X be a Fano manifold of dimension n≥ 3, and suppose that X has a

locally unsplit dominating family V of rational curves of anticanonical degree n. Then

ρX ≤ 3.

If moreover ρX = 3, then X is isomorphic to one of the varieties described in

Example 1.6, and the family V is unique. �

We study in more detail the family of curves given by Proposition 1.7. For x ∈ X,

we denote by Vx the normalization of the closed subset of V parameterizing curves con-

taining x.

Theorem 1.9. Let X and V be as in Proposition 1.7, and x ∈ X a general point. Let z∈ Pn−1

be the image of x under the morphism X → Pn−1, and let pz : A→ Pn−2 be the degree d

morphism induced by the linear projection Pn−1 ��� Pn−2 from z.

Then Vx is smooth and connected. If a= 0, then Vx
∼= Pn−2. If a> 0, then Vx is iso-

morphic to the relative Hilbert scheme Hilb[a]
(A/Pn−2) of zero-dimensional subschemes,

of length a, of fibers of pz. �

Finally, we consider the variety of minimal rational tangents (VMRT) associated

to the locally unsplit family V at a general point x, defined as follows. Let

τx : Vx ��� P(T∗
X,x)

be the map defined by sending a general curve from Vx to its tangent direction at x, and

define the VMRT Cx to be the closure of image of τx in P(T∗
X,x). We still denote by τx the

induced map Vx → Cx; this is, in fact, the normalization morphism by [21, 25].

Theorem 1.10. Let X and V be as in Proposition 1.7, and x ∈ X a general point.

(1) The VRMT Cx ⊂ P(T∗
X,x) is an irreducible hypersurface of degree

(d
a

)
.

(2) If a∈ {0,1,d− 1,d}, then τx : Vx → Cx is an isomorphism.

(3) If 2 ≤ a≤ d− 2, then τx : Vx → Cx is not an isomorphism. More precisely, the

closed subset where τx is not an isomorphism has codimension 1, and the

closed subset where τx is not an immersion has codimension 2. �

This provides the first examples of locally unsplit dominating families of ratio-

nal curves whose VMRT at a general point x is singular, equivalently such that

τx : Vx → Cx is not an isomorphism (see [18, Question 1; 26, Problem 2.20; 19; 20]). Note

that if 2 ≤ a≤ d− 2, then V is not a dominating family of rational curves of minimal

degree (see Remark 5.4).
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Locally Unsplit Families of Rational Curves 5

In [20], Hwang studies projective manifolds X having a locally unsplit dominat-

ing family V of rational curves of anticanonical degree equal to the dimension of X.

Under the assumption that the VMRT of V at a general point is smooth, he gives a bira-

tional description of X, see [20, Theorem 1.4].

In order to prove Theorems 1.9 and 1.10, we are led to study relative Hilbert

schemes of zero-dimensional subschemes of the projection of a smooth hypersurface

from a general point. We obtain the following result, of independent interest.

Theorem 1.11. Fix integers m, a, and d, such that m ≥ 1 and 1 ≤ a≤ d. Let A⊂ Pm+1 be

a smooth hypersurface of degree d. Let z∈ Pm+1 be a general point, and let A→ Pm be

the morphism induced by the linear projection from z, where we identify Pm with the

variety of lines through z in Pm+1.

(1) The scheme Hilb[a]
(A/Pm) is connected and smooth of dimension m, and the

natural morphism Π : Hilb[a]
(A/Pm)→ Pm is finite of degree

(d
a

)
.

(2) Let �⊂ Pm+1 be a line through z, and let [W] ∈ Hilb[a]
(A/Pm) be a point over

[�] ∈ Pm. Then Π is smooth at [W] if and only if W is a union of irreducible

components of � ∩ A. �

Note that the smoothness of Hilb[a]
(A/Pm) was proved by Gruson and Pesk-

ine [16, Theorem 1.3], with different methods. Our proof is independent from Gruson

and Peskine, and relies on Theorem 1.9.

1.12. Outline of the paper. In Section 2, we introduce notations used in the remainder

of the paper, and we discuss some properties of families of rational curves.

In Section 3, we study Fano manifolds X of dimension n≥ 3 having a prime divi-

sor D with ρD = 1, using techniques from the Minimal Model Program, and in particular

results from [4]. It follows from [31, Proposition 5] that ρX ≤ 3; we study the cases ρX = 2

and ρX = 3. In the case ρX = 2, we describe the possible extremal contractions of X (see

Remark 3.2 and Proposition 3.3). Then, we give a complete classification of these vari-

eties when ρX = 3, see Example 3.4 and Theorem 3.8. This generalizes results from [5, 31]

for the case D ∼= Pn−1 and negative normal bundle.

In Section 4, we specialize the results of the previous section to the case where

X has a locally unsplit dominating family V of rational curves of anticanonical degree

n. Indeed, for general x ∈ X, any irreducible component of the locus swept out by curves

of the family through x is a divisor D with ρD = 1. This yields ρX ≤ 3.
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6 C. Casagrande and S. Druel

We first prove Theorem 1.4 on the case lX = n. Next we show that, under the

assumptions of Theorem 1.8, if moreover ρX = 3, then X is isomorphic to one of the vari-

eties described in Example 1.6, and we determine the class of the family V in N1(X)

(see Proposition 4.7). Finally, when ρX = 2, we describe the possible extremal contrac-

tions of X (see Lemma 4.5). In this section, we use repeatedly the characterization of the

projective space given by Theorem 1.1.

In Section 5, we first construct a locally unsplit dominating family of rational

curves on the varieties introduced in Example 1.6, proving Proposition 1.7. With the

use of Proposition 4.7, we also show that the family is unique, completing the proof

of Theorem 1.8. Finally, we show Theorems 1.9 and 1.10, using Theorem A.1 from the

Appendix (Section 5).

In Section 5, we discuss the relative Hilbert scheme Hilb[a]
(A/Pm), where

A→ Pm is the projection of a smooth hypersurface A⊂ Pm+1 from a general point.

We first study local properties of the natural morphism Π : Hilb[a]
(A/Pm)→ Pm, and

we show that Hilb[a]
(A/Pm) is integral (see Theorem A.1). This is used in the proof of

Theorem 1.9.

In Theorem A.1, we also determine the genus of the curve Hilb[a]
(A/P1); together

with the description of the fibers of Π , this is crucial for the proof of Theorem 1.10.

At last we prove that the Hilbert scheme is smooth (Theorem 1.11), as a conse-

quence of Theorem 1.9. �

2 Notations and Preliminaries

Throughout this paper, we work over the field of complex numbers.

We will use the definitions and apply the techniques of the Minimal Model Pro-

gram frequently, without explicit references. We refer the reader to [11, 28] for back-

ground and details.

For any projective variety X, we denote by N1(X) (respectively, N 1(X)) the vec-

tor space of one-cycles (respectively, Cartier divisors), with real coefficients, modulo

numerical equivalence. We denote numerical equivalence by ≡, for both one-cycles and

Q-Cartier divisors. We denote by [C ] (respectively, [D]) the numerical equivalence class

of a curve C (respectively, of a Cartier divisor D). Moreover, NE(X)⊂N1(X) is the convex

cone generated by classes of effective curves.

For any closed subset Z ⊂ X, we denote by N1(Z , X) the subspace of N1(X) gen-

erated by classes of curves contained in Z .

If D is a Cartier divisor in X, we set D⊥ := {γ ∈N1(X) | D · γ = 0}.
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Locally Unsplit Families of Rational Curves 7

If X is a normal projective variety, a contraction of X is a surjective morphism

ϕ : X → Y, with connected fibers, where Y is normal and projective. The contraction is

elementary if ρX − ρY = 1.

Let R be an extremal ray of NE(X). If D is a divisor in X, the sign of D · R is the

sign of D · Γ , Γ a nonzero one-cycle with class in R.

Suppose that KX · R< 0, and let ϕ : X → Y be the associated elementary contrac-

tion. We set Locus(R) := Exc(ϕ), the locus where ϕ is not an isomorphism.

By a P1-bundle we mean a smooth morphism whose fibers are isomorphic to P1,

while a morphism is called a conic bundle if every fiber is isomorphic to a plane conic.

If E is a vector bundle on a variety Y, we denote by PY(E ) the scheme

ProjY(Sym(E )).

We refer the reader to [27, §II.2 and IV.2] for the main properties of families

of rational curves; we will keep the same notation as [27]. In particular, we recall that

RatCurvesn(X) is the normalization of the open subset of Chow(X) parameterizing inte-

gral rational curves.

By a family of rational curves in X, we mean an irreducible component V of

RatCurvesn(X). We say that V is a dominating family if its universal family dominates

X. We say that V is locally unsplit if, for a general point x ∈ X, the subfamily of V param-

eterizing curves through x is proper.

Let V be a locally unsplit dominating family of rational curves on X. The class in

N1(X) of a curve C from V does not depend on the choice of C , and will be denoted by [V ].

We denote by [C ] ∈ V a point corresponding to the integral rational curve C ⊂ X.

We warn the reader that this is the same notation as for the numerical equivalence class

of the curve C in N1(X). Unfortunately both notations are standard; however, it will be

easy for the reader to understand from the context whether we are considering the point

[C ] in V or in N1(X).

For x ∈ X, we denote by Vx the normalization of the closed subset of V parame-

terizing curves through the point x, and by Locus(Vx)⊆ X the union of all curves of the

family Vx.

We denote by Hom(P1, X,0 �→ x) the scheme parameterizing morphisms from P1

to X sending 0 ∈ P1 to x.

We now recall some well-known properties.

Suppose that x ∈ X is general. Then every curve in Vx is free. This implies

that Vx is smooth, of dimension −KX · [V ] − 2, but possibly not connected. Moreover,

there is a smooth closed subset V̂x ⊂ Hom(P1, X,0 �→ x), which is a union of irre-

ducible components, containing all birational maps f : P1 → X such that f(0)= x and
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8 C. Casagrande and S. Druel

f(P1) is a curve of the family Vx. There is an induced smooth morphism V̂x → Vx,

sending [ f ] to [ f(P1)].

Still for a general point x, if a curve from Vx is smooth at x, then it is parameter-

ized by a unique point of Vx.

We say that an integral rational curve C ⊂ X is standard if the pull-back of TX |C
under the normalization P1 → C is OP1(2)⊕ OP1(1)p ⊕ On−1−p

P1 for some p∈ {0, . . . ,n− 1}.

3 Fano Manifolds Containing a Prime Divisor with Picard Number One

In this section, we study Fano manifolds X having a prime divisor D with ρD = 1, or

more generally dimN1(D, X)= 1. The main technique here is the study of extremal rays

and contractions of X.

The first step for the proofs of Theorems 1.4 and 3.8 is the following lemma. It is

a standard application of Mori theory, in particular the proof can be adapted from [31,

proof of Proposition 5], and follows the same strategy used in [5]. We give a short proof

for the reader’s convenience.

Lemma 3.1. Let X be a Fano manifold of dimension n≥ 3 and Picard number ρX > 1, and

let D ⊂ X be a prime divisor with dimN1(D, X)= 1. Then one of the following holds:

(i) ρX = 2 and there exists a blow-up σ : X → Y with center AY ⊂ Y smooth of

codimension 2, Y is smooth and Fano, and D · R> 0, where R is the extremal

ray of NE(X) generated by the class of a curve contracted by σ ;

(ii) ρX = 2 and there exists a conic bundle σ : X → Y, finite on D, such that Y is

smooth and Fano;

(iii) ρX = 3 and there is a conic bundle ϕ : X → Z , finite on D, such that Z is

smooth, Fano, and ρZ = 1. The conic bundle ϕ is the contraction of a face

R + R̂ of NE(X), where R and R̂ both correspond to a smooth blow-up of a

codimension 2 subvariety. Moreover, D · R> 0, and we have a diagram:

X
σ̂

����
��

��
��

ϕ

��

σ

���
��

��
��

�

Ŷ

π̂ ���
��

��
��

�
Y

π����
��

��
��

Z
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Locally Unsplit Families of Rational Curves 9

where σ is the contraction of R, σ̂ is the contraction of R̂, Y and Ŷ are smooth,

Y is Fano, the center AY ⊂ Y of the blow-up σ is contained in DY := σ(D), and

π and π̂ are conic bundles. �

Proof. Let R be an extremal ray of NE(X) with D · R> 0, and σ : X → Y the associated

contraction.

If R⊂N1(D, X), then every curve contained in D has class in R, hence σ(D) is a

point and D ⊆ Locus(R). We conclude that Locus(R)= X, because D · R> 0. On the other

hand, since ρX > 1, we can find a nontrivial fiber F of σ disjoint from D, which yields

D · R= 0, a contradiction. Therefore R �⊂N1(D, X).

This implies that σ is finite on D, therefore every nontrivial fiber of σ has dimen-

sion 1. Thus, Y is smooth and there are two possibilities: either σ is a conic bundle, or

it is the blow-up of AY ⊂ Y with AY smooth of codimension 2 (see [32, Theorem 1.2]).

If σ is a conic bundle, then ρY = 1 because σ(D)= Y, so we are in case (ii). If σ is

a blow-up and ρY = 1, then we are in case (i).

Assume that σ is a blow-up and ρY ≥ 2, and set DY := σ(D). Then DY is a prime

divisor in Y and N1(DY,Y)= σ∗(N1(D, X)), hence dimN1(DY,Y)= 1. Moreover, AY ⊂ DY.

Let E ⊂ X be the exceptional divisor. We have −KX + E = σ ∗(−KY). If C ⊂ AY is

an irreducible curve, and C ′ ⊂ DY is an irreducible curve not contained in AY, then there

exists λ ∈ Q>0 such that C ≡ λC ′, so that −KY · C = λ(−KY · C ′)= λ(−KX · C̃ )+ λ(E · C̃ ) > 0,

where C̃ is the strict transform of C ′ in X. This implies that Y is Fano (see [32]).

We repeat the same argument in Y and take an extremal ray R2 ⊂ NE(Y) with

DY · R2 > 0.

Similarly, as before we see that R2 �⊂N1(DY,Y), so that again, if π : Y → Z is the

contraction of R2, π is finite on DY and has fibers of dimension at most one. Hence as

before π is either a conic bundle or the smooth blow-up of a subvariety of codimension

2 in Z .

If π is a conic bundle, then ρZ = 1 because π(DY)= Z , so ρX = 3. Set ϕ := π ◦ σ :

X → Z ; then ϕ has a second factorization X
σ̂→ Ŷ

π̂→ Z . Since every fiber of ϕ has dimen-

sion 1, both σ̂ and π̂ have fibers of dimension ≤ 1. Applying [1, Theorem 4.1] we conclude

that ϕ and π̂ are conic bundles, Ŷ is smooth, and σ̂ the blow-up of a smooth subvariety

of codimension 2, so we are in case (iii).

Finally, π cannot be a blow-up. Indeed if so, Exc(π) is a prime divisor

which intersects DY, and since dimN1(DY,Y)= 1, Exc(π) has strictly positive inter-

section with every curve contained in DY. In particular, Exc(π) must intersect AY, as
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10 C. Casagrande and S. Druel

dim AY = n− 2 ≥ 1. If F is a nontrivial fiber of π with F ∩ AY �= ∅, and F̃ ⊂ X is its strict

transform, one has −KX · F̃ <−KY · F = 1, a contradiction. �

Remark 3.2 and Proposition 3.3 describe the possible extremal contractions of X

in the case ρX = 2.

Remark 3.2. Let X be a Fano manifold, and D ⊂ X a prime divisor with dimN1(D, X)= 1.

If D is not nef, then there exists a unique extremal ray R such that D · R< 0; the con-

traction associated to R is divisorial and sends D to a point.

Indeed, let R be an extremal ray of NE(X) such that D · R< 0, and σ the asso-

ciated contraction. Note that Exc(σ )⊆ D since D · R< 0. On the other hand, every curve

contained in D has class in R since dimN1(D, X)= 1. This implies that D = Exc(σ ), and

that σ(D) is a point. �

Proposition 3.3. Let X be a Fano manifold of dimension n≥ 3 and Picard number ρX = 2,

and let D ⊂ X be a nef prime divisor with dimN1(D, X)= 1. Then S := D⊥ ∩ NE(X) is an

extremal ray of X, and one of the following holds:

(i) the contraction of S is a fiber type contraction onto P1, having D as a fiber;

(ii) the contraction of S is divisorial, sends its exceptional divisor G to a point,

and G ∩ D = ∅;

(iii) the contraction of S is small, it has a flip X ��� X′, X′ is smooth, and there is

a P1-bundle ψ : X′ → Y′. Moreover, ψ is finite on the strict transform of D in

X′.

Furthermore, if there exists a smooth, irreducible subvariety A⊂ D, of codimension 2,

such that the blow-up of X along A is Fano, then (iii) cannot happen. �

Proof.

3.3.1. We first note that D is not ample, because N1(D, X)�N1(X). Indeed, the push-

forward of one-cycles N1(D)→N1(X) is not surjective, so that the restriction map

N 1(X)→N 1(D) is not injective. We have N 1(X)∼= H2(X,R) (because X is Fano) and

N 1(D) ↪→ H2(D,R), hence the restriction map H2(X,R)→ H2(D,R) is not injective as

well. By the Lefschetz Theorem on hyperplane sections, D cannot be ample (recall that

n≥ 3).

Since D is nef and nonample, and ρX = 2, we conclude that D⊥ ∩ NE(X) is an

extremal ray S of NE(X). Set G := Locus(S)⊆ X. �
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Locally Unsplit Families of Rational Curves 11

3.3.2. If S ⊂N1(D, X), then the contraction of S sends D to a point, and hence D ⊆ G.

On the other hand D · S = 0, thus D is the pull-back of a Cartier divisor. Therefore, the

target of the contraction of S is P1, D is a fiber, and we are in case (i). �

3.3.3. We assume that S �⊂N1(D, X). If G ∩ D �= ∅, then D must intersect some irreducible

curve C with class in S, and this yields C ⊆ D, because D · C = 0. This contradicts S �⊂
N1(D, X), therefore G ∩ D = ∅. In particular, the contraction of S is birational. Finally,

N1(G, X)⊆ D⊥ has dimension 1; this implies that the contraction of S maps G to points.

If S is a divisorial extremal ray, then we are in case (ii). �

3.3.4. Suppose now that the contraction of S is small; by [4, Corollary 1.4.1] the flip

X ��� X′ of S exists. Let D′ ⊂ X′ be the strict transform of D, S′ the small extremal ray of

X′ associated with the flip, and G ′ := Locus(S′).

Note that G ′ ∩ D′ = ∅, as G ∩ D = ∅.

Note also that X′ has normal, Q-factorial, and terminal singularities, and

Sing(X′)⊆ G ′. We have ρX′ = ρX = 2 and KX′ · S′ > 0; on the other hand, a curve disjoint

from G ′ has positive anticanonical degree. In particular, by the Cone Theorem, X′ has a

second extremal ray T with −KX′ · T > 0, and

NE(X′)= R≥0S′ + R≥0T.

Since the flip X ��� X′ is an isomorphism in a neighborhood of D, the linear sub-

space N1(D′, X′)∼=N1(D, X) stays one-dimensional. Moreover D′ · S′ = 0, hence we must

have D′ · T > 0.

Let ψ : X′ → Y′ be the contraction of T . Arguing as in the proof of Lemma 3.1, we

see that T �⊂N1(D′, X′). Since the contraction of S sends G to points, the contraction of

S′ sends G ′ to points. This implies that every curve in G ′ has class in the extremal ray S′.

We deduce that ψ is finite on both D′ and G ′.

In particular, since D′ · T > 0, every nontrivial fiber of ψ has dimension 1. �

3.3.5. Let C be an irreducible component of a nontrivial fiber of ψ . If C ∩ G ′ �= ∅, then:

−KX′ · C > 1.

Indeed, if C̃ ⊂ X is the strict transform of C , we have −KX′ · C >−KX · C̃ ≥ 1. This follows

from [28, Lemma 3.38], see [6, Lemma 3.8] for an explicit proof. �

3.3.6. We show that ψ is of fiber type. By contradiction, assume that ψ is birational.

Suppose that Exc(ψ) ∩ G ′ �= ∅, and let F0 be an irreducible component of a fiber

of ψ which intersects G ′. Note that F0 �⊆ G ′ (since ψ is finite on G ′), in particular
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12 C. Casagrande and S. Druel

F0 �⊆ Sing(X′). We obtain −KX′ · F0 ≤ 1 by [22, Lemma 1.1], and −KX′ · F0 > 1 by 3.3.5, a

contradiction.

Therefore Exc(ψ) ∩ G ′ = ∅, so that Exc(ψ) is contained in the smooth locus of

X′. By [32, Theorem 1.2], Exc(ψ) is a divisor. We have Exc(ψ) · S′ = 0 and Exc(ψ) · T < 0,

hence −Exc(ψ) is nef, a contradiction.

Thus, ψ is of fiber type. �

3.3.7. We show that ψ : X′ → Y′ is a P1-bundle with X′ and Y′ smooth, so that we are in

case (iii).

Since Sing(X′) cannot dominate Y′, the general fiber of ψ is a smooth rational

curve of anticanonical degree 2.

Suppose that there is a fiber F of ψ such that the corresponding one-cycle is

not integral and G ′ ∩ F �= ∅. Then there is an irreducible component C of F , such that

−KX′ · C ≤ 1. If C ∩ G ′ = ∅, then −KX′ is Cartier in a neighborhood of C , and we must

have −KX′ · C = 1 and −KX′ · (F − C )= 1 (where we consider F as a one-cycle). Thus, up

to replacing C with another irreducible component of F , we may assume that C ∩ G ′ �= ∅,

and −KX′ · C ≤ 1; but this contradicts 3.3.5.

By [27, Theorem II.2.8], ψ is smooth in a neighborhood of ψ−1(ψ(G ′)). Thus

Sing(X′)=ψ−1(Sing(Y′) ∩ ψ(G ′)), because Sing(X′)⊆ G ′. This implies that Sing(X′)= ∅,

since ψ is finite on G ′. In particular, Y′ is smooth (see [1, Theorem 4.1(2)] and refer-

ences therein), ψ is a conic bundle, and either the discriminant locus Δ of ψ has pure

codimension 1 or Δ= ∅. If Δ �= ∅, then Δ is an ample divisor in Y′, because ρY′ = 1.

Hence ψ(G ′) ∩Δ �= ∅ (ψ is finite on G ′ and dim G ′ ≥ 1), a contradiction. This proves that

ψ : X′ → Y′ is a P1-bundle with X′ and Y′ smooth. �

3.3.8. Suppose now that we are in case (iii), and that there is a smooth irreducible sub-

variety A⊂ D of codimension 2, such that the blow-up of X along A is Fano. We show

that this gives a contradiction.

Let A′ ⊂ D′ the strict transform of A, and let us consider the divisor ψ∗(ψ(A′)) in

X′. Since ψ∗(ψ(A′)) · T = 0, we must have ψ∗(ψ(A′)) · S′ > 0. Therefore, we find a fiber F ′

of ψ which intersects both A′ and G ′.

Let F ⊂ X be the strict transform of F ′. As in 3.3.5, we see that −KX · F <

−KX′ · F ′ = 2, so that −KX · F = 1. On the other hand, F ∩ A �= ∅ and F �⊆ A, hence the

strict transform of F in the blow-up of X along A should have nonpositive anticanonical

degree, a contradiction. ��
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Locally Unsplit Families of Rational Curves 13

Fig. 1. The blow-up σ .

We will show that any Fano manifold X with ρX = 3 having a prime divisor D

with dimN1(D, X)= 1 is isomorphic to one of the varieties described below.

We first recall the following definition for the reader’s convenience. Let L

be an ample line bundle on a normal projective variety Z . Consider the P1-bundle

Y = PZ (OZ ⊕ L ), with natural projection π : Y → Z . The tautological line bundle OY(1)

is semiample on Y. For m � 0, the linear system |OY(m)| induces a birational morphism

Y → Y0 onto a normal projective variety, contracting the divisor E = PZ (OZ )∼= Z ⊂ Y cor-

responding to the projection OZ ⊕ L � OZ to a point. Following [3], we call Y0 the normal

generalized cone over the base (Z ,L ).

Example 3.4. Fix integers n, a, and d, such that n≥ 3, a≥ 0, and d≥ 1.

Let Z be a Fano manifold of dimension n− 1, with ρZ = 1. Let OZ (1) be the ample

generator of Pic(Z). If m is an integer, then we write OZ (m) for OZ (1)⊗m. Let moreover

A∈ |OZ (d)| be a smooth hypersurface.

Set Y := PZ (OZ ⊕ OZ (a)), and let π : Y → Z be the P1-bundle.

If a> 0, then there is a birational contraction Y → Y0 sending a divisor GY to a

point, where Y0 is the normal generalized cone over (Z ,OZ (a)). We have GY
∼= Z , GY is a

section of π , and NGY/Y
∼= OZ (−a).

If a= 0, then Y ∼= Z × P1. Let GY be a fiber of Y → P1. We have GY
∼= Z , GY is a

section of π , and NGY/Y
∼= OZ .

Let now ĜY
∼= Z ⊂ Y be a section of π with normal bundle NĜY/Y

∼= OZ (a). Note

that GY ∩ ĜY = ∅ if a> 0. If a= 0, we choose ĜY such that GY ∩ ĜY = ∅. Set AY := ĜY ∩
π−1(A). Finally, let σ : X → Y be the blow-up of AY (see Figure 1). �

Then X is a smooth projective variety of dimension n, with ρX = 3.

Let G, Ĝ ⊂ X be the transforms of GY, ĜY ⊂ Y, respectively. Then G ∼= Ĝ ∼= Z ,

NG/X
∼= OZ (−a), and NĜ/X

∼= OZ (−(d− a)).
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14 C. Casagrande and S. Druel

Table 1. Intersection table in X.

F F̂ CG CĜ CG + aδ F̂

E −1 1 0 dδ aδ

Ê 1 −1 dδ 0 (d− a)δ

G 0 1 −aδ 0 0

Ĝ 1 0 0 −(d− a)δ 0

−KX 1 1 (iZ − a)δ (iZ − (d− a))δ iZ δ

The composition ϕ := π ◦ σ : X → Z is a conic bundle, and has a second

factorization:

X
σ̂

����
��

��
�� σ

���
��

��
��

�

ϕ

��

Ŷ

π̂ ���
��

��
��

�
Y

π����
��

��
��

Z

where Ŷ = PZ (OZ ⊕ OZ (d− a)). The images σ̂ (G) and σ̂ (Ĝ) are disjoint sections of the

P1-bundle π̂ : Ŷ → Z , with normal bundles Nσ̂ (G)/Ŷ = OZ (d− a) and Nσ̂ (Ĝ)/Ŷ = OZ (a − d).

Moreover, σ̂ is the blow-up of Ŷ along the intersection σ̂ (G) ∩ π̂−1(A).

Set E := Exc(σ ) and Ê := Exc(σ̂ ), and let F ⊂ E and F̂ ⊂ Ê be exceptional fibers

of σ and σ̂ , respectively. Let moreover C Z ⊂ Z be an irreducible curve having minimal

intersection with OZ (1), and set δ := OZ (1) · C Z . Finally, let CG ⊂ G and CĜ ⊂ Ĝ be curves

corresponding to C Z . We have the following relations of numerical equivalence:

CG + aδ F̂ ≡ CĜ + (d− a)δF, dG + aÊ ≡ dĜ + (d− a)E, (3.1)

and the relevant intersections are shown in Table 1, where iZ is the index of Z , that is,

the integer defined by OZ (−KZ )∼= OZ (iZ ).

Lemma 3.5. The cone NE(X) is closed and polyhedral.

If a= 0, then NE(X) has three extremal rays, generated by the classes of F , F̂ ,

and CĜ , with loci E , Ê , and Ĝ, respectively.

If a≥ d, then NE(X) has three extremal rays, generated by the classes of F , F̂ ,

and CG , with loci E , Ê , and G, respectively.
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Locally Unsplit Families of Rational Curves 15

If instead 0< a<d, then NE(X) is nonsimplicial and has four extremal rays,

generated by the classes of F , F̂ , CG , and CĜ , with loci E , Ê , G, and Ĝ, respectively. �

Proof. Set R := R≥0[F ], R̂ := R≥0[F̂ ], S := R≥0[CG ], and Ŝ := R≥0[CĜ ]. We already know that

R and R̂ are extremal rays of N̄E(X), and that R + R̂ is a face.

Since E := OZ ⊕ OZ (a) is nef and nonample, OY(ĜY)= OPZ (E )(1) is nef and non-

ample in Y, and the same holds for σ ∗(ĜY)= Ĝ + E in X. It is not difficult to see that

(Ĝ + E)⊥ ∩ N̄E(X)= R + S. In particular, this shows that S is an extremal ray of N̄E(X),

so that there exists a nef divisor H such that H⊥ ∩ N̄E(X)= S.

If 0< a<d, then similarly as before σ̂ (G) is nef and nonample in Ŷ, so that

σ̂ ∗(σ̂ (G))= G + Ê is nef in X. The plane (G + Ê)⊥ intersects N̄E(X) along the face R̂ + Ŝ;

in particular, Ŝ is an extremal ray.

Finally, the divisor

D := (−Ĝ · CĜ)H + (H · CĜ)Ĝ

is nef, it is not numerically trivial, and D · S = D · Ŝ = 0. Therefore D⊥ ∩ N̄E(X)= S + Ŝ,

and we obtain the statement in the case 0< a<d.

If instead a≥ d, then σ̂ (Ĝ) is nef, nonample in Ŷ, so that Ĝ = σ̂ ∗(σ̂ (Ĝ)) is nef, and

does not intersect G. We obtain Ĝ⊥ ∩ N̄E(X)= R̂ + S, which gives the statement in the

case a≥ d.

The case a= 0 follows from the case a= d, see Remark 3.7. �

A straightforward consequence of Lemma 3.5 is the following.

Remark 3.6. X is Fano if and only if a≤ iZ − 1 and d− a≤ iZ − 1.

Indeed, since NE(X) is closed and polyhedral, X is Fano if and only if every

extremal ray of NE(X) has positive intersection with the anticanonical divisor (see

Table 1). �

Remark 3.7. Suppose that a≤ d. Then by choosing a′ = d− a, we get a variety X′ isomor-

phic to X, with the roles of Y and Ŷ interchanged. �

Example 1.6 is a special case of this example, with Z = Pn−1, and the additional

condition a≤ d.

We are now in position to prove the main result of this section; see [15] for a

related result.
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16 C. Casagrande and S. Druel

Theorem 3.8. Let X be a Fano manifold of dimension n≥ 3 and Picard number ρX = 3,

and let D ⊂ X be a prime divisor with dimN1(D, X)= 1. Then X is isomorphic to one of

the varieties described in Example 3.4. �

Note that if X is as in Example 3.4, then G is a prime divisor with ρG = 1, and

hence dimN1(G, X)= 1.

Proof of Theorem 3.8.

3.8.1. As ρX = 3, we are in case (iii) of Lemma 3.1, and there is a conic bundle ϕ : X → Z ,

finite on D. We keep the same notation as in Lemma 3.1; in particular, we recall the

diagram:

X
σ̂

����
��

��
��

ϕ

��

σ

���
��

��
��

�

Ŷ

π̂ ���
��

��
��

�
Y

π����
��

��
��

Z

We set E := Locus(R) and Ê := Locus(R̂). Note that D �= Ê because ϕ is finite on D, hence

D · R̂≥ 0. Thus, we may have D · R̂> 0 (if D ∩ Ê �= ∅) or D · R̂= 0 (if D ∩ Ê = ∅). In the first

case, σ : X → Y and σ̂ : X → Ŷ have the same properties with respect to X and D, so that

their role is interchangeable, while in the second case the behavior of the two blow-ups

with respect to D is different. �

3.8.2. We show that every prime divisor B ⊂ X must intersect E ∪ Ê .

We first note that σ(B) ∩ σ(Ê) �= ∅ in Y. Indeed, if π(σ(B))= Z , then the claim is

obvious. Otherwise, σ(B)= π−1(ϕ(B)), and the claim follows from ρZ = 1. Thus, if AY ∩
σ(B) �= ∅, then B intersects E . Otherwise, B intersects Ê . �

3.8.3. We show that π : Y → Z is a smooth morphism. Otherwise, it has a nonempty

discriminant divisor Δ⊂ Y, whose inverse image σ−1(Δ) must be disjoint from E ∪ Ê

since X is Fano, which contradicts 3.8.2. �

3.8.4. Let us consider the prime divisor DY = σ(D)⊂ Y. We have N1(DY,Y)=
σ∗(N1(D, X)), hence dimN1(DY,Y)= 1.

We show that up to replacing D with another prime divisor D′ ⊂ X, we can

assume that DY is nef.
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Locally Unsplit Families of Rational Curves 17

Suppose that DY is not nef. Then DY is the exceptional locus of a divisorial con-

traction Y → Y0 sending DY to a point, by Remark 3.2. The exceptional locus of the com-

posite map X → Y0 is D ∪ E , and is contracted to a point in Y0. In particular, D is not nef

either (see for instance [28, Lemma 3.39]).

Let D′ ⊂ X be the pull-back of a general prime divisor in Y0. Then D′ is a prime

nef divisor in X, and D′ ∩ (D ∪ E)= ∅. Note that the classes [D] and [E ] in N 1(X) cannot

be proportional, therefore the planes D⊥ and E⊥ in N1(X) are distinct. As N1(D′, X)⊆
D⊥ ∩ E⊥, we obtain dimN1(D′, X)= 1.

By 3.8.2, we have D′ ∩ Ê �= ∅, hence D′ · R̂> 0. Moreover, as D′ is nef, we must

have σ̂ (D′) nef too. This shows that up to replacing D with D′, and R with R̂, we can

assume that DY is nef. �

3.8.5. By 3.8.4, we can assume that DY is nef. Then Proposition 3.3 applies, and D⊥
Y ∩

NE(Y) is an extremal ray SY of NE(Y). Moreover, since AY ⊂ DY and the blow-up of Y

along AY is Fano, case (iii) of Proposition 3.3 is excluded.

Suppose that we are in case (i) of Proposition 3.3. Then Y ∼= Z × P1 (see for

instance [6, Lemma 4.9]), and DY is a fiber of Y → P1. Since AY ⊂ DY, X is isomorphic

to one of the varieties described in Example 3.4, with a= 0. This completes the proof of

Theorem 3.8 in this case. �

3.8.6. We assume that we are in case (ii) of Proposition 3.3, so that the extremal ray SY is

divisorial, its contraction sends the divisor GY := Locus(SY) to a point, and DY ∩ GY = ∅.

In particular, dimN1(GY,Y)= 1.

Denote by OZ (1) the ample generator of Pic(Z). By Lemma 3.9, GY ⊂ Y is a section

of π : Y → Z , and there exists an integer a> 0 such that NGY/Y
∼= OZ (−a) and Y ∼= PZ (OZ ⊕

OZ (a)). �

3.8.7. Suppose that there exists a section ĜY ⊂ Y of π : Y → Z , disjoint from GY, and

containing AY. We claim that this implies the statement. Indeed, we have

OY(ĜY)= OY(GY)⊗ π∗(OZ (r))

for some r ∈ Z, and since GY ∩ ĜY = ∅, restricting to GY we obtain r = a, and restricting

to ĜY we obtain NĜY/Y
∼= OZ (a). Thus, X is one of the varieties described in Example 3.4,

for a> 0. �

3.8.8. Let G ⊂ X be the strict transform of GY. We have G ∩ (D ∪ E)= ∅ since GY ∩ DY = ∅,

and hence G ∩ Ê �= ∅ by 3.8.2.
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18 C. Casagrande and S. Druel

Let us consider now the image σ̂ (G)⊂ Ŷ. Then σ̂ (G) is a section of π̂ , so that

σ̂ (G)∼= Z and ρσ̂(G) = 1. Moreover, σ̂ (G) contains the center AŶ ⊂ Ŷ of the blow-up σ̂ . This

also implies that Ŷ is Fano, as in the proof of Lemma 3.1. �

3.8.9. Suppose now that there exists a section H ⊂ Ŷ of π̂ : Ŷ → Z , disjoint from σ̂ (G).

Then its strict transform in Y yields a section of π : Y → Z , disjoint from GY, and con-

taining AY, and this implies the statement by 3.8.7.

In order to construct such H , we consider the divisor DŶ := σ̂ (D)⊂ Ŷ. Note that

dimN1(DŶ, Ŷ)= 1, and that the two divisors DŶ and σ̂ (G) are distinct, because G ∩ D = ∅
in X. �

3.8.10. Suppose first that DŶ is not nef. By Remark 3.2, DŶ is the exceptional locus of a

divisorial contraction sending DŶ to a point. Then, by Lemma 3.9, DŶ is a section of π̂ .

Moreover, we have DŶ · C ≥ 0 for every curve C ⊂ σ̂ (G), because DŶ �= σ̂ (G) and

ρσ̂(G) = 1. Since DŶ is not nef, the divisors DŶ and σ̂ (G) must be disjoint, and we can set

H := DŶ. �

3.8.11. We assume now that DŶ is nef. Then Proposition 3.3 applies, and D⊥
Ŷ

∩ NE(Ŷ) is

an extremal ray SŶ of NE(Ŷ).

We claim that case (iii) of Proposition 3.3 cannot happen, namely that SŶ cannot

be small. Indeed, this follows from Proposition 3.3 if AŶ ⊂ DŶ, namely if D ∩ Ê �= ∅. If

instead D ∩ Ê = ∅, then σ̂ (G) ∩ DŶ = ∅, hence the contraction of SŶ sends σ̂ (G) to a point,

and it cannot be small.

Suppose that we are in case (i) of Proposition 3.3. As in 3.8.5 we see that Ŷ ∼=
Z × P1, and DŶ and σ̂ (G) are fibers of the projection Ŷ → P1. Thus, we can define H to be

a general fiber of the projection Ŷ → P1.

Finally, suppose that we are in case (ii) of Proposition 3.3, so that the contraction

of SŶ is divisorial. By Lemma 3.9, Locus(SŶ) is a section of π̂ . So if Locus(SŶ) ∩ σ̂ (G)= ∅,

we set H := Locus(SŶ).

If instead Locus(SŶ) ∩ σ̂ (G) �= ∅, then we obtain Locus(SŶ)= σ̂ (G), because

ρσ̂(G) = 1. Therefore by Lemma 3.9, there is a section H of π̂ disjoint from σ̂ (G). ��

The following result is certainly well known to experts. We include a proof for

lack of references.

Lemma 3.9. Let Y and Z be smooth connected projective varieties, and let π : Y → Z be a

P1-bundle. Let ψ : Y → Y0 be a birational morphism onto a projective variety sending an

effective and reduced divisor G to points. Then Y ∼= PZ (OZ ⊕ M ) for some line bundle M
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Locally Unsplit Families of Rational Curves 19

on Z so that G identifies with the section of π corresponding to OZ ⊕ M � M . Moreover,

M ⊗−1 is ample. �

Proof. By replacing ψ with its Stein factorization, we may assume that Y0 is normal

and that ψ has connected fibers.

We show that G is a section of Y → Z . Note that π is finite on G.

Let B ⊂ Z be a general smooth connected curve, and set S := π−1(B). Then G ∩ S

is a reduced curve; let C be an irreducible component of G ∩ S. Moreover, let C0 ⊂ S be a

minimal section, and f ⊂ S a fiber of π . Then C �= f . Set e = −C 2
0 .

Suppose that C �= C0. Then C ≡ aC0 + bf, where a∈ Z>0, b ≥ ae if e ≥ 0, and 2b ≥ ae

if e< 0 (see [17, Propositions V.2.20 and V.2.21]). Thus,

C 2 = (aC0 + bf)2 = −a2e + 2ab = a(−ae + 2b)≥ 0.

On the other hand, the restriction of ψ to S induces a birational morphism ψ|S : S →ψ(S)

sending C to a point, and hence C 2 < 0, yielding a contradiction. Thus C = C0, hence

G ∩ S = C0. This completes the proof of the first assertion.

Set G := π∗OY(G). Then G is a locally free sheaf of rank 2 that fits into a short

exact sequence

0 → OZ → G → M → 0

corresponding to a class α ∈ H1(Z ,M ⊗−1), Y identifies with PZ (G ), OY(G) with the tau-

tological line bundle OPZ (G )(1), and G corresponds to G � M .

We denote by 2G the nonreduced closed subscheme of Y defined by the ideal

sheaf OY(−2G). By [12, Lemme 3.2 and Lemme 3.3], we have

Pic(G)⊕ H1(Z ,M ⊗−1)∼= Pic(2G)

and, under the above isomorphism, (0, α) maps to the class of (OPZ (G )(1)⊗ π∗M ⊗−1)|2G .

Let H be an ample line bundle on Y0. Then there exists m ∈ Z>0 such that ψ∗H ∼=
OPZ (G )(m)⊗ π∗M ⊗−m. This implies that (OPZ (G )(m)⊗ π∗M ⊗−m)|2G

∼= O2G . Hence we must

have α= 0, and G ∼= OZ ⊕ M . Let G ′ be the section of Y → Z corresponding to G ∼= OZ ⊕
M � OZ . Then G ∩ G ′ = ∅, therefore ψ∗H |G ′ is ample. But ψ∗H |G ′ ∼= M ⊗−m under the

isomorphism G ′ ∼= Z . This completes the proof of the lemma. �
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20 C. Casagrande and S. Druel

4 Fano Manifolds with a Locally Unsplit Family of Rational Curves of Anticanonical

Degree n

In this section, we prove Theorem 1.4 and Proposition 4.7. We start with the following

observations.

Remark 4.1. Let V be a locally unsplit dominating family of rational curves on a smooth

projective variety X of dimension n, and suppose that the curves of the family have

anticanonical degree n. Let x be a general point, and let Locus(Vx)⊆ X be the union of all

curves parameterized by Vx. Then, by [27, Corollaries IV.2.6.3 and II.4.21], we have that

Locus(Vx) is a divisor and N1(Locus(Vx), X)= R[V ]. �

Remark 4.2. Let X be a Fano manifold, and recall that lX is the minimal anticanonical

degree of a locally unsplit dominating family of rational curves in X.

If x ∈ X is a general point, then every irreducible rational curve C through x

has anticanonical degree at least lX, see [27, Theorem IV.2.4]. This implies that lX can

equivalently be defined as the minimal anticanonical degree of a dominating family of

rational curves in X. �

Proof of Theorem 1.4. Since lX = n, there is a locally unsplit dominating family V of

rational curves of anticanonical degree n. Thus, by Remark 4.1 X contains a prime divi-

sor D with dimN1(D, X)= 1, so that we can apply Lemma 3.1.

Since lX = n> 2, we know that X cannot have a conic bundle structure. Therefore,

Lemma 3.1 yields that ρX = 2 and there exists σ : X → Y such that Y is smooth with

dim Y = n and ρY = 1, and σ is the blow-up of A⊂ Y smooth of codimension 2.

Let E ⊂ X be the exceptional divisor; we have −KX + E = σ ∗(−KY).

Let W be a locally unsplit dominating family of rational curves in Y, C ⊂ Y a

general curve of the family, and C̃ ⊂ X its strict transform. By [27, Proposition II.3.7],

C ∩ A= ∅, and hence E · C̃ = 0. Moreover, C̃ moves in a dominating family W̃ of rational

curves in X, so that −KX · C̃ ≥ n. This yields −KY · C ≥ n.

We show that −KY · [W]>n. We argue by contradiction, and assume that −KY ·
[W] = n. Consider a curve C as above. Then we have −KX · C̃ = n. Since −KX · [W̃] = n= lX,

the family W̃ is locally unsplit.

Now for a general point x1 ∈ X, again by Remark 4.1, Locus(W̃x1) is a divisor

with N1(Locus(W̃x1), X)= R[W̃]. Since E · [W̃] = 0, the divisor Locus(W̃x1) must be disjoint

from E , thus its image in Y is disjoint from A. This gives a contradiction, because every

nontrivial effective divisor in Y is ample (recall that ρY = 1).
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Locally Unsplit Families of Rational Curves 21

We conclude that W has anticanonical degree n+ 1, so that Y ∼= Pn by

Theorem 1.1.

Now, if �⊂ Pn is a line intersecting A in at least two points, and �̃⊂ X is its strict

transform, then −KX · �̃ <n. We deduce that the secant variety Sec(A) of A is not the

whole Pn, and this implies that A is degenerate (see for instance [29, Theorem 3.4.26]).

Finally, one can check that since X is Fano, the degree d of A is at most n, completing the

proof. �

We need some preliminary results for Proposition 4.7, which is the main result

of this section.

Lemma 4.3. Let X and Y be smooth projective varieties, and let π : X → Y be a surjective

morphism with connected fibers. Let V be a locally unsplit dominating family of rational

curves on X. Suppose that π does not contract any curve from V .

(1) If KX/Y · [V ] ≤ 0, then KX/Y · [V ] = 0.

(2) Suppose moreover that −KX · [V ] = dim Y + 1, and that for a general x ∈ X,

and for every [C ] ∈ Vx, the map π|C : C → π(C ) is birational. Then Y ∼= Pdim Y. �

Proof. Let x be a general point in X, and let [C ] ∈ Vx be a general curve. Set � := π(C ),

and let m be the positive integer such that π∗C = m�. Note that � is a free curve and

hence yields a smooth point in RatCurvesn(Y). Let VY be the irreducible component of

RatCurvesn(Y) which contains [�]. We set y := π(x). We also set V ′
x := {[C ] ∈ V | x ∈ C } ⊆ V ,

and similarly we define (VY)
′
y ⊆ VY (recall that Vx is the normalization of V ′

x, and (VY)y that

of (VY)
′
y). Note that V ′

x has pure dimension −KX · [V ] − 2, and since VY is a dominating

family, (VY)
′
y has pure dimension −KY · [VY] − 2.

Let us consider the morphism π∗ : V → Chow(Y) induced by the pushforward

morphism Chow(X)→ Chow(Y) (see [27, Theorem I.6.8]). We claim that π∗ is finite

on V ′
x. Suppose otherwise, and let T ⊆ V ′

x be an irreducible complete curve con-

tained in a fiber of π∗. We set Locus(T) := ∪t∈TCt ⊆ X. Then dim Locus(T)= 2, and

dimN1(Locus(T))= 1 by [27, Corollary II.4.21]. This implies that π is finite on Locus(T),

thus dimπ(Locus(T))= 2. On the other hand, �′ := π(Ct) does not depend on t ∈ T ,

because T is contained in a fiber of π∗. Hence π(Locus(T))= �′, a contradiction. This

proves that π∗ is finite on V ′
x.

Therefore, the rational map V ′
x ��� (VY)

′
y sending [C ] ∈ V ′

x to 1
mπ∗[C ] = [�] ∈ (VY)

′
y is

generically finite, and hence dim(VY)
′
y ≥ dim V ′

x. We obtain

−KY · [VY] = dim(VY)
′
y + 2 ≥ dim V ′

x + 2 = −KX · [V ].
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22 C. Casagrande and S. Druel

Suppose from now on that KX/Y · [V ] ≤ 0. Then

−KX · [V ] ≥ −mKY · [VY],

and thus m = 1 and −KX · [V ] = −KY · [VY], proving (1).

We proceed to prove (2). Since −KY · [VY] = dim Y + 1, by Theorem 1.1 it is enough

to show that VY is a locally unsplit family of rational curves on Y. Let X0 be a dense open

subset of X such that for every point x ∈ X0

• for any curve [C ] ∈ Vx, C is a free curve,

• Vx is proper, and

• for any curve [C ] ∈ Vx, π|C : C → π(C ) is birational.

Let V0 be the open subset of V consisting of points [C ] such that C ∩ X0 �= ∅. Observe

that (π∗)|V0 : V0 → Chow(Y) factors through VY → Chow(Y). We still denote by (π∗)|V0 the

induced morphism V0 → VY.

Since V ′
x is proper, to prove that VY is a locally unsplit family of rational curves,

it is enough to show that (π∗)|V ′
x

: V ′
x → (VY)

′
y is dominant.

Consider the universal families U0 → V0 and UY → VY, and the evaluation mor-

phisms e : U0 → X and eY : UY → Y. Note that e is flat by [27, Corollary II.3.5.3 and

Theorem II.2.15]. We have a commutative diagram:

X

π

��

U0

μ

��

e
��

p
�� V0

(π∗)|V0

��

Y UY

pY

��
eY

�� VY

Recall from the proof of (1) that dim(π∗)|V0(V
′
x)= dim(VY)

′
y. This implies that (π∗)|V0 is

dominant, and hence so is μ.

On the other hand, since V ′
x = p(e−1(x)) and (VY)

′
y = pY(e

−1
Y (y)), we also have a

commutative diagram:

e−1(x) ��

μ|e−1(x)

��

V ′
x

(π∗)|V ′
x

��

e−1
Y (y) �� (VY)

′
y

where the horizontal arrows are finite and surjective, and (π∗)|V ′
x

is finite by the proof

of (1). Therefore, μ|e−1(x) : e−1(x)→ e−1
Y (y) is finite, and to show that (π∗)|V ′

x
: V ′

x → (VY)
′
y is

dominant, it is enough to show that μ|e−1(x) : e−1(x)→ e−1
Y (y) is dominant.
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Consider now Z ⊂ U0 a general fiber of the composition π ◦ e : U0 → Y; Z has pure

dimension dim U0 − dim Y.

π−1(y) Z
e|Z

��

μ|Z
��

e−1
Y (y)

Let F be an irreducible component of e−1
Y (y), and let Z0 be an irreducible component

of Z dominating F under μ. Since e is flat, Z0 must also dominate π−1(y) under e.

Thus, for x ∈ π−1(y) general, e−1(x) ∩ Z0 is nonempty and has pure dimension dim Z0 −
dimπ−1(y)= dim e−1(x)= dim e−1

Y (y)= dim F . Finally, μ is finite on e−1(x) ∩ Z0, so that

e−1(x) ∩ Z0 dominates F under μ.

We conclude that μ|e−1(x) : e−1(x)→ e−1
Y (y) is dominant, completing the proof of

the lemma. �

Lemma 4.4. Let X and Y be smooth projective varieties, and let π : X → Y be a P1-bundle.

Let V be a locally unsplit dominating family of rational curves on X with −KX · [V ] =
dim(X)≥ 3. Set n:= dim(X). Then X ∼= P1 × Pn−1, and V is the family of lines in the

Pn−1’s. �

Proof. Let x be a general point in X, V ′
x an irreducible component of Vx, and U ′

x → V ′
x

the universal family. Let U ′
x → X be the evaluation morphism, and U ′

x → T its Stein fac-

torization. Then T is a normal generalized cone; in particular, ρT = 1 by [27, Corollary

II.4.21].

We claim that the composite map T → X → Y is finite; in particular, it is dom-

inant. Suppose otherwise. Then, by [27, Corollary II.4.21], π sends every curve in D :=
Locus(V ′

x) to a point. Thus −KX · [V ] = 2, yielding a contradiction.

Set Z := T ×Y X, with natural morphisms τ : Z → T , and ν : Z → X.

Z
ν

��

τ

��

X

π

��

T �� Y
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24 C. Casagrande and S. Druel

Note that τ is a P1-bundle. Let TZ ⊂ Z be the section of τ induced by T → X; we have

ν(TZ )= D. Then Z ∼= PT (E ), where E := τ∗OZ (TZ ) is a rank 2 vector bundle on T that fits

into a short exact sequence

0 → OT → E → M → 0,

with M a line bundle on T . Moreover, E � M corresponds to the section TZ , and OZ (TZ )

identifies with the tautological line bundle, so that OZ (TZ )|TZ
∼= τ ∗M|TZ .

We prove that KX/Y · [V ] ≤ 0. Suppose otherwise. We have

OZ (KZ/T )∼= OZ (−2TZ )⊗ τ ∗M ,

and therefore

OZ (KZ/T )|TZ
∼= OZ (−TZ )|TZ .

Let [C ] ∈ V ′
x, and let C Z be an irreducible component of ν−1(C ) contained in TZ .

Then, by the projection formula:

−TZ · C Z = KZ/T · C Z = ν∗(KX/Y) · C Z = mKX/Y · C > 0,

where m ∈ Z>0 is such that ν∗C Z = mC . This implies that M · τ∗C Z < 0.

Let now [C ′] ∈ V be a general point, and C ′
Z an irreducible component of ν−1(C ′)

not contained in TZ . Then, as above, we must have KZ/T · C ′
Z > 0. On the other hand,

TZ · C ′
Z ≥ 0 since C ′

Z �⊂ TZ , and M · τ∗C ′
Z < 0 because ρT = 1. This implies that

KZ/T · C ′
Z = −2TZ · C ′

Z + M · τ∗C ′
Z < 0,

yielding a contradiction. Therefore KX/Y · [V ] ≤ 0, and Lemma 4.3(1) yields KX/Y · [V ] = 0.

Let x ∈ X be a general point, [C ] ∈ Vx, and set y := π(x) and � := π(C ). We show

that π|C : C → � is birational. Let F be the normalization of π−1(�), and let �̃ be the nor-

malization of �. Let C ′ be the strict transform of C in F. By the projection formula, we

have K
F/�̃ · C ′ = KX/Y · C = 0. This implies that F ∼= �̃× P1, and that C ′ is a fiber of F → P1,

proving our claim.

Therefore Y ∼= Pn−1 by Lemma 4.3(2), and T = D is a section of π . Since

KX/Y · [V ] = 0, we must have M ≡ 0, and hence M ∼= OPn−1 . Finally, E ∼= O⊕2
Pn−1 , since

h1(Pn−1,OPn−1)= 0. This completes the proof of the lemma. �

Lemma 4.5. Let X be a Fano manifold of dimension n≥ 3 and Picard number ρX = 2,

and suppose that X has a locally unsplit dominating family of rational curves V of
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anticanonical degree n. Let D ⊂ X be an irreducible component of Locus(Vx) for a general

point x ∈ X.

Then one of the following holds:

(a) X is the blow-up of Pn along a linear subspace of codimension 2;

(b) X ∼= P1 × Pn−1;

(c) D⊥ ∩ NE(X) is an extremal ray of X, whose associated contraction is divi-

sorial and sends its exceptional divisor to a point; the other extremal con-

traction of X is either a (singular) conic bundle, or the blow-up of a smooth

variety along a smooth subvariety of codimension 2. �

Remark 4.6. The only examples known to the authors of Fano manifolds with dimension

n≥ 3, Picard number ρX = 2, and having a locally unsplit dominating family of rational

curves of anticanonical degree n, are P1 × Pn−1 and the varieties from Example 1.3. These

are obtained as the blow-up of Pn along a smooth subvariety A, of dimension n− 2 and

degree d∈ {1, . . . ,n}, contained in a hyperplane. If d= 1, this is case (a) of Lemma 4.5. If

d> 1, this gives an example of case (c) of Lemma 4.5. �

Proof of Lemma 4.5. By Remark 4.1, N1(D, X)= R[V ]. This implies that D is nef since

D · [V ] ≥ 0. Let R be an extremal ray of X such that D · R> 0, and let σ : X → Y be the

contraction of R. By Lemma 3.1, Y is a smooth Fano variety, and either σ is a blow-up

with center AY ⊂ Y smooth of codimension 2, or σ is a conic bundle. Set S := D⊥ ∩ NE(X).

Then S is an extremal ray of X by Proposition 3.3.

Suppose that we are in case (i) of Proposition 3.3. We show that we are in case

(a) or (b). The contraction of S is ϕ : X → P1, D is a fiber, and hence D · [V ] = 0. Let F be

a general fiber of ϕ. Then the family of rational curves from V contained in F is locally

unsplit with anticanonical degree dim(F )+ 1, thus F � Pn−1 by Theorem 1.1.

Let B0 ⊂ P1 be a dense open subset such that X0 := ϕ−1(B0)→ B0 is smooth. By

Tsen’s Theorem, there exists a divisor H0 on X0 such that OF (H0|F )∼= OPn−1(1).

Let H be the closure of H0 in X. Then H is ϕ-ample since ϕ is elementary. If

p∈ P1, then [ϕ∗(p)] · Hn−1 = 1. Therefore, all fibers of ϕ are integral, and by [14, Corollary

5.4] we have X ∼= PP1(E ) with E a vector bundle of rank n on P1. Since X is Fano, it is

not difficult to see that either X ∼= P1 × Pn−1, or X is the blow-up of Pn along a linear

subspace of codimension 2. Thus, we get (a) or (b).

Case (ii) of Proposition 3.3 is (c).

We show that case (iii) of Proposition 3.3 does not occur. Suppose otherwise.

Then the contraction ϕ of S is small, it has a flip X ��� X′, X′ is smooth, and there is a
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26 C. Casagrande and S. Druel

smooth P1-bundle ψ : X′ → Y′. Let [C ] ∈ V be a general point. Then Exc(ϕ) ∩ C = ∅ (see [27,

Proposition II.3.7]). Let V ′ be the irreducible component of RatCurvesn(X′) which con-

tains C ′ the strict transform of C in X′.

We show that V ′ is a locally unsplit dominating family of rational curves on

X′. Let x ∈ X \ Exc(ϕ) be a general point. If Locus(Vx) ∩ Exc(ϕ) �= ∅, then [V ] ∈ S since

N1(Locus(Vx), X)= R[V ] and D · S = 0, and hence Locus(S)= X, yielding a contradiction.

Therefore, Locus(Vx) ∩ Exc(ϕ)= ∅, and hence V ′
x
∼= Vx is proper. This proves that V ′ is a

locally unsplit family of rational curves. Note also that −KX′ · [V ′] = n. By Lemma 4.4,

X′ � P1 × Pn−1, so that X′ does not have small contractions, a contradiction. This com-

pletes the proof of the lemma. �

Finally, we prove the main result of this section.

Proposition 4.7. Let X be a Fano manifold of dimension n≥ 3, and suppose that X has

a locally unsplit dominating family V of rational curves of anticanonical degree n. Then

ρX ≤ 3.

If moreover ρX = 3, then X is isomorphic to one of the varieties described in

Example 1.6, and [V ] ≡ CĜ + (d− a)F , where F is a fiber of σ , and CĜ is the strict trans-

form of a line in ĜY
∼= Pn−1 (notations as in Example 1.6). �

Proof. Let D ⊂ X be an irreducible component of Locus(Vx) for a general point x ∈ X.

Then N1(D, X)= R[V ] by Remark 4.1, and by Lemma 3.1 we have ρX ≤ 3. Note that D is

nef, because D · [V ] ≥ 0.

4.7.1. We assume that ρX = 3. By Theorem 3.8, X is as described in Example 3.4. We

use the notations of Example 3.4 and Theorem 3.8; in particular, we refer the reader to

Table 1 for the intersection table of X. We have to show that Z ∼= Pn−1, that a≤ d, and

that [V ] ≡ CG + aF̂ ≡ CĜ + (d− a)F (see (3.1)). �

4.7.2. Note that G · [V ] = 0. Indeed, if for instance G ∩ D �= ∅, as ρG = 1, then there exists

λ ∈ Q>0 such that [V ] = λ[CG ]. On the other hand, G · [V ] ≥ 0 while G · CG = −aδ ≤ 0, and

we conclude that G · [V ] = 0.

Set m := −KZ · C Z = iZδ > 0. Since [F ], [F̂ ], [CG ] are a basis of N1(X), and we can

write:

[V ] ≡ αF + β F̂ + γCG,

with α, β, γ ∈ Q. Intersecting with G yields β = aγ δ, and intersecting with −KX yields

α = n− mγ :

[V ] ≡ (n− mγ )F + aγ δ F̂ + γCG . (4.1)
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Note that γ > 0, because [F ] belongs to the extremal ray R, and [V ] �∈ R.

Moreover, Ê · [V ] = γ δ(d− a), so we obtain d− a≥ 0.

Finally, we also have Ĝ · [V ] = n− mγ ≥ 0. �

4.7.3. By (4.1), we have

KX/Z · [V ] = KX · [V ] − KZ · ϕ∗[V ] = −n− KZ · γC Z = −n+ γm ≤ 0.

Then Lemma 4.3(1) yields KX/Z · [V ] = 0 and hence γ = n/m, and (4.1) becomes:

[V ] ≡ n

m
(aδ F̂ + CG). (4.2)

�

4.7.4. Let x ∈ X be a general point. We show that ϕ has degree 1 on every curve of Vx.

We proceed by contradiction, and assume that for some [C∞] ∈ Vx, the morphism

C∞ → ϕ(C∞) has degree k≥ 2.

Let �→ ϕ(C∞) be the normalization, set F := �×Z Y, and denote by π|F : F → �

(respectively, ν : F → Y) the natural morphisms.

F
ν

��

π|F
��

Y

π

��

X
σ

��

ϕ����
��

��
�

� �� Z

Let C ′
∞ ⊂ F be the strict transform of σ(C∞)⊂ Y. Let moreover C0 ⊂ F be a minimal

section of π|F, and f ⊂ F a general fiber.

We have GY · σ(C∞)= σ ∗(GY) · C∞ = G · [V ] = 0 by 4.7.2, and σ(C∞) �⊆ GY because

x ∈ C∞ is general, hence GY ∩ σ(C∞)= ∅.

The pull-back of GY to F is precisely C0, so that C ′
∞ ∩ C0 = ∅. Moreover, π|F has

degree k on C ′
∞.

Set a0 := −C 2
0 ∈ Z≥0. Then F ∼= Fa0 , and we obtain

C ′
∞ ≡ k(C0 + a0 f) and − KF · C ′

∞ = k(a0 + 2). (4.3)

Consider now ν∗ĜY ⊂ F. This is a section of π|F disjoint from C0, so that ν∗ĜY ≡
C0 + a0 f . We also have σ ∗ĜY = Ĝ + E , and Ĝ · [V ] = 0 by (4.2), so using the projection
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28 C. Casagrande and S. Druel

formula:

E · C∞ = σ ∗ĜY · C∞ = ĜY · σ(C∞)= ν∗ĜY · C ′
∞ = ka0. (4.4)

Since AY ⊂ ĜY, we have ν−1(AY)⊂ ν∗ĜY. Moreover, C∞ �⊆ E ∪ Ê because x ∈ C∞,

hence ϕ(C∞) �⊆ A, and ν−1(AY) is a zero-dimensional scheme.

We see ν−1(AY) as a zero-dimensional subscheme of ν∗ĜY
∼= P1; in particular, it

is determined by its support and by its multiplicity at each point. We write ν−1(AY)=
h1 p1 + · · · + hr pr. �

4.7.5. Let � : F̃ → F be the blow-up of F along ν−1(AY); note that there is a natural mor-

phism ν̃ : F̃ → X:

F̃

ν̃

��

�

��

X

σ

��
ϕ

��

F
ν

��

π|F
��

Y

π

��

� �� Z

Observe that F̃ is a normal surface, with local complete intersection singularities.

Indeed, locally over pi, F̃ can be described as the blow-up of A2
x,y at the ideal (xhi , y).

In particular, F̃ is smooth at �−1(pi) if hi = 1; otherwise, it has a Du Val singularity of

type Ahi−1.

Set Fi :=�−1(pi) (with reduced scheme structure); then

K
F̃

=� ∗KF +
∑

1≤i≤r

hi Fi, and
∑

1≤i≤r

hi Fi = ν̃∗E . (4.5)

Let C̃ ′
∞ ⊂ F̃ be the strict transform of C ′

∞ ⊂ F. Then ν̃(C̃ ′
∞)= C∞, and using (4.5), (4.3), and

(4.4), we obtain

− K
F̃

· C̃ ′
∞ = −KF · C ′

∞ − E · C∞ = 2k + ka0 − ka0 = 2k. (4.6)

�

4.7.6. The curve C̃ ′
∞ is an integral rational curve in F̃, of anticanonical degree 2k by (4.6).

We fix a point p0 ∈ C̃ ′
∞ such that ν̃(p0)= x. By [27, Theorems II.1.7 and II.2.16], every

irreducible component of RatCurvesn(̃F, p0) containing [C̃ ′
∞] has dimension ≥ 2k − 2 ≥ 2,

because k≥ 2 by assumption.
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Let B ⊆ RatCurvesn(̃F, p0) be an irreducible curve containing [C̃ ′
∞]. If B is proper,

we obtain Locus(B)= F̃ and hence ρF̃ = 1 by [27, Corollary IV.4.21], a contradiction. If

instead B is not proper, the closure of its image in Chow(̃F) contains points correspond-

ing to nonintegral curves. But this gives again a contradiction, because Vx is proper.

We conclude that Z ∼= Pn−1 by Lemma 4.3(2), C Z ⊂ Z is a line, δ = OZ (1) · C Z = 1,

m = −KZ · C Z = n, and γ = 1. Finally, [V ] ≡ aF̂ + CG by (4.2). ��

5 Examples of Locally Unsplit Families of Rational Curves of Anticanonical

Degree n

Let X be one of the varieties introduced in Example 1.6; we use the same notations as in

Examples 1.6 and 3.4, with Z = Pn−1.

We construct a dominating family of rational curves on X, and then show that it

is locally unsplit. Note that the condition a≤ d is necessary to ensure the existence of

such a family, see 4.7.2.

We first consider the case a= 0, so that Y = Pn−1 × P1, and X is the blow-up of

Pn−1 × P1 along A× {p0}, where p0 ∈ P1 is a fixed point. The general curve of the family V

is the strict transform in X of �× {p} ⊂ Y, where p �= p0 and �⊂ Pn−1 is a line. Therefore,

V is a locally unsplit dominating family of rational curves, and for a general point x ∈ X,

Vx is isomorphic to the variety of lines through a fixed point in Pn−1; hence Vx
∼= Pn−2.

Suppose from now on that a> 0, and set

X0 := X � (E ∪ Ê ∪ G ∪ Ĝ).

Let �⊂ Pn−1 be a line not contained in A, and let x ∈ X0 be such that ϕ(x) ∈ �. Set F :=
π−1(�)∼= PP1(OP1 ⊕ OP1(a)), and denote by π|F the restriction of π to F. We have GY ∩ F = C0

the minimal section of π|F, and ĜY ∩ F ∼= P1 is another section with ĜY ∩ F ≡ C0 + af ,

where f is a fiber of π|F (see Figure 2).

Since A⊂ Pn−1 is a hypersurface of degree d, and � �⊂ A, A∩ � is a zero-

dimensional scheme of length d. Moreover, AY ∩ F is isomorphic to A∩ �, because ĜY

is a section of π . In particular, AY ∩ F can be seen as a closed subscheme of �∼= P1, hence

it is determined by its support and by its multiplicity at each point.

Recall that 1 ≤ a≤ d by assumption. Let us consider a closed subscheme W of

AY ∩ F, of length a. Again, W is determined by its support and by its multiplicity at

each point, so that, without loss of generality, we can write W = {p1, . . . , pa}, where pi

are possibly equal points in AY ∩ F (and each pi appears at most hi times, if hi is the

multiplicity of AY ∩ F at pi).
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30 C. Casagrande and S. Druel

Fig. 2. The surface F. Here d= 4, a= 2, AY ∩ F = {p1, p2,q1,q2}, and W = {p1, p2}.

Construction 5.1. We associate to (�,W, x) a smooth rational curve C ⊂ X, of anticanon-

ical degree n, and containing x. �

Set y := σ(x) ∈ F � (π−1(A) ∪ GY ∪ ĜY). We write IW (respectively, Iy) for the ideal

sheaf of W (respectively, y) in F. We claim that

h0(F,OF(C0 + af)⊗ IW ⊗ Iy)= 1,

and that the corresponding curve on F is smooth and irreducible.

Since h0(F,OF(C0 + af))= a + 2, we must have h0(F,OF(C0 + af)⊗ IW ⊗ Iy)≥ 1.

Let C1 ∈ |C0 + af | be a curve containing W and y. Observe first that C1 is irre-

ducible. Otherwise, since C1 · f = 1, there is a unique irreducible component C ′
1 of C1

such that C ′
1 · f = 1 and C1 ≡ C ′

1 + r f for some r ≥ 1 (C ′
1 is a section of π|F). In particu-

lar, C ′
1 ∈ |C0 + bf | with b< a. By [17, Corollary V.2.18], we have b = 0 and C ′

1 = C0. Thus,

C1 = C0 ∪ f1 ∪ · · · ∪ fa where the fi’s are possibly equal fibers of π|F.

Note that W is a subscheme of both C1 = C0 ∪ f1 ∪ · · · ∪ fa and ĜY ∩ F. Since

ĜY ∩ F is disjoint from C0, we must have

W = {p1, . . . , pa} ⊆ ( f1 ∪ · · · ∪ fa) ∩ ĜY.

On the other hand, ĜY intersects transversally any fiber of π|F, thus we obtain

{p1, . . . , pa} = { f1 ∩ ĜY, . . . , fa ∩ ĜY}, and up to renumbering we can assume that fi is the

fiber of π|F containing pi. This implies that y∈ C1 ⊆ π−1(A) ∪ GY, which contradicts our

choice of y. Thus C1 is irreducible, hence it is a section of π|F, and C1
∼= P1.

To show that C1 is unique, let C2 ∈ |C0 + af | be another curve containing W and

y. Then C2 is irreducible, C1 · C2 = a, and {p1, . . . , pa, y} ⊆ C1 ∩ C2, which implies that

C1 = C2. This shows our claim.
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We remark that

AY ∩ C1 = ĜY|C1 . (5.1)

Indeed, C1 is not contained in ĜY, because y �∈ ĜY. Moreover, W ⊆ AY ∩ C1 ⊆ ĜY ∩ C1 and

ĜY · C1 = a, so that W = AY ∩ C1 = ĜY|C1 .

We define C ⊂ X to be the strict transform of C1 ⊂ Y, so that C is a smooth ratio-

nal curve through x. It is not difficult to see that C ≡ CG + aF̂ , and hence −KX · C = n (see

Table 1).

Lemma 5.2. If � ∩ A is either reduced, or has a unique nonreduced point of multiplicity

2, then

TX |C ∼= OP1(2)⊕ OP1(1)n−2 ⊕ OP1 ,

hence C is a standard, free, smooth rational curve. �

Proof. Suppose first that C ∩ (E ∩ Ê)= ∅. This implies that ϕ is smooth in a neigh-

borhood of C , thus the map TX |C → ϕ∗TPn−1 |C is onto. Its kernel is a torsion-free sheaf

of rank 1 on C , hence a locally free sheaf, of degree −KX · C + ϕ∗KPn−1 · C = 0. Since

ϕ∗TPn−1 |C ∼= OP1(2)⊕ OP1(1)n−2, this implies the statement.

Suppose now that C ∩ (E ∩ Ê) �= ∅, and let x1 be a point in this intersection.

Set z1 := ϕ(x1), and let h∈ {1,2} (respectively, k∈ {1,h}) be the multiplicity of z1 in � ∩ A

(respectively, in W ⊆ � ∩ A under the isomorphism ĜY
∼= Pn−1).

Note that E and Ê are Cartier divisors on X, and they do not contain C in their

support.

As σ is an isomorphism on C , we have E|C = C ∩ E ∼= C1 ∩ AY = W. On the other

hand,

(E + Ê)|C = ϕ∗(A)|C = ϕ∗
|C (A|�),

therefore we have the following equalities of divisors on C :

C ∩ Ê = Ê|C = ϕ∗
|C (A|� − W).

In particular, z1 has multiplicity h − k in ϕ∗(C ∩ Ê), and since x1 ∈ C ∩ Ê , we have

h − k> 0. We deduce that h= 2, k= 1, and z1 is the unique nonreduced point in � ∩ A.

As W ∩ (A|� − W)= {z1}, we also deduce that C intersects E ∩ Ê only in x1. More-

over, since C is transverse to E (and to Ê ) in x1, we have

C ∩ E ∩ Ê = {x1}.
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32 C. Casagrande and S. Druel

Now let us consider the tangent morphism dϕ : TX → ϕ∗TPn−1 , which is surjective

outside E ∩ Ê , and has rank n− 2 in every point x ∈ E ∩ Ê , with image TA,ϕ(x). Let us also

consider the natural surjective morphism:

ξ : ϕ∗TPn−1 −→ ϕ∗(TPn−1/TA)|E∩Ê .

Since E and Ê intersect transversally, a local computation shows that the image of dϕ

is the subsheaf of ϕ∗TPn−1 given by the kernel of ξ . In other words, we have an exact

sequence:

TX
dϕ−→ ϕ∗TPn−1

ξ−→ ϕ∗(TPn−1/TA)|E∩Ê −→ 0.

Let us now restrict to the curve C . Then ϕ∗(TPn−1/TA)|E∩Ê∩C = Cx1 is a skyscraper

sheaf, and we have an exact sequence:

TX |C
dϕ|C−→ ϕ∗TPn−1 |C

ξ|C−→ Cx1 −→ 0,

where ξ|C is just the evaluation map.

We have ϕ∗TPn−1 |C ∼= OP1(2)⊕ OP1(1)n−2, and the factor OP1(2)∼= ϕ∗T�|C ⊂ ϕ∗TPn−1 |C is

contained in ker(ξ|C ), because T�,z1 ⊂ TA,z1 . Therefore, we get an induced surjective mor-

phism OP1(1)n−2 → Cx1 , whose kernel is OP1(1)n−3 ⊕ OP1 . This gives an exact sequence

0 −→ OP1(2)−→ ker(ξ|C )−→ OP1(1)n−3 ⊕ OP1 −→ 0,

which yields ker(ξ|C )∼= OP1(2)⊕ OP1(1)n−3 ⊕ OP1 .

Thus, dϕ|C yields a surjective map TX |C → OP1(2)⊕ OP1(1)n−3 ⊕ OP1 . The kernel of

this morphism is a torsion-free sheaf of rank 1 on C , hence a locally free sheaf, of degree

−KX · C − (n− 1)= 1. Finally, the exact sequence

0 −→ OP1(1)−→ TX |C
dϕ|C−→ OP1(2)⊕ OP1(1)n−3 ⊕ OP1 −→ 0

gives the statement. �

Lemma 5.3. Let C ′ be an effective one-cycle in X such that C ′ ≡ C and C ′ ∩ X0 �= ∅.

Then C ′ is integral and is obtained as in Construction 5.1, for some choices of

�′ ⊂ Pn−1, x′ ∈ X, and W′ ⊆ �′ ∩ A. In particular, C ′ is again a smooth, connected rational

curve. �

Proof. Since ϕ∗(C ′)≡ ϕ∗(C ), it follows that ϕ(C ′) is a line �′ in Pn−1, and �′ �⊆ A because

C ′ �⊆ ϕ−1(A)= E ∪ Ê . Moreover, there is a unique irreducible component C ′′ of C ′ that

maps onto �′, and C ′′ → �′ is a birational morphism.
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Therefore, we have

C ′ = C ′′ + F1 + · · · + Fr + F̂1 + · · · + F̂s + e1 + · · · + eh,

where the Fi’s are (possibly equal) fibers of ϕ|E , the F̂i’s are fibers of ϕ|Ê , and the ei’s are

fibers of ϕ over Pn−1 � A. Moreover C ′ ≡ CG + aF̂ , and using Table 1 we obtain

0 = G · C ′ = G · C ′′ + s + h and 0 = Ĝ · C ′ = Ĝ · C ′′ + r + h.

Since C ′′ is irreducible and G ∩ Ĝ = ∅, the intersections G · C ′′ and Ĝ · C ′′ cannot be both

negative; this yields h= 0. Then C ′′ cannot be contained in G ∪ Ĝ, because C ′ is not con-

tained in E ∪ Ê ∪ G ∪ Ĝ. We conclude that r = s = 0, and C ′ = C ′′ is integral.

Set F′ := π−1(�′)⊂ Y, and denote by π|F′ the restriction of π to F′. We consider the

curve C ′
1 := σ(C ′)⊂ F′.

Since π|C ′
1

has degree 1, we have C ′
1 ≡ C ′

0 + r f ′, where C ′
0 = GY ∩ F′ is the minimal

section of π�′ , f ′ is one of its fibers, and r ∈ Z.

On the other hand, we have

−KF′/�′ · C ′
1 = −KY/Pn−1 · C ′

1 = −KY/Pn−1 · C1 = −KF/� · C1 = a,

where C1 := σ(C ). Therefore r = a, and C ′
1 ∈ |C ′

0 + af ′|.
Finally, as E · C ′ = a and C ′

1 is smooth, C ′
1 intersects AY in a zero-

dimensional subscheme W′ of length a. This shows that C ′ is a curve obtained via

Construction 5.1. �

Proof of Proposition 1.7. If a= 0, the statement is clear.

Suppose that a> 0. By Theorem A.5, pairs (�,W) where �⊂ Pn−1 is a line not con-

tained in A, and W ⊆ � ∩ A is a subscheme of length a, vary in an irreducible family of

dimension 2n− 4. Using this, it is not difficult to show that varying (�,W, x), Construc-

tion 5.1 yields an irreducible algebraic family of smooth, connected rational curves in X,

of anticanonical degree n. More precisely, we get a locally closed irreducible subvariety

V0 of RatCurvesn(X) of dimension 2n− 3, whose points correspond to curves C obtained

as in 5.1.

By Lemma 5.2, a general curve C from V0 is free and hence yields a smooth

point in RatCurvesn(X). Moreover, dim[C ] RatCurvesn(X)= −KX · [V ] + n− 3 = 2n− 3.

This implies that the closure V of V0 in RatCurvesn(X) is an irreducible component,

and that V gives a dominating family of curves of anticanonical degree n.

On the other hand, Lemma 5.3 shows that Vx is proper for every x ∈ X0, so that V

is a locally unsplit family. �
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Remark 5.4. Let H be an ample line bundle on X. If 2 ≤ a≤ d− 2, then V is not a

dominating family of rational curves of minimal degree with respect to H . Indeed, the

family W of curves on X whose points correspond to smooth fibers of ϕ is a locally

unsplit dominating family of rational curves, and [W] ≡ F + F̂ . Thus

H · [V ] = 1
2 (H · CG + H · CĜ + aH · F̂ + (d− a)H · F ) >H · [W]. �

Proof of Theorem 1.8. The first part of the statement follows from Proposition 4.7.

Assume that ρX = 3. Then, again by Proposition 4.7, X is isomorphic to one of the vari-

eties described in Example 1.6, and [V ] ≡ CĜ + (d− a)F (notation as in Example 1.6 and

Proposition 4.7). By (3.1), this is the same as [V ] ≡ CG + aF̂ . This means that the curves of

the family V are numerically equivalent to the curves obtained in Construction 5.1. Thus,

Lemma 5.3 implies that the family V coincides with the family of curves constructed in

the proof of Proposition 1.7. �

Proof of Theorem 1.9. As before, we can assume that a> 0. Let x ∈ X0 be a general

point, and set z := ϕ(x) ∈ Pn−1. Let pz : A→ Pn−2 be the morphism of degree d induced

by the linear projection Pn−1 ��� Pn−2 from z, where we see Pn−2 as the variety of lines

� through z in Pn−1. Then the pairs (�,W) such that �⊂ Pn−1 is a line through z, and

W ⊂ A∩ � is a zero-dimensional subscheme of length a, are parameterized by the rela-

tive Hilbert scheme Hz := Hilb[a]
(A/Pn−2).

Since x is general, Hz is integral by Theorem A.1. Therefore, using [17, Corollary

III.12.9], Construction 5.1 can be made relatively over Hz.

One first constructs a subscheme C1 ⊂ Y × Hz, such that the fiber of C1 →Hz over

(�,W) is the curve C1. As C1 intersects AY × Hz along the Cartier divisor ĜY × Hz (see

(5.1)), the strict transform

C ⊂ X × Hz

of C1 ⊂ Y × Hz is isomorphic to C1. In particular, the fiber of ξ : C →Hz over (�,W) is the

curve C .

As C is a smooth rational curve through x, ξ : C →Hz is a P1-bundle with a section

s :Hz → C, given by s(h)= (x,h).

In particular, C is the projectivization of a rank 2 vector bundle over Hz, and it is

locally trivial in the Zariski topology.

Fix a point 0 ∈ P1. Let H0 ⊆Hz be an open subset such that ξ−1(H0)∼= P1 × H0. We

can assume that the section s|H0 , under this isomorphism, is identified with the constant

section {0} × H0.
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Therefore, we get a morphism over H0:

P1 × H0 → X × H0,

which is an embedding on P1 × {h}, and sends (0,h) to (x,h), for every h∈ H0. This yields

a morphism H0 → Hom(P1, X,0 �→ x).

Since x is general, every curve in Vx is free, and Hom(P1, X,0 �→ x) contains a

union of smooth irreducible components V̂x, whose image in RatCurvesn(X, x) is Vx. By

construction, the morphism H0 → Hom(P1, X,0 �→ x) takes values in V̂x.

By [27, Theorem II.2.16], these morphisms glue together and yield a morphism

Ψ :Hz −→ Vx.

By Lemma 5.3, the morphism Ψ is surjective. Moreover, the pair (�,W) deter-

mines uniquely the curve C in Construction 5.1. As C is smooth, it corresponds to a

unique point in Vx; therefore, Ψ is injective.

Finally, Vx being smooth, we conclude that Ψ is an isomorphism, Hz is smooth,

and Vx is irreducible. �

Note that a and a′ = d− a yield not only the same variety X (see Remark 3.7),

but also the same family V of rational curves on X, and Vx
∼= Hilb[a]

(A/Pn−2)∼=
Hilb[d−a]

(A/Pn−2) for general x ∈ X.

The cases a∈ {0,d} and a∈ {1,d− 1} are the simplest ones. For the reader’s con-

venience, we describe explicitly the latter.

Example 5.5. If a= 1, then Y is the blow-up of Pn at a point. Thus, X is the blow-up

of Pn along {p0} ∪ A, where A is smooth, of dimension n− 2, degree d, contained in a

hyperplane H , and p0 �∈ H . This is one of the few examples of Fano manifolds obtained

by blowing-up a point in another manifold, see [5].

The general curve of the family V is the strict transform in X of a line in Pn

intersecting A in one point.

Therefore, for a general point x ∈ X, we have Vx
∼= A∼= Hilb[1]

(A/Pn−2).

From the point of view of the family of curves, this is essentially the same exam-

ple as Example 1.3; see also [19, Example 1.7]. �

Let us consider now the morphism

τx : Vx −→ Cx ⊂ P(T∗
X,x),
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where x is a general point (notation as in the Introduction). We recall the following

useful observation.

Remark 5.6. Let [C ] ∈ Vx. Then τx is an immersion at [C ] if and only if C is standard,

see [18, Proposition 1.4] and [2, Proposition 2.7]. �

As x is general, ϕ : X → Pn−1 is smooth at x, and the differential of ϕ at x induces

the linear projection P(T∗
X,x) ��� P(T∗

Pn−1,z) from the point [TX/Pn−1,x] ∈ P(T∗
X,x).

We have [TX/Pn−1,x] �∈ Cx, because ϕ|C is an isomorphism for every C in Vx, and the

projection restricts to a morphism Π ′ : Cx → Pn−2 = P(T∗
Pn−1,z).

Observe that there is a commutative diagram:

Hz

Φ

��

Ψ

��

Π 		�
��

��
��

�
Vx

τx

�� Cx

Π ′

��
��

��
��

Pn−2

where we have set Φ := τx ◦ Ψ :Hz → Cx.

Proof of Theorem 1.10. Since Π has degree
(d

a

)
, Ψ is an isomorphism, and τx is bira-

tional, we conclude thatΠ ′ has degree
(d

a

)
, therefore Cx ⊂ Pn−1 is a hypersurface of degree(d

a

)
. Moreover, Cx is irreducible, because Vx is.

We have seen in the above example that τx is an isomorphism for a= 1 and

a= d− 1, and the statement is clear if a= 0 or a= d.

We suppose from now on that 2 ≤ a≤ d− 2; note that in particular d≥ 4. Since Ψ

is an isomorphism, the statement follows if we show that the closed subset where Φ is

not an isomorphism (respectively, an immersion) has codimension 1 (respectively, 2).

Let L ⊂ Pn−2 be a general line. Then AL := p−1
z (L) is a smooth plane curve of

degree d, and Π−1(L)= Hilb[a]
(AL/L) is a smooth curve of genus 1 + 1

2

(d
a

)
(a(d− a)− 2)

by Theorem A.1(4).

On the other hand, (Π ′)−1(L) is a plane curve of degree
(d

a

)
, hence it has arithmetic

genus pa = 1
2 (
(d

a

)− 1)(
(d

a

)− 2).

We claim that Φ|Π−1(L) cannot be an isomorphism onto its image. By contradic-

tion, if it were, the two curves should have the same genus, so we obtain((
d
a

)− 1
) ((

d
a

)− 2
)

2
= 1 + 1

2

(
d

a

)
(a(d− a)− 2).
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This yields easily
(

d
a

)= a(d− a)+ 1, or equivalently d(d− 1) · · · (d− a + 1)= a!(a(d− a)+
1). Since a≤ d− 2, we must have

(d− 2) · · · (d− a + 1)≥ a!

2
,

and hence

d(d− 1)= a!(a(d− a)+ 1)

(d− 2) · · · (d− a + 1)
≤ 2(a(d− a)+ 1).

Equivalently, we obtain d2 − (2a + 1)d+ 2a2 − 2 ≤ 0. It is easy to see that this contradicts

the assumption 2 ≤ a≤ d− 2.

We conclude that the closed subset where Φ is not an isomorphism has codi-

mension 1.

Let us consider again the plane curve AL . Since AL → L is a general projection,

every nonreduced fiber contains just one double point. Hence, for every [�] ∈ L, the inter-

section � ∩ A is either reduced, or has a unique nonreduced point, of multiplicity 2. By

Lemma 5.2, for every W ⊆ � ∩ A, the corresponding curve C ⊂ X is standard, therefore τx

is an immersion at Ψ ([W]) by Remark 5.6.

We have shown that Φ is an immersion in every point ofΠ−1(L), hence the closed

subset where Φ is not an immersion has codimension at least 2.

Suppose now that n≥ 4, and let P ⊂ Pn−2 be a general plane. Then AP := p−1
z (P )

is a smooth surface of degree d in P3, and AP → P is the projection from a general point.

Let B ⊂ P2 be the branch curve of this projection. It is classically known that B has

only nodes and cusps, see [9]. Moreover, the fiber of AP → P over a smooth point z∈ B

contains just one double point, the fiber over a node contains two double points, and the

fiber over a cusp contains one triple point (see [9, Proposition 3.7]). The number of nodes

in B depends only on the degree d of AP , and more precisely it is d(d− 1)(d− 2)(d− 3)/2,

see [13, Lemma 3.2(a)].

Since d≥ 4, B contains nodes, and we conclude that there is at least one [�] ∈ P

such that A∩ �= 2p1 + 2p2 + p3 + · · · + pd−2. As a≤ d− 2, we can consider the sub-

scheme W := p1 + p2 + · · · + pa and the point [W] ∈Hz. Note that the points p1 and p2

do appear in W, because a≥ 2. Then by Theorem A.1(2), the tangent space of the fiber

Π−1([�]) at [W] has dimension 2.

On the other hand, as Π ′ is a linear projection from a point, the tangent space

of the fiber (Π ′)−1([�]) at Φ([W]) has dimension at most 1. This shows that Φ is not an

immersion at [W], and hence that the closed subset where Φ is not an immersion has

codimension 2. �
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Corollary 5.7. Let X and V be as in Proposition 1.7. Assume that 2 ≤ a≤ d− 2, and that

n≥ 4. Then nonstandard curves of the family V cover X. �

Proof. This follows from Remark 5.6 and Theorem 1.10. �

Example 5.8 (Fano 3-folds). Let X and V be as in Proposition 1.7, and consider the case

n= 3. Then X is Fano if and only if a≤ 2 and d− a≤ 2, in particular d≤ 4. Thus, the only

case where X is Fano and τx is not an isomorphism is for d= 4 and a= 2. This Fano 3-fold

X is N. 9 in [23, §12.4].

In this case, A⊂ P2 is a smooth quartic, Vx
∼=Hz = Hilb[2]

(A/P1) is a smooth con-

nected curve of genus 7, and Π :Hz → P1 has degree 6. Using Theorem A.1(2), one can

describe precisely the ramification of Π .

On the other hand, Cx ⊂ P2 is an irreducible curve of degree 6 and arithmetic

genus 10. The normalization Hz → Cx is an immersion, but it is not injective. �

Appendix: The Relative Hilbert Scheme

The proof of Theorem 1.9 relies on the following results of independent interest.

Theorem A.1. Fix integers m, a, and d, such that m ≥ 1 and 1 ≤ a≤ d. Let A⊂ Pm+1 be a

smooth hypersurface of degree d, z∈ Pm+1 � A a general point, and pz : A→ Pm the linear

projection from z (where we identify Pm with the variety of lines through z in Pm+1).

(1) The relative Hilbert scheme Hilb[a]
(A/Pm) is an integral local complete inter-

section scheme of dimension m, and the natural morphism

Π : Hilb[a]
(A/Pm)→ Pm

is flat and finite of degree
(d

a

)
.

(2) Let [�] ∈ Pm and [W] ∈Π−1([�]). Write � ∩ A= h1 p1 + · · · + hr pr with hi ≥ 1 and

pi �= pj for i �= j, and W = k1 p1 + · · · + kr pr with 0 ≤ ki ≤ hi. The Zariski tangent

space of the fiber Π−1([�]) at [W] has dimension
∑r

i=1 min(ki,hi − ki).

(3) Π is smooth at [W] if and only if W is a union of irreducible components of

� ∩ A, equivalently: W ∩ (� ∩ A− W)= ∅.

(4) Suppose that m = 1. Then the curve Hilb[a]
(A/P1) is smooth of genus g = 1 +

1
2

(d
a

)
(a(d− a)− 2). �

The following results will be used in the proof of Theorem A.1.
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Lemma A.2. Let h be a positive integer, and set:

Λ := C[t]

(th)
and F := SpecΛ.

Let W be the nonempty closed subscheme of F with ideal I := tkΛ⊆Λ, where k∈
{1, . . . ,h} is an integer. Then:

(1) dimC HomF (IW,OW)= dimC Ext1
F (IW,OW)= min(k,h − k);

(2) Hilb(F ) has dimension zero, Obs(W)= Ext1
F (IW,OW), and the Zariski tangent

space of Hilb(F ) at [W] has dimension min(k,h − k);

(3) Hilb(F ) is smooth at [W] if and only if W = F . �

Proof of Lemma A.2. We have a short sequence of Λ-modules:

0 −→ th−kΛ−→Λ−→ tkΛ= I −→ 0,

where the second morphism is given by 1 �→ tk, so that I ∼=Λ/th−kΛ as Λ-modules. Using

this isomorphism, a direct computation shows that dimC HomΛ(I,Λ/I )= min(k,h − k).

Applying the functor HomΛ(−,Λ/I ) to the above sequence, and using the van-

ishing of Ext1
Λ(Λ,Λ/I ), we get the exact sequence of Λ-modules:

0 −→ HomΛ(I,Λ/I )−→ HomΛ(Λ,Λ/I )

−→ HomΛ(t
h−kΛ,Λ/I )−→ Ext1

Λ(I,Λ/I )−→ 0.

Similarly as before, observe that th−kΛ∼=Λ/I as Λ-modules. Moreover, if π :Λ→Λ/I

is the quotient map, it is easy to see that π∗ : HomΛ(Λ/I,Λ/I )→ HomΛ(Λ,Λ/I ) is an

isomorphism of Λ-modules. Therefore

HomΛ(t
h−kΛ,Λ/I )∼= HomΛ(Λ/I,Λ/I )∼= HomΛ(Λ,Λ/I ),

and we obtain (1):

dimC HomΛ(I,Λ/I )= dimC Ext1
Λ(I,Λ/I )= min(k,h − k).

The Hilbert scheme of F is supported on finitely many points, thus it has dimen-

sion zero. Recall that by [27, Definition I.2.6], the obstruction space Obs(W) is a subspace

of Ext1
F (IW,OW)∼= Ext1

Λ(I,Λ/I ). Then (2) follows from (1) and [27, Theorems I.2.8.1 and

I.2.8.4].

Finally, (3) follows from (2). �
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Lemma A.3. Let p : A→ T be a finite morphism between smooth quasi-projective vari-

eties. Let F be a fiber of p, and W ⊆ F a reduced subscheme of length a. Let Π :

Hilb[a]
(A/T)red → T be the natural morphism. Suppose that F has a unique nonreduced

point at z1, and that z1 ∈ Supp(W).

Then the Hilbert scheme Hilb[a]
(A/T)red is smooth at [W], and there exists a

neighborhood for the Euclidean topology U ⊂ Hilb[a]
(A/T)red (respectively, U1 ⊂ A) of [W]

(respectively, z1) and an isomorphism ι : U1
∼= U (of complex manifolds) such that the

diagram:

U1

p|U1 ���
��

��
��

�

ι

�� U

Π|U����
��

��
��

T

commutes. �

Proof. Recall that the Hilbert–Chow morphism Hilb[a]
(A)→ A(a) := Aa/Sa maps a zero-

dimensional subscheme of length a of A to the associated effective 0-cycle of degree

a. Note that [W] is contained in the open subset of Hilb[a]
(A) where the Hilbert–Chow

morphism is an isomorphism, and that Hilb[a]
(A) is smooth at [W] since [W] is reduced.

Let V ⊂ T be an open neighborhood of p(z1) for the Euclidean topology such

that p−1(V)= U1 ∪ · · · ∪ Ur, Ui ∩ U j = ∅ if i �= j, U1 ⊂ A is an open neighborhood of z1, p|Ui :

Ui → V is an isomorphism (of complex manifolds) for i ≥ 2, and W ∩ Ui �= ∅ if and only if

1 ≤ i ≤ a.

Let us consider the map f : U1 → Aa given by

f(z)= (z, (p|U2)
−1(p(z)), . . . , (p|Ua)

−1(p(z))).

Then f is a holomorphic immersion. Moreover, for every z∈ U1, the points

z, (p|U2)
−1(p(z)), . . . , (p|Ua)

−1(p(z)) ∈ A are pairwise distinct, so that the composition of

f with the quotient map Aa → A(a) is still an immersion. This yields a holomorphic

immersion

ι : U1 −→ Hilb[a]
(A),

such that U := ι(U1)⊂ Hilb[a]
(A/T)red. Moreover, ι is injective, ι(z1)= [W], and

p|U1 =Π|U ◦ ι. Our claim follows easily. �
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Proof of Theorem A.1. Let �⊂ Pm+1 be a line passing through z, and set F := � ∩ A, so

that F is a zero-dimensional subscheme of �� {z} ∼= A1. We have

Π−1([�])= Hilb[a]
(F );

in particular, Π is a finite morphism, and dim Hilb[a]
(A/Pm)≤ m.

Let [W] ∈ Hilb[a]
(A/Pm) be a point over [�] ∈ Pm. Applying Lemma A.2 to every con-

nected component of Π−1([�]), we get (2) and (3), and also that dimC HomF (IW,OW)=
dimC Obs(W). Thus, by [27, Theorems I.2.10.3 and I.2.10.4], any irreducible component

of Hilb[a]
(A/Pm) through [W] has dimension m, and Π is a local complete intersection

morphism. In particular, Hilb[a]
(A/Pm) is a local complete intersection scheme, and Π is

a flat finite morphism.

By (3), Π is étale over [�] if and only if � ∩ A is reduced, that is, pz is étale over

[�]. Therefore, Hilb[a]
(A/Pm) is generically smooth over Pm. In particular, Hilb[a]

(A/Pm) is

generically reduced and hence reduced as it is a Cohen–Macaulay scheme.

We proceed to show that the scheme Hilb[a]
(A/Pm) is irreducible. This follows

from the fact that since z is general, the monodromy group of the projection pz : A→ Pm

is the whole symmetric group Sd, see [10, Proposition 2.3].

Let U ⊂ Pm be a dense open subset such that pz and Π are étale over U . Set

A0 := p−1
z (U )⊆ A and H0 :=Π−1(U )= Hilb[a]

(A0/U ). Since H0 is dense in Hilb[a]
(A/Pm),

and H0 is smooth, we are reduced to show that H0 is connected.

Note that H0 is a closed subscheme of Hilb[a]
(A0), and that every [W] in H0 is a

reduced subscheme of A0, so that H0 is contained in the open subset of Hilb[a]
(A0) where

the Hilbert–Chow morphism Hilb[a]
(A0)→ (A0)

(a) is an isomorphism.

Let [W1] and [W2] be two points in H0 that map to a given point in U . Since any

irreducible component of H0 maps onto U , it is enough to prove that there is a path in

H0 joining [W1] to [W2].

Let [Ŵi] ∈ (A0)
a mapping to [Wi]. Here, we are considering the natural map

(A0)
a → (A0)

(a), composed with the inverse of the Hilbert–Chow morphism. Since the

monodromy group of pz is the symmetric group Sd, there is a path γ : [0,1] → (A0)
a join-

ing [Ŵ1] to [Ŵ2], such that the points in γ (t) are distinct and contained in a fiber of pz, for

every t ∈ [0,1] . This yields a path joining [W1] to [W2] in H0, and proves that Hilb[a]
(A/Pm)

is integral.
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Finally, suppose that m = 1. We show that Hilb[a]
(A/P1) is a smooth curve of

genus

g = 1 + 1

2

(
d

a

)
(a(d− a)− 2).

Note that since the projection pz : A→ P1 is general, there are precisely d(d− 1)

nonreduced fibers, and every nonreduced fiber contains just one nonreduced point, with

multiplicity 2.

Let [W] ∈ Hilb[a]
(A/P1) be a point over [�] ∈ P1. By (3), either Π is étale at [W], or

� ∩ A has a double point, W is reduced, and contains this point in its support. Note that

there are exactly
(d−2

a−1

)
such [W]’s, and that Π has ramification index 2 at any of these

points by Lemma A.3.

If Π is étale at [W], then Hilb[a]
(A/P1) is obviously smooth at [W]. Otherwise,

Hilb[a]
(A/P1) is smooth at [W] by Lemma A.3. This shows that Hilb[a]

(A/P1) is a smooth

curve.

By the Hurwitz formula, we have

2g − 2 = −2

(
d

a

)
+ d(d− 1)

(
d− 2

a − 1

)
=
(

d

a

)
(a(d− a)− 2).

This completes the proof of the theorem. �

Remark A.4. The same proof shows that for every z∈ Pm+1 � A, the relative Hilbert

scheme Hilb[a]
(A/Pm) is a reduced local complete intersection scheme of dimension m,

and that the natural morphism Π : Hilb[a]
(A/Pm)→ Pm is flat and finite of degree

(d
a

)
.

Moreover, (2) and (3) hold true. �

We need also a slightly more general version of the previous construction, as

follows. Let A⊂ Pm+1 be a smooth hypersurface of degree d≥ 1, and fix a∈ {1, . . . ,d}. Set

G := {[�] ∈ G(1,m + 1) | � is not contained in A},

with its universal family U := {([�], z) ∈ G × Pm+1 | z∈ �}. Let us consider the intersection:

I := U ∩ (G × A).

The induced morphism I → G is finite and flat, of degree d; the fiber over a line [�] is � ∩ A.

The relative Hilbert scheme Hilb[a]
(I/G) parameterizes pairs (�,W), where �⊂ Pm+1 is a

line not contained in A, and W is a subscheme of length a of � ∩ A.
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Theorem A.5. The Hilbert scheme Hilb[a]
(I/G) is an integral scheme of dimension

2m. �

Proof. The proof is very similar to that of Theorem A.1, and so we leave some details

to the reader. First, one shows that Hilb[a]
(I/G) is a reduced local complete intersection

scheme of dimension 2m equipped with a finite flat morphism Hilb[a]
(I/G)→ G.

We remark that if z∈ Pm+1 is a general point, and P := {[�] ∈ G | z∈ �}, then P ∼= Pm,

and the inverse image of P in Hilb[a]
(I/G) is the relative Hilbert scheme Hilb[a]

(A/Pm)

of the projection pz : A→ Pm from z. Then, the same argument used in the proof of

Theorem A.1 shows that Hilb[a]
(I/G) is irreducible. This completes the proof of the

theorem. �

Proof of Theorem 1.11. Let X be as in Example 3.1, with n= m + 2. Then the statement

follows from Proposition 1.7, Theorem 1.8, and Theorem A.1. �
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point est de Fano.” Comptes Rendus Mathématique. Académie des Sciences. Paris. 334,

no. 6 (2002): 463–8.

[6] Casagrande, C. “On Fano manifolds with a birational contraction sending a divisor to a

curve.” The Michigan Mathematical Journal 58, no. 3 (2009): 783–805.

[7] Chen, Y., B. Fu, and J.-M. Hwang. “Minimal rational curves on complete toric manifolds and

applications.” Proceedings of the Edinburgh Mathematical Society 57, no. 1 (2014): 111–23.

[8] Cho, K., Y. Miyaoka, and N. Shepherd-Barron. “Characterizations of Projective Space and

Applications to Complex Symplectic Geometry.” Higher-Dimensional Birational Geometry,

1–89. Advanced Studies in Pure Mathematics 35. Tokyo: Mathematical Society of Japan,

2002.

[9] Ciliberto, C. and F. Flamini. “On the branch curve of a general projection of a surface to a

plane.” Transactions of the American Mathematical Society 363, no. 7 (2011): 3457–71.

[10] Cukierman, F. “Monodromy of projections.” Matemática Contemporânea 16 (1999): 9–30,
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