ADDENDUM

Niklas Müller pointed out that the following converse to [DB22, Corollary 1.7] holds.

Proposition. Let (X, D) be a log smooth reduced pair with X projective. Suppose that there exists a smooth morphism with connected fibers $a: X \to A$ onto a torus quotient A. Suppose furthermore that the fibration $(X, D) \to T$ is locally trivial for the analytic topology with typical fiber F being a toric variety with boundary divisor D_{1F} . Then $T_X(-\log D)$ is numerically flat.

Proof. There is an exact sequence

 $0 \to T_{X/A}(-\log D) \to T_X(-\log D) \to a^*T_A \to 0.$

In particular, it suffices to show that $T_{X/A}(-\log D)$ is numerically flat. Since $T_F(-\log D|_F) \cong \mathscr{O}_F^{\oplus \dim F}$, there exists a locally free sheaf \mathscr{G} on A such that $T_{X/A}(-\log D) \cong a^*\mathscr{G}$. Now, the group $\operatorname{Aut}^0(F, D|_F)$ is an algebraic torus and hence a commutative algebraic group. Together with the fact that the fibration $(X, D) \to T$ is locally trivial for the analytic topology, this implies that \mathscr{G} is a locally free sheaf associated to a local system of \mathbb{C} -vector spaces. As a consequence, \mathscr{G} is equipped with a connection. By [M22, Theorem 0.2], \mathscr{G} is then numerically flat. The claim follows easily.

References

- [DB22] Stéphane Druel and Federico Lo Bianco, Numerical characterization of some toric fiber bundles, Math. Z. 300 (2022), no. 4, 3357–3382.
- [M22] Niklas Müller, Locally constant fibrations and positivity of curvature, Preprint arXiv:2212.11530, 2022.