
S. Druel and W. Ou (2021) “Codimension One Foliations with Numerically
Trivial Canonical Class on Singular Spaces II,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–38
https://doi.org/10.1093/imrn/rnab170

Codimension One Foliations with Numerically
Trivial Canonical Class on Singular Spaces II

Stéphane Druel1,∗ and Wenhao Ou2

1Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208,
Institut Camille Jordan, Villeurbanne F-69622, France and 2Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, 55
ZhongGuanCun East Road, Beijing 100190, China

∗Correspondence to be sent to: e-mail: stephane.druel@math.cnrs.fr

In this article, we give the structure of codimension one foliations with canonical

singularities and numerically trivial canonical class on varieties with klt singularities.

Building on recent works of Spicer, Cascini—Spicer and Spicer—Svaldi, we then

describe the birational geometry of rank two foliations with canonical singularities and

canonical class of numerical dimension zero on complex projective three-folds.

1 Introduction

In the last few decades, much progress has been made in the classification of complex

projective (singular) varieties. The general viewpoint is that complex projective varieties

should be classified according to the behavior of their canonical class. Similar ideas

have been successfully applied to the study of global properties of holomorphic

foliations. This led, for instance, to the birational classification of foliations by curves

on surfaces ([5], [28]), generalizing most of the important results of the Enriques–Kodaira

classification. However, it is well known that the abundance conjecture fails already in

ambiant dimension two. In very recent works, a foliated analogue of the minimal model
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2 S. Druel and W. Ou

program is established for rank two foliations on projective three-folds ([32], [11] and

[33]).

The foliated analogue of the minimal model program aims in particular to

reduce the birational study of mildly singular foliations with numerical dimension zero

on complex projective manifolds to the study of associated minimal models, that is,

mildly singular foliations with numerically trivial canonical class on klt spaces. In [27],

motivated by these developments, the authors describe the structure of codimension

one foliations with canonical singularities (we refer to Section 2 for this notion) and

numerically trivial canonical class on complex projective manifolds. This result was

extended by the first-named author to the setting of projective varieties with canonical

singularities in [12]. However, from the point of view of birational classification of

foliations, this class of singularities is inadequate. The main result of this paper settles

this problem in full generality.

Theorem 1.1. Let X be a normal complex projective variety with klt singularities,

and let G be a codimension one foliation on X with canonical singularities. Suppose

furthermore that KG ≡ 0. Then one of the following holds.

(1) There exist a smooth complete curve C, a complex projective variety Y with

canonical singularities, and KY ∼Z 0, as well as a quasi-étale cover f : Y ×
C → X such that f −1G is induced by the projection Y × C → C.

(2) There exist complex projective varieties Y and Z with canonical singulari-

ties, as well as a quasi-étale cover f : Y×Z → X and a foliation H ∼= O dim Z−1
Z

on Z such that f −1G is the pull-back of H via the projection Y × Z → Z.

In addition, we have KY ∼Z 0, Z is an equivariant compactification of a

commutative algebraic group of dimension at least 2, and H is induced by

a codimension one Lie subgroup.

As an immediate consequence, we prove the abundance conjecture in this

setting.

Corollary 1.2. Let X be a normal complex projective variety with klt singularities, and

let G be a codimension one foliation on X with canonical singularities. If KG ≡ 0, then

KG is torsion.
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Codimension One Foliations with Trivial Canonical Class 3

Together with the foliated analogue of the minimal program for rank two

foliations with F-dlt singularities on normal projective three-folds ([32], [11], and [33]),

we obtain the following result.

Corollary 1.3. Let X be a normal complex projective three-fold, and let G be a

codimension one foliation on X with canonical singularities. Suppose furthermore that

ν(KG ) = 0. Then one of the following holds.

(1) There exist a smooth complete curve C, a complex projective variety Y with

canonical singularities and KY ∼Z 0, as well as a generically finite rational

map f : Y × C ��� X such that f −1G is induced by the projection Y × C → C.

(2) There exist a smooth complete curve C of genus one, a complex projective

surface Z with canonical singularities, as well as a generically finite rational

map f : C × Z ��� X and a foliation H ∼= OZ on Z such that f −1G is the pull-

back of H via the projection C × Z → Z. In addition, Z is an equivariant

compactification of a commutative algebraic group and H is induced by a

one-dimensional Lie subgroup.

This paper is a sequel to the article [12] by the first-named author and follows

the same general strategy. The main new (crucial) ingredients are Propositions 4.1

and 6.1. In order to prove these results, one needs to extend the Baum–Bott formula

and the Camacho–Sad formula to surfaces with klt singularities.

Structure of the paper

In section 2, we recall the definitions and basic properties of foliations. We also

establish some Bertini-type results. In section 3, we extend a number of earlier results

to the context of quasi-projective varieties with quotient singularities. In particular,

we extend the Baum–Bott formula as well as the Camacho–Sad formula to this context.

Section 4 prepares for the proof of our main result. We confirm the Ekedahl–Shepherd–

Barron–Taylor conjecture for mildly singular codimension one foliations with trivial

canonical class on projective varieties X with ν(X) = −∞ in Section 5, and then on those

with ν(X) = 1 in Section 6. In section 7, we address codimension one foliations with

numerically trivial canonical class defined by closed twisted rational 1-forms. Section

8 is devoted to the proof of Theorem 1.1 and Corollary 1.3.

Global conventions

Throughout the paper, we work over the complex number field.
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4 S. Druel and W. Ou

Given a variety X, we denote by Xreg its smooth locus.

We will use the notions of terminal, canonical, klt, and lc singularities for pairs

without further explanation or comment and simply refer to [22, Section 2.3] for a

discussion and for their precise definitions.

Given a normal variety X, m ∈ N>0, and coherent sheaves E and G on X, write

E [m] := (E ⊗m)∗∗, det E := (�rank E E )∗∗, and E � G := (E ⊗ G )∗∗. Given any morphism

f : Y → X, write f [∗]E := (f ∗E )∗∗.

2 Foliations

In this section, we have gathered a number of results and facts concerning foliations

that will later be used in the proofs.

Definition 2.1. A foliation on a normal variety X is a coherent subsheaf G ⊆ TX such

that

(1) G is closed under the Lie bracket, and

(2) G is saturated in TX . In other words, the quotient TX/G is torsion-free.

The rank r of G is the generic rank of G . The codimension of G is defined as

q := dim X − r.

The canonical class KG of G is any Weil divisor on X such that OX(−KG ) ∼= det G .

Let X◦ ⊆ Xreg be the open set where G|Xreg
is a subbundle of TXreg

. The singular

locus of G is defined to be X \ X◦. A leaf of G is a maximal connected and immersed

holomorphic submanifold L ⊂ X◦ such that TL = G|L. A leaf is called algebraic if it is

open in its Zariski closure.

The foliation G is said to be algebraically integrable if its leaves are algebraic.

2.1 Foliations defined by q-forms

Let G be a codimension q foliation on an n-dimensional normal variety X. The normal

sheaf of G is N := (TX/G )∗∗. The q-th wedge product of the inclusion N ∗ ↪→ �[1]
X

gives rise to a nonzero global section ω ∈ H0(X, �q
X � det N ) whose zero locus has

codimension at least two in X. Moreover, ω is locally decomposable and integrable. To

say that ω is locally decomposable means that, in a neighborhood of a general point of

X, ω decomposes as the wedge product of q local 1-forms ω = ω1 ∧ · · · ∧ ωq. To say that

it is integrable means that for this local decomposition one has dωi ∧ ω = 0 for every

i ∈ {1, . . . , q}. The integrability condition for ω is equivalent to the condition that G is

closed under the Lie bracket.
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Codimension One Foliations with Trivial Canonical Class 5

Conversely, let L be a reflexive sheaf of rank 1 on X, and let ω ∈ H0(X, �q
X � L )

be a global section whose zero locus has codimension at least two in X. Suppose that ω

is locally decomposable and integrable. Then the kernel of the morphism TX → �
q−1
X �

L given by the contraction with ω defines a foliation of codimension q on X. These

constructions are inverse of each other.

2.2 Foliations described as pull-backs

Let X and Y be normal varieties, and let ϕ : X ��� Y be a dominant rational map that

restricts to a morphism ϕ◦ : X◦ → Y◦, where X◦ ⊆ X and Y◦ ⊆ Y are smooth open

subsets.

Let G be a codimension q foliation on Y. Suppose that the restriction G ◦ of G

to Y◦ is defined by a twisted q-form ωY◦ ∈ H0(Y◦, �q
Y◦ ⊗ det NG ◦). Then, ωY◦ induces a

nonzero twisted q-form

ωX◦ := dϕ◦(ωY◦) ∈ H0(
X◦, �q

X◦ ⊗ (ϕ◦)∗(det NG |Y◦)
)
,

which defines a codimension q foliation E ◦ on X◦. The pull-back ϕ−1G of G via ϕ is the

foliation on X whose restriction to X◦ is E ◦. We will also write G|X instead of ϕ−1G .

2.3 Singularities of foliations

Recently, notions of singularities coming from the minimal model program have shown

to be very useful when studying birational geometry of foliations. We refer the reader

to [28, Section I] for an in-depth discussion. Here, we only recall the notion of canonical

foliation following McQuillan ([28, Definition I.1.2]).

Definition 2.2. Let G be a foliation on a normal complex variety X. Suppose that KG

is Q-Cartier. Let β : Z → X be a projective birational morphism. Then, there are uniquely

defined rational numbers a(E, X, G ) such that

Kβ−1G ∼Q β∗KG +
∑

E

a(E, X, G )E,

where E runs through all exceptional prime divisors for β. The rational numbers

a(E, X, G ) do not depend on the birational morphism β, but only on the valuations asso-

ciated to the E. We say that G is canonical if, for all E exceptional over X, a(E, X, G ) � 0.
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6 S. Druel and W. Ou

We finally recall the behavior of canonical singularities with respect to bira-

tional maps and finite covers.

Lemma 2.3. [12, Lemma 4.2]

Let β : Z → X be a birational projective morphism of normal complex varieties,

and let G be a foliation on X. Suppose that KG is Q-Cartier.

(1) Suppose that Kβ−1G ∼Q β∗KG + E for some effective β-exceptional Q-divisor

on Z. If β−1G is canonical, then so is G .

(2) If Kβ−1G ∼Q β∗KG , then G is canonical if and only if so is β−1G .

Lemma 2.4. [12, Lemma 4.3]

Let f : X1 → X be a quasi-finite dominant morphism of normal complex

varieties, and let G be a foliation on X with KGQ-Cartier. Suppose that any codimension

one component of the branch locus of f is G -invariant. If G is canonical, then so is f −1G .

2.4 Bertini-type results

The present paragraph is devoted to the following auxiliary results.

Lemma 2.5. Let β : X → Y be a birational morphism of smooth quasi-projective

varieties with n := dim X � 3. Let G be a codimension one foliation on X given by

a twisted 1-form ω ∈ H0(X, �1
X ⊗ L ). Suppose that any β-exceptional prime divisor

on X dominates a codimension 2 closed subset in X. If A is a general member of a

very ample linear system |A| on Y, then the zero set of the induced twisted 1-form

ωH ∈ H0(H, �1
H ⊗ L|H) on H := β−1(A) has codimension at least two.

Proof. Set |H| := β∗|A|. Recall that there exists a composition Z → Y of a finite

number of blow-ups with smooth centers such that the induced rational map Z ��� X

is a morphism. This immediately implies that dβ has rank n − 1 at the generic point of

any β-exceptional divisor. Let X◦ be an open set in X with complement of codimension

at least 2 such that G is regular on X◦ and such that dβx(Gx) has rank at least n − 2 at

any point of all β-exceptional divisor in X◦. Consider

I◦ = {
(x, H) ∈ X◦ × |H| such that x ∈ H and Gx ⊆ TxH

}
.

We denote by p : I◦ → X◦ the projection. If x ∈ X◦ \ Exc(β), then p−1(x) ⊂ |H| is a linear

subspace of dimension dim |H| − n. If x ∈ Exc(β), then p−1(x) ⊂ |H| is a linear subspace
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Codimension One Foliations with Trivial Canonical Class 7

of dimension at most dim |H| − (n − 1) since dβx(Gx) has rank at least n − 2 by choice of

X◦. It follows that any irreducible component of I◦ has dimension at most dim |H|. Thus,

general fibers of the second projection q : I◦ → |H| have dimension � 0. Our claim then

follows easily. �

Lemma 2.6. Let ψ : X → Y be a dominant and equidimensional morphism of smooth

quasi-projective varieties with reduced fibers. Suppose in addition that dim Y =
dim X − 1 � 2. Let G be a codimension one foliation on X given by a twisted 1-form

ω ∈ H0(X, �1
X ⊗ L ). Suppose that the generic fiber of ψ is not tangent to G . If A is a

general member of a very ample linear system on Y, then the zero set of the induced

twisted 1-form ωH ∈ H0(H, �1
H ⊗ L|H) on H := ψ−1(A) has codimension at least two.

Proof. This also follows from an easy dimension count (see proof of Lemma 2.5). �

The proof of Proposition 2.10 makes use of the following result of McQuillan.

Proposition 2.7. [28, Facts I.1.8 and I.1.9] Let L be a foliation of rank one on a smooth

complex quasi-projective surface S, and let x be a singular point of L . Let also v be

a local generator of L in a neighborhood of x. Then L is not canonical at x if and

only if the linear part Dxv of v at x is either nilpotent or diagonalizable with nonzero

eigenvalues λ and μ satisfying in addition λ
μ

∈ Q>0.

Fact 2.8. Notation as in Proposition 2.7. If Dxv is nilpotent, then the following hold

(see proof of [5, Theorem 1.1]). The exceptional divisor E1 of the blow-up S1 of S at x has

discrepancy a(E1) � 0. Moreover, a(E1) � −1 if and only if Dxv is zero.

Suppose that a(E1) = 0. Then, the induced foliation L1 on S1 has a unique

singular point x1 on E1. Moreover, if v1 is a local generator of L1 in a neighborhood

of x1, then Dx1
v1 is nilpotent as well, and the exceptional divisor E2 of the blow-up S2

of S1 at x1 has discrepancy a(E2) � 0.

If a(E2) = 0, then the induced foliation L2 on S2 has a unique singular point x2

on E2, and Dx2
v2 is zero, where v2 denotes a local generator of L2 in a neighborhood of

x2. Moreover, the exceptional divisor E3 of the blow-up S2 of S1 at x2 has discrepancy

a(E3) � −1.

Fact 2.9. Notation as in Proposition 2.7. If Dxv is diagonalizable and its eigenvalues

λ and μ are nonzero and satisfy λ
μ

=: r ∈ Q>0, then the following hold (see proof of
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8 S. Druel and W. Ou

[5, Proposition 1.1]). Let S1 be the blow-up of S at x with exceptional divisor E1, and let

L1 be the foliation on S1 induced by L .

Suppose that λ = μ. A straightforward local computation then shows that v

extends to a regular vector field v1 on some open neighborhood of E1 with isolated

zeroes. Moreover, L1 has two singularities with diagonalizable linear parts and the

quotients of the eigenvalues of the linear parts are r − 1 and 1
r − 1. The divisor E1 has

discrepancy a(E1) = 0.

If λ = μ, then E1 has discrepancy a(E1) � −1.

In either case, the Euclidean algorithm implies that there exists a divisorial

valuation with center x and negative discrepancy.

Proposition 2.10. Let X be a smooth quasi-projective variety and let G be a codimen-

sion 1 foliation on X with canonical singularities. Let also B be a smooth codimension

two component of the singular set of G . Let S ⊆ X be a two-dimensional complete

intersection of general elements of a very ample linear system |H| on X, and let L be the

foliation of rank 1 on S induced by G . Then, L has canonical singularities in a Zariski

open neighborhood of the generic point of B ∩ S.

Proof. Set n := dim X. Suppose that dim X � 3. Let U ⊆ |H|n−2 be a dense open set such

that Su := H1 ∩ · · · ∩ Hn−2 is a smooth connected surface for any u = (H1, . . . , Hn−2) ∈ U,

and let Lu be the foliation of rank one on Su induced by G . Let T := {(x, u) ∈ B × U | x ∈
B ∩ Su}, and denote by p : T → U and q : T → B the natural morphisms. Shrinking U,

if necessary, we may assume that p is a finite étale cover. Let ω ∈ H0(X, �1
X ⊗ N ) be a

twisted 1-form defining G . By Lemma 2.5, we may also assume that, for any t = (x, u) ∈
T, the induced twisted 1-form ωu ∈ H0(Su, �1

Su
⊗ N|Su

) on Su has isolated zeroes. Given

t = (x, u) ∈ T, let vt be a local generator of Lu in a neighborhood of x. Note that x is a

singular point of Lu since ωu vanishes at x and has isolated zeroes.

In order to prove the proposition, we argue by contradiction and assume that

the set of points t = (x, u) ∈ T such that Lu is not canonical at x is dense in T.

Suppose that Dxvt is diagonalizable with nonzero eigenvalues λt and μt satisfy-

ing λt
μt

∈ Q>0 for some t = (x, u) ∈ T. Let � be a holomorphic 1-form defining G in some

analytic open neighborhood W of x. Then we must have dx� = 0 since the restriction

of � to W ∩ Su defines Lu|W by choice of U. A theorem of Kupka ([26]) then says that,

shrinking W, if necessary, the 2-form d� on W defines a codimension two foliation tan-

gent to G|W . Therefore, shrinking W further, there exists analytic coordinates (x1, . . . , xn)
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Codimension One Foliations with Trivial Canonical Class 9

centered at x on W such that G|W is defined by the 1-form a(x1, x2)dx1 + b(x1, x2)dx2 for

some holomorphic function a and b defined in a neighborhood of 0 in C2.

On the other hand, given r ∈ Q>0, the set of points t = (x, u) ∈ T such that Dxvt

is diagonalizable with eigenvalues λt = 0 and rλt = 0 is locally closed for the Zariski

topology. Moreover, the set of points t = (x, u) ∈ T such that the linear part Dxvt of vt at

x is nilpotent is Zariski closed.

Therefore, shrinking U again, if necessary, we may assume that one of the

following holds.

(1) The linear part Dxvt is nilpotent for any t = (x, u) ∈ T.

(2) There exists r ∈ Q>0 such that Dxvt is diagonalizable with nonzero

eigenvalues λt and rλt for any t = (x, u) ∈ T.

Case 1. Suppose first that Dxvt is nilpotent for any t = (x, u) ∈ T. Let β1 : X1 → X be

the blow-up of X along B with exceptional divisor E1, and let G1 be the foliation on X1

induced by G . Notice that we have

KLu
∼Z

(
KG + H1 + · · · + Hn−2

)
|Su

. (2.1)

Set S1,u := β−1(H1) ∩ · · · ∩ β−1(Hn−2) and denote by L1,u the foliation on S1,u induced by

Lu. Notice that S1,u is the blow-up of Su along B ∩ Su. By Lemma 2.5, we also have

KL1,u
∼Z

(
KG1

+ β∗H1 + · · · + β∗Hn−2

)
|S1,u

. (2.2)

Let t = (x, u) ∈ T and set E1,t := β−1(x) ⊂ S1,u. From Equations (2.1) and (2.2), we

conclude that

a(E1,t, S1,u, L1,u) = a(E, X, G ).

By Fact 2.8, we have a(E1,t, S1,u, L1,u) � 0. On the other hand, by assumption, we must

have a(E, X, G ) � 0. It follows that

a(E1,t, S1,u, L1,u) = a(E, X, G ) = 0

for any t = (x, u) ∈ T. Moreover, L1,u has a unique singular point x1,t on E1,t by Fact 2.8

again.

We claim that there exists a codimension two irreducible component B1 ⊂ E1

of the singular set of G1 dominating B. Suppose otherwise. Then, G1 is regular along
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10 S. Druel and W. Ou

a general fiber � of the projection E1 → B. We have KG1
· � = 0 since KG1

= β∗KG .

On the other hand, we have KX1
· � = −1 by construction. It follows that NG1

· � = 1.

This immediately implies that � is tangent to G1 since deg �1
� ⊗ NG1 |� = −1. But this

contradicts Lemma 3.6. Note that B1 is unique since L1,u has a unique singular point

x1,t on E1,t and B1 ∩ E1,t is contained in the singular set of L1,u.

Let β2 : X2 → X1 be the blow-up of X1 along B1 with exceptional divisor E2, and

let G2 be the foliation on X2 induced by G . Arguing as above, we see that we must have

a(E2, X, G ) = 0. Moreover, there exists a unique codimension two irreducible component

B2 ⊂ E2 of the singular set of G2 dominating B.

Let now E3 be the exceptional divisor of the blow-up of X2 along B2. Arguing as

above, we see that must have a(E2, X, G ) � −1 by Step 1, yielding a contradiction.

Case 2. Suppose now that there exists r ∈ Q>0 such that Dxvt is diagonalizable with

eigenvalues λt and rλt for any t = (x, u) ∈ T. Arguing as in Case 1, one shows that there

exists a divisorial valuation with center B on X and negative discrepancy. One only needs

to replace the use of Fact 2.8 by Fact 2.9. This yields again a contradiction, completing

the proof of the proposition. �

3 Basic results

In this section, we extend a number of earlier results to the context of normal quasi-

projective varieties with quotient singularities. See [10] for a somewhat related result.

3.1 Algebraic and analytic Q-structures

We will use the notions of Q-varieties and Q-sheaves without further explanation and

simply refer to [29, Section 2].

Notation 3.1. Let X be a normal quasi-projective variety, and let XQ := (
X, {pα : Xα →

X}α∈A

)
be a structure of Q-variety on X. For each α ∈ A, Xα is smooth and quasi-

projective, and that there exist a normal variety Uα and a factorization of pα

We will denote by Xαβ the normalization of Xα ×X Xβ , and by pαβ,α : Xαβ → Xα and

pαβ,β : Xαβ → Xβ the natural morphisms. Both pαβ,α and pαβ,β are étale by the very

definition of a Q-structure.
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Codimension One Foliations with Trivial Canonical Class 11

In loc. cit., Mumford constructs a global cover of XQ, that is, a quasi-projective

normal variety X̂, a finite Galois cover p : X̂ → X with group G, and for every α ∈ A, a

commutative diagram as follows:

where X̂α ⊆ X̂ is open. The finite map (qα, qβ) : X̂αβ := X̂α ∩X̂β → Xα ×X Xβ factors through

the normalization map Xαβ → Xα ×X Xβ and induces a finite morphism qαβ : X̂αβ → Xαβ .

Fact 3.2. Let X be a normal quasi-projective variety with only quotient singularities.

Then according to Mumford ([29, Section 2]) there exists a structure of Q-variety on X

given by a collection of charts {pα : Xα → X}α∈A where pα is étale in codimension one for

every α ∈ A. We will refer to it as a quasi-étale Q-variety structure.

Fact 3.3. Let X be a normal quasi-projective variety, and let {pα : Xα → X}α∈A be a finite

set of morphisms such that X = ∪α∈Apα(Xα). Suppose that we have a factorization of

pα = p′
α ◦ q′

α as above. Then, the collection of morphisms {pα : Xα → X}α∈A automatically

defines a quasi-étale Q-variety structure on X by purity of the branch locus.

In the setting of Fact 3.2, there is a finite covering (Vi)i∈I of X by analytically

open sets such that the following holds. For each i ∈ I, there exists α(i) ∈ A such that

Vi ⊆ pα(i)(Xα(i)) and a connected component V ′
i of (p′

α(i))
−1(Vi) such that the restriction

of p′
α(i) to V ′

i induces an isomorphism onto Vi. Set Xi := (q′
α(i))

−1(V ′
i) and X̂i := q−1

α(i)(Xi).

We have a commutative diagram as follows:

Note that we have X = ∪ipi(Xi) by construction. Let Xij denotes the normalization

of Xi ×X Xj. The natural morphisms pij,i : Xij → Xi and pij,j : Xij → Xj are étale by purity

of the branch locus and Xij is smooth. The finite map Xij → Vi ∩ Vj is Galois with group

Gi × Gj. Moreover, the finite map (qi, qj) : X̂ij := X̂i ∩ X̂j → Xi ×X Xj induces a finite

morphism qij : X̂ij → Xij. We view p : X̂ → X as a global cover for the analytic quasi-étale

Q-structure given by the collection of charts {pi : Xi → X}i∈I .
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12 S. Druel and W. Ou

Notice that the collections of open sets (g · X̂i)g∈G,i∈I and (g · X̂α)g∈G,α∈A both form

a covering of X̂.

3.2 A basic formula

In the present paragraph, we extend [5, Proposition 2.2] to surfaces with quotient

singularities.

Lemma 3.4. Let X be a normal quasi-projective surface with quotient singularities,

and let G ⊂ TX be a foliation of rank one. Let C be an irreducible complete curve on X

and suppose that C is transverse to G at a general point on C. Then KG · C + C · C � 0.

Remark 3.5. Quotient singularities are Q-factorial so that KG and C are Q-Cartier

divisors.

Proof of Lemma 3.4 The proof is very similar to that of [5, Proposition 2.2] and so we

leave some easy details to the reader.

Let m be a positive integer such that mKG and mC are Cartier divisors. Let

XQ = (
X, {pα : Xα → X}α∈A

)
be a quasi-étale Q-structure on X (Fact 3.2). We will use

the notation of paragraph 3.1. Let B → X be the normalization of C and let B̂ be the

normalization of an irreducible component of p−1(C). We have a commutative diagram

as follows:

Shrinking the Xα, if necessary, we may assume that for each α ∈ A there exists

a generator vα of p−1
α G on Xα. We may also assume without loss of generality that

there exists a nowhere vanishing regular function hα on Xα such that hαv⊗m
α is Gα-

invariant since mKG is a Cartier divisor by choice of m. Replacing Xα by an étale cover,

if necessary, we can suppose that h
1
m
α is regular on Xα, and replacing vα by h

1
m
α vα we

may finally assume that v⊗m
α is Gα-invariant. Similarly, we can suppose that the ideal

sheaf p−1
α IC is generated by a regular function fα such that f m

α is Gα-invariant. We will

denote by p−1
α C the scheme defined by equation {fα = 0}. Notice that the corresponding

Q-sheaves GQ and OX(−C)Q are Q-line bundles, and the pull-back M of G ∗
Q

⊗ OX(C)Q to

B̂ is a genuine line bundle.

One then readily checks that the functions (vα(fα))m restricted to p−1
α C give a

nonzero global section of M ⊗m. In particular, M has non negative degree. Observe that
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Codimension One Foliations with Trivial Canonical Class 13

the pull-back of G ⊗m
Q

(resp. OX(C)⊗m
Q

∼= OX(mC)Q) to X̂ is isomorphic to p∗OX(−mKG )

(resp. p∗OX(mC)) so that M ⊗m is isomorphic to the pull-back of OX(mKG + mC) to B̂.

The lemma then follows from the projection formula. �

3.3 The Baum–Bott partial connection

The following result generalizes [2, Corollary 3.4] to the setting of quasi-projective

varieties with quotient singularities.

Lemma 3.6. Let X be a normal quasi-projective variety with quotient singularities,

and let G ⊂ TX be a codimension one foliation on X. Let also {pi : Xi → X}i∈I be an

analytic quasi-étale Q-structure on X and suppose that p−1
i G is defined by a 1-form ωi

with zero set of codimension at least two such that dωi = αi ∧ ωi for some holomorphic

1-form αi on Xi. Then the following hold.

(1) We have c1(NG )2 ≡ 0.

(2) Let Y ⊆ X be a projective subvariety. Suppose that Y is not entirely contained

in the union of the singular loci of X and G . Suppose moreover that Y is

tangent to G . Then c1(NG )|Y ≡ 0.

Proof. We use the notation of paragraph 3.1. Set L := N ∗
G and L̂ := p[∗]L . By [20,

Proposition 1.9], the reflexive pull-back p[∗]
α L is a line bundle. It follows that L̂ |X̂α

∼=
q∗

α

(
p[∗]

α L
)

since both sheaves are reflexive and agree over the big open set Xreg. This

shows that L̂ is a line bundle. Moreover, if m is a positive integer such that L [⊗m] is a

line bundle, then we have p∗(L [⊗m]) ∼= L̂ ⊗m.

Let ω ∈ H0
(
X, �[1]

X �NG

)
be a twisted 1-form defining G . The reflexive pull-back

of ω then gives an inclusion L̂ ⊂ p[∗]�[1]
X , which is saturated by [1, Lemma 9.7]. Note

that we have p[∗]�[1]
X ⊆ �1

X̂
⊆ �[1]

X̂
since we have a factorization p|X̂α

= pα ◦ qα and Xα is

smooth.

Shrinking the Vi, is necessary, we may assume that there exist nowhere van-

ishing holomorphic functions hi on Xi such that hiω
⊗m
i is Gi-invariant. Observe that

d
(
h

1
m
i ωi

) = ( 1
m

dhi
hi

+αi

)∧ (
h

1
m
i ωi

)
so that, replacing ωi by h

1
m
i ωi and αi by 1

m
dhi
hi

+αi, we can

suppose that ω⊗m
i is Gi-invariant.

Now, we can write

ωj|Xij
= ϕij ωi|Xij
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14 S. Druel and W. Ou

on Xij where ϕij is a nowhere vanishing holomorphic function since the 1-forms ωi|Xij

and ωj|Xij
both define the foliation p−1

ij,ip
−1
i G = p−1

ij,jp
−1
j G on Xij and their zero sets set

have codimension at least two in Xij. The holomorphic functions (ϕij ◦ qij)
m on X̂ij then

give a cocycle with respect to the open covering (g · X̂i)g∈G,i∈I that corresponds to the

isomorphism class of L̂ ⊗m as a complex analytic line bundle since it does over the

open set Xreg.

Let c ∈ H1
(
X̂, p[∗]�[1]

X

)
be the cohomology class corresponding to the cocyle with

respect to the open covering (g · X̂i)g∈G,i∈I induced by the q∗
ij

dϕij
ϕij

. Since dωi = αi ∧ ωi for

any i ∈ I, we must have

(dϕij

ϕij
+ αi|Xij

− αj|Xij

)
∧ ωi|Xij

= 0.

This immediately implies that q∗
ij

(dϕij
ϕij

+αi|Xij
−αj|Xij

)
∈ H0

(
X̂ij, L̂ |X̂ij

) ⊆ H0
(
X̂ij, p[∗]�[1]

X |X̂ij

)
since L̂ is saturated in p[∗]�[1]

X , and shows that c is the image of a cohomological class

b ∈ H1
(
X̂, L̂

)
under the natural map H1

(
X̂, L̂

) → H1
(
X̂, p[∗]�[1]

X

)
. By construction,

c ∈ H1
(
X̂, p[∗]�[1]

X

)
maps to c1

(
L̂

) ∈ H1
(
X̂, �1

X̂

)
under the natural map H1

(
X̂, p[∗]�[1]

X

) →
H1

(
X̂, �1

X̂

)
. On the other hand, b ∪ b = 0 ∈ H1

(
X̂, ∧2L̂

)
since L̂ is a line bundle. This

immediately implies that c1

(
L̂

)2 = 0 ∈ H2
(
X̂, �2

X̂

)
, proving (1).

Let Y ⊆ X be a projective subvariety, and let Ŷ be a resolution of some irreducible

component of p−1(Y). We have a commutative diagram as follows:

Note that c ∈ H1
(
X̂, p[∗]�[1]

X

)
maps to c1

(
f ∗L̂

) ∈ H1
(
Ŷ, �1

Ŷ

)
under the composed

map

Suppose moreover that Y is not entirely contained in the union of the singular

loci of X or G , and that it is tangent to G . Then, the composed map of sheaves

vanishes. This immediately implies that c1

(
f ∗L̂

) = 0 ∈ H1
(
Ŷ, �1

Ŷ

)
. Item (2) now follows

from the projection formula. �
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Codimension One Foliations with Trivial Canonical Class 15

3.4 Baum–Bott formula

The next result extends the Baum–Bott formula to surfaces with quotient singularities.

Definition 3.7. Let X be a normal quasi-projective algebraic surface with quotient

singularities, and let L ⊂ TX be a foliation of rank one. Given x ∈ X, there exist an open

analytic neighborhood U of x, a (not necessarily connected) smooth analytic complex

manifold V and a finite Galois holomorphic map p : V → U that is étale outside of the

singular locus. Set

BBQ(L , x) := 1

deg p

∑
y∈p−1(x)

BB(p−1L|U , y),

where BB(p−1L|U , y) denotes the Baum–Bott index of p−1L|U at y (we refer to [5, Section

3.1] for this notion).

Remark 3.8. One readily checks that BBQ(L , x) is independent of the local chart

p : V → U at x.

Proposition 3.9. Let X be a normal projective algebraic surface with quotient

singularities, and let L ⊂ TX be a foliation of rank one. Then

c1(NL )2 =
∑
x∈X

BBQ(L , x).

Proof. The proof is very similar to that of [5, Theorem 3.1] and so we leave some easy

details to the reader.

Step 1. Preparation. We use the notation of paragraph 3.1. Let m be a positive

integer such that N [⊗m]
L is a line bundle and set N̂L := p[∗]NL . Shrinking Vi, if

necessary, we may assume without loss of generality that pi
−1L is defined by a 1-form

ωi with isolated zeroes, and that there exist a smooth (1, 0)-form βi on Xi and a small

enough open set Wi � Vi such that dωi = βi ∧ ωi on Xi \ p−1
i (Wi). We may assume that Wi

is the image in Vi of some small enough open ball in Xi. We may also assume that ωi is

nowhere vanishing on Xi or that it vanishes at a single point contained in p−1
i (Wi), and

that Wi ∩ Vj = ∅ if i = j. Finally, we can suppose that ω⊗m
i is Gi-invariant (see proof of

Lemma 3.6) and that βi vanishes identically on some open neighborhood of the singular

locus of ωi and some open neighborhood of the inverse image of the singular set of X in
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16 S. Druel and W. Ou

Xi. Since ωi is semi-invariant under Gi, replacing βi by 1
 Gi

∑
g∈Gi

g∗βi, if necessary, we

may assume that βi is Gi-invariant.

We can write

ωi|Xij
= ϕij ωj|Xij

on Xij where ϕij is a nowhere vanishing holomorphic function since the holomorphic

1-forms ωi|Xij
and ωj|Xij

both define the foliation p−1
ij,ip

−1
i L = p−1

ij,jp
−1
j L on Xij and have

isolated zeros. The holomorphic functions (ϕij ◦ qij)
m on X̂ij then give a cocycle with

respect to the open covering (g · X̂i)g∈G,i∈I that corresponds to the isomorphism class of

N̂ ⊗m
L as a complex analytic line bundle since it does over the open set Xreg. Notice that

the smooth form
dϕij
ϕij

+ βj|Xij
− βi|Xij

vanishes identically if i = j. An easy computation

now shows that

(dϕij

ϕij
+ βj|Xij

− βi|Xij

)
∧ ωi|Xij

= 0

if i = j using the fact that Wi∩Vj = ∅. Therefore, the cocycle of smooth (1, 0)-forms
(

dϕij
ϕij

+
βj|Xij

− βi|Xij

)
ij

can be viewed as a cocycle of smooth sections of the Q-line bundle MQ

induced by N ∗
L on XQ. On the other hand, the smooth (1, 0)-form m

(
dϕij
ϕij

+βj|Xij
−βi|Xij

)
is

the pull-back of a smooth (1, 0)-form on Vi ∩ Vj for i = j and vanishes identically if i = j.

Using a partition of unity subordinate to the open cover (Vi)i∈I given by [6, Proposition

1.2], we see that we may assume that there exist smooth (1, 0)-forms γi on Xi such that

γi ∧ ωi = 0 on Xi,

and

dϕij

ϕij
= βi − βj + γi − γj on Xij.

Notice that we have dωi = (βi + γi) ∧ ωi on Xi \ p−1
i (Wi). The 2-form � defined on Xi

by �|Xi
:= 1

2iπ d(βi + γi) is a well-defined closed 2-form on XQ whose pull-back to any

resolution of X̂ is smooth and represents the first Chern class of the pull-back of N̂L to

this resolution.

Step 2. Computation. It follows from the projection formula that

deg p · c1(NL )2 = c1(N̂L )2 =
∫

X̂
�̂ ∧ �̂,
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Codimension One Foliations with Trivial Canonical Class 17

where �̂ denotes the 2-form induced by � on X̂. One then observes that

BB(pi
−1L , x) = 1

(2iπ)2

∫
�

β ∧ dβ

for any x ∈ Xi, where � is a small enough suitably oriented 3-sphere in Xi centered at

x and β is any smooth (1, 0)-form on Xi such that dωi = β ∧ ωi in a neighborhood of �.

On the other hand, on X̂i \ p−1(Wi), we have �̂ ∧ �̂ = 0 by construction. Stokes’ theorem

then implies that

c1(NL )2 =
∑

i

1

(2iπ)2 deg q′
i

∫
∂p−1

i (W
′
i)

(βi + γi) ∧ d(βi + γi),

where Wi � W ′
i � Vi is the image in Vi of some small enough open ball in Xi. We finally

obtain

c1(NL )2 =
∑

x

BBQ(L , x),

completing the proof of the proposition. �

3.5 Camacho–Sad formula

We finally observe that the Camacho–Sad formula also extends to surfaces with quotient

singularities.

Definition 3.10. Let X be a normal quasi-projective algebraic surface with quotient

singularities, and let L ⊂ TX be a foliation of rank one. Let C ⊂ X be a complete

curve. Suppose that C is invariant under L . Given x ∈ X, there exist an open analytic

neighborhood U of x, a (not necessarily connected) smooth analytic complex manifold

V and a finite Galois holomorphic map p : V → U that is étale outside of the singular

locus. Set

CSQ(L , C, x) := 1

deg p

∑
y∈p−1(x)

CS
(
p−1L|U , p−1(C ∩ U), y

)

where CS
(
p−1L|U , p−1(C ∩ U), y

)
denotes the Camacho–Sad index (we refer to [5, Section

3.2] for this notion).
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18 S. Druel and W. Ou

Remark 3.11. One readily checks that CSQ(L , C, x) is independent of the local chart

p : V → U at x.

Proposition 3.12. Let X be a normal quasi-projective algebraic surface with quotient

singularities, and let L ⊂ TX be a foliation of rank one. Let C ⊂ X be a complete curve

and suppose that C is invariant under L . Then

C2 =
∑
x∈C

CSQ(L , C, x).

Proof. The proof is very similar to that of [5, Theorem 3.2] and so we again leave some

easy details to the reader.

We maintain notation as in Step 1 of the proof of Proposition 3.9. In particular,

there is a well-defined closed 2-form � on XQ whose pull-back to any resolution of X̂ is

smooth and represents the first Chern class of the pull-back of N̂L to this resolution.

Shrinking Vi, if necessary, we may assume that the ideal sheaf p−1
i IC is

generated by a holomorphic function fi. Notice that the corresponding analytic Q-sheaf

OX(−C)Q is a Q-line bundle. Let Ĉ be the complete curve on X̂ whose ideal sheaf is

OX̂

( − Ĉ
)

:= p[∗]IC. Set αi := f −1
i ωi. The method used to construct the 2-form � from the

ωi in the proof of Proposition 3.9 gives a closed 2-form A on XQ whose pull-back to any

resolution of X̂ is smooth and represents the first Chern class of the pull-back of the

line bundle N̂L ⊗ OX̂

( − Ĉ
)

to this resolution and such that A|Xi
= 1

2iπ dμi, where μi is a

smooth (1, 0)-form such that dαi = μi ∧ αi on Xi \ p−1
i (Wi).

Suppose that p−1
i L is singular, and let x ∈ Wi be its singular point. There exist

holomorphic functions gi and hi and a holomorphic 1-form ηi such that giωi = hidfi+fiηi

in some analytic open neighborhood of x. Then

CS
(
p−1

i L , p−1
i (C), x

) = − 1

2iπ

∫
σi

h−1
i ηi,

where σi ⊂ C is a union of small suitably oriented circles centered at x, one for each

local branch of C at x. In particular,
∫
σi

h−1
i ηi depends only on p−1

i L , p−1
i (C) and x. A

straightforward computation then shows that dαi = (h−1
i ηi + βi + γi) ∧ αi. On the other

hand, we may obviously assume that fi and hi are relatively prime. Then, we must have

μi|σi
= h−1

i ηi|σi
+ βi|σi

+ γi|σi
.
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Codimension One Foliations with Trivial Canonical Class 19

Let Â be the 2-form induced by A on X̂. Then

C2 = 1

deg p
Ĉ2 = 1

deg p

∫
Ĉ

�̂ − 1

deg p

∫
Ĉ

Â.

On the other hand, by Stokes’ theorem, we have

1

deg p

∫
Ĉ

�̂ − 1

deg p

∫
Ĉ

Â =
∑

i

1

2iπ deg q′
i

∫
σi

(βi + γi − μi) =
∑
x∈C

CSQ(L , C, x).

This finishes the proof of the proposition. �

4 Foliations on Mori fiber spaces

In this section, we provide another technical tool for the proof of the main results.

Proposition 4.1. Let X be a projective variety with klt singularities and let ψ : X → Y

be a Mori fiber space with dim Y = dim X − 1 � 1. Let G be a codimension one foliation

on X with KG ≡ 0. Suppose that there exist a closed subset Z ⊂ X of codimension at least

3 and an analytic quasi-étale Q-structure {pi : Xi → X \ Z}i∈I on X \ Z such that p−1
i G|X\Z

is defined by a closed 1-form with zero set of codimension at least two or by the 1-form

x2dx1 + λix1dx2 where (x1, . . . , xn) are analytic coordinates on Xi and λi ∈ Q>0. Then,

there exists an open subset Y◦ ⊆ Yreg with complement of codimension at least two

and a finite Galois cover g : T → Y such that the following holds. Set T◦ := g−1(Y◦) and

X◦ := ψ−1(Y◦).

(1) The variety T has canonical singularities and KT ∼Z 0; T◦ is smooth.

(2) The normalization M◦ of the fiber product T◦ ×Y X is a P1-bundle over T◦

and the map M◦ → X◦ is a quasi-étale cover.

(3) The pull-back of G|X◦ on M◦ yields a flat Ehresmann connection on M◦ → T◦.

Before we give the proof of Proposition 4.1, we need the following auxiliary

result, which might be of independent interest.

Lemma 4.2. Let X be quasi-projective variety with quotient singularities and let

ψ : X → Y be a dominant projective morphism with connected and reduced fibers

onto a smooth quasi-projective variety Y. Suppose that ψ is equidimensional with

dim Y = dim X−1 � 1. Suppose in addition that −KX is ψ-ample. Let G be a codimension

one foliation on X with KG ≡ψ 0. Suppose furthermore that there exists an analytic
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20 S. Druel and W. Ou

quasi-étale Q-structure {pi : Xi → X}i∈I on X such that p−1
i G is defined by a closed 1-

form with zero set of codimension at least two or by the 1-form x2dx1 + λix1dx2 where

(x1, . . . , xn) are analytic coordinates on Xi and λi ∈ Q>0. Then, there exists an open subset

Y◦ ⊆ Y with the complement of codimension at least two such that ψ◦ := ψ|X◦ is a P1-

bundle where X◦ := ψ−1(Y◦). Moreover, G|X◦ yields a flat Ehresmann connection on ψ◦.

Proof. Notice that G is regular along the generic fiber of ψ . It follows that general

fibers of ψ are not tangent to G since −KX is ψ-ample and KG ≡ψ 0 by assumption

(Lemma 3.6). We first show the following.

Claim 4.3. There exists an open set Y◦ with complement of codimension at least two

such that, for any y ∈ Y◦, ψ−1(y) is transverse to G at a point of ψ−1(y).

Proof. We argue by contradiction and assume that there is an irreducible hypersurface

D in Y such that any irreducible component of ψ−1(y) is tangent to G for all y ∈ D.

Step 1. Setup. Let B ⊂ Y be a one-dimensional complete intersection of general members

of a very ample linear system on Y passing through a general point y of D and set

S := ψ−1(B) ⊂ X. Notice that S is klt. Let L be the foliation of rank one on S induced

by G , and denote by π : S → B the restriction of ψ to S. By the adjunction formula,

−KS = −KX |S is π-ample. By general choice of B, we have det NL
∼= (det NG )|S (Lemma

2.6), and hence KL ≡π 0. Set C := ψ−1(y) ⊂ S and observe that C2 = 0 since ψ has

reduced fibers by assumption.

By general choice of B, we may also assume that the collection of charts

{pi : Xi → X}i∈I induces an analytic quasi-étale Q-structure {qi : Si → S}i∈I on S where

Si := p−1
i (S) and qi := pi|Si

, and that either q−1
i L is defined by the 1-form dfi where fi

is a holomorphic function on Si such that dfi has isolated zeroes (Lemma 2.6) or it is

given by the local 1-form z2dz1 + λiz1dz2 where (z1, z2) are analytic coordinates on Si

and λi ∈ Q>0.

Step 2. By assumption, any irreducible component of C is invariant under L . Let xi be a

point on Si with pi(xi) ∈ C.

Suppose that q−1
i L is defined by the 1-form dfi where fi is a holomorphic

function on Si such that dfi has isolated zeroes. Suppose furthermore that q−1
i (C) is given

at xi by equation ti = 0 and that fi(xi) = 0. Then, fi = tigi for some local holomorphic

function gi on Si at xi and −CS(q−1
i L , q−1

i (C), xi) is equal to the vanishing order of

gi|q−1
i (C)

at xi. In particular, we have CS(q−1
i L , q−1

i (C), xi) � 0.
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Codimension One Foliations with Trivial Canonical Class 21

Suppose now that q−1
i L is given by the local 1-form z2dz1+λiz1dz2 where (z1, z2)

are analytic coordinates on Si and λi ∈ Q>0. If xi is not a singular point of q−1
i L , then

CS(q−1
i L , q−1

i (C), xi) = 0. Suppose otherwise. Then

CS(q−1
i L , q−1

i (C), xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−λ−1
i < 0 if q−1

i (C) = {z1 = 0},
−λi < 0 if q−1

i (C) = {z2 = 0},
2 − λi − λ−1

i = −λi(1 − λ−1
i )2 � 0 if q−1

i (C) = {z1z2 = 0}.

Together with the Camacho–Sad formula (Proposition 3.12) and using C2 = 0,

this shows that λi = 1 for all i ∈ I as above.

Step 3. By Step 2, for any i ∈ I such that pi(Xi)∩C = ∅, p−1
i G is defined by a closed 1-form

with zero set of codimension at least two. But then Lemma 3.6 yields a contradiction

since c1(NL ) · C = 2. This finishes the proof of the claim. �

Next, we show that, shrinking Y◦, if necessary, ψ−1(y) is irreducible for every

y ∈ Y◦. We argue by contradiction again and assume that there is an irreducible hyper-

surface D in Y such that ψ−1(y) is reducible for a general point y ∈ D. We maintain the

notation of Step 1 of the proof of Claim 4.3. By Claim 4.3, there is an irreducible compo-

nent C1 of C which is not invariant under L . Since C is reducible by assumption, we must

have C2
1 < 0. On the other hand, by Lemma 3.4, we have C2

1 = KL · C1 + C2
1 � 0, yielding a

contradiction. This shows that ψ has irreducible fibers at codimension one points in Y.

Applying [24, Theorem II.2.8], we conclude that ψ◦ := ψ|X◦ is a P1-bundle. By

choice of Y◦, F := ψ−1(y) ∼= P1 is not tangent to G for every y ∈ Y◦. Since c1(NL ) · F = 2,

we see that G is transverse to ψ along F, completing the proof of the lemma. �

Proof of Proposition 4.1 We maintain notation and assumptions of Proposition 4.1. Let

(Dj)j∈J be the possibly empty set of hypersurfaces D in Y such that ψ∗D is not integral.

Since ψ is a Mori fiber space, we must have ψ∗Dj = mjGj for some integer mj � 2 and

some prime divisor Gj. Let Uj ⊆ Y be a Zariski open neighborhood of the generic point

of Dj and let gj : Vj → Uj be a cyclic cover that branches along Dj ∩ Uj with ramification

index mj. The normalization Mj of the fiber product Vj ×Y X has geometrically reduced

fibers over general points of g−1
j (Dj ∩ Uj) by [19, Théorème 12.2.4]. Applying Lemma

4.2 to ψj : Mj → Vj, we see that ψj is a P1-bundle over a Zariski open set in Vj whose

complement has codimension at least two. Moreover, G|Mj
induces a flat Ehresmann

connection on this P1-bundle. In particular, there exists an open subset Y◦ ⊆ Yreg with

complement of codimension at least two such that the restriction ψ◦ of ψ to X◦ :=
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22 S. Druel and W. Ou

ψ−1(Y◦) has irreducible fibers. Using [19, Théorème 12.2.4] together with Lemma 4.2

again, we see that we may also assume without loss of generality that ψ is a P1-bundle

over Y◦ \ ∪j∈JDj and that G is everywhere transverse to ψ over Y◦ \ ∪j∈JDj. Recall that Y

is Q-factorial ([23, Lemma 5.1.5]). Since codim Y \ Y◦ � 2 and KG ≡ 0, we must have

KY +
∑
i∈I

mi − 1

mi
Di ≡ 0.

On the other hand, the proof of [14, Corollary 4.5] shows that the pair
(
Y,

∑
i∈I

mi−1
mi

Di

)
is

klt. Applying [30, Corollary V.4.9], we conclude that KY + ∑
i∈I

mi−1
mi

Di is torsion. Let

g : T → Y be the index one cover of the pair
(
Y,

∑
i∈I

mi−1
mi

Di

)
([31, Section 2.4]). By

construction, we have

KT ∼Q g∗(KY +
∑
i∈I

mi − 1

mi
Di

)
∼Q 0.

Replacing T by a further quasi-étale cover, we may therefore assume that KT ∼Z 0.

Then, T has canonical singularities. Shrinking Y◦, if necessary, we may assume that

T◦ is smooth, that the normalization M◦ of the fiber product T◦ ×Y X has reduced and

irreducible fibers over T◦, and that the map M◦ → X◦ is a quasi-étale cover. We may

finally assume that M◦ is a P1-bundle over T◦ and that G|M◦ yields a flat Ehresmann

connection on M◦ → T◦ (Lemma 4.2). �

5 Algebraic integrability I

The following is the main result of this section. We confirm the Ekedahl, Shepherd-

Barron and Taylor conjecture ([13]) for mildly singular codimension one foliations with

trivial canonical class on projective varieties with klt singularities and ν(X) = −∞.

Theorem 5.1. Let X be a normal complex projective variety with klt singularities, and

let G be a codimension one foliation on X. Suppose that G is canonical, and that it is

closed under pth powers for almost all primes p. Suppose furthermore that KX is not

pseudo-effective, and that KG ≡ 0. Then G is algebraically integrable.

Proof. For the reader’s convenience, the proof is subdivided into a number of steps.

Step 1. Arguing as in Steps 1 and 2 of the proof of [12, Theorem 9.4], we see that we may

assume without loss of generality that X is Q-factorial and that there exists a Mori fiber

space ψ : X → Y.
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Codimension One Foliations with Trivial Canonical Class 23

Step 2. We first show that dim X−dim Y = 1. We argue by contradiction and assume that

dim X − dim Y � 2. Let F be a general fiber of ψ . Note that F has klt singularities, and

that KF ∼Z KX |F by the adjunction formula. Moreover, F is a Fano variety by assumption.

Let H be the foliation on F induced by G . Since c1(NG ) ≡ −KX is relatively ample, we see

that H has codimension one since otherwise c1(NG ) comes from Y in a neighborhood of

F. By [12, Proposition 3.6], we have KH ∼Z KG |F − B for some effective Weil divisor B on

F. Suppose that B = 0. Applying [9, Theorem 4.7] to the pull-back of H on a resolution of

F, we see that H is uniruled. This implies that G is uniruled as well since F is general.

But this contradicts [12, Proposition 4.22], and shows that B = 0. By [12, Proposition

4.22] applied to H , we see that H is canonical. Finally, one readily checks that H is

closed under pth powers for almost all primes p.

Let S ⊆ F be a two-dimensional complete intersection of general elements of a

very ample linear system |H| on F. Notice that S has klt singularities and hence quotient

singularities. Let L be the foliation of rank one on S induced by H . By [12, Proposition

3.6], we have det NL
∼= (det NH )|S. It follows that

c1(NL )2 = K2
F · Hdim F−2 > 0. (5.1)

Recall from [17, Proposition 9.3] that there is an open set F◦ ⊆ F with quotient

singularities whose complement in F has codimension at least three. Let {pα : Fα →
F◦}α∈A be a quasi-étale Q-structure on F◦ (Fact 3.2). Notice that p−1

α H is obviously

closed under pth powers for almost all primes p. By [27, Corollary 7.8], we see that we

may assume that p−1
α H|F◦ is defined at singular points (locally for the analytic topology)

by the 1-form x2dx1 + λx1dx2 where (x1, . . . , xn) are local analytic coordinates on Fα and

λ ∈ Q>0. By general choice of S, we may assume that S ⊂ F◦ and that the collection

of charts {pα : Fα → F◦}α∈A induces a quasi-étale Q-structure {pα |Sα
: Sα → S}α∈A on S,

where Sα := p−1
α (S). We may assume in addition that (pα |Sα

)−1L is defined at a singular

point x (locally for the analytic topology) by a closed holomorphic 1-form with isolated

zeroes or by the 1-form x2dx1 + λx1dx2 where (x1, x2) are local analytic coordinates on

Sα and λ ∈ Q>0. In the former case, we have BB
(
(pα |Sα

)−1L , x
) = 0, and in the latter case,

we have BB
(
(pα |Sα

)−1L , x
) = −λ(1 − λ−1)2. Applying Proposition 3.9, we obtain

c1(NL )2 =
∑

x

BBQ(L , x) � 0.

But this contradicts inequality (5.1) and shows that dim X − dim Y = 1.
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24 S. Druel and W. Ou

By [17, Proposition 9.3], there exists a closed subset Z ⊂ X of codimension at

least 3 such that X \ Z has quotient singularities. Let {pβ : Xβ → X \ Z}β∈B be a quasi-

étale Q-structure on X \ Z (Fact 3.2). Notice that p−1
β G is obviously closed under pth

powers for almost all primes p. By [27, Corollary 7.8], we see that there exists a closed

subset Zβ ⊆ Xβ of codimension at least 3 in Xβ such that p−1
β G |Xβ\Zβ

is defined at singular

points (locally for the analytic topology) by the 1-form x2dx1 +λx1dx2 where (x1, . . . , xn)

are local analytic coordinates on Xβ and λ ∈ Q>0. Therefore, Proposition 4.1 applies.

There exists an open subset Y◦ ⊆ Yreg with complement of codimension at least two

and a finite cover g : T → Y such that the following holds. Set T◦ := g−1(Y◦) and X◦ :=
ψ−1(Y◦).

(1) The variety T has canonical singularities and KT ∼Z 0; T◦ is smooth.

(2) The normalization M◦ of the fiber product T◦ ×Y X is a P1-bundle over T◦

and the map M◦ → X◦ is a quasi-étale cover.

(3) The pull-back of G|X◦ on M◦ yields a flat Ehresmann connection on M◦ → T◦.

Step 3. By [18, Corollary 3.6] applied to T, we see that there exists an abelian variety A

as well as a projective variety Z with KZ ∼Z 0 and augmented irregularity q̃(Z) = 0 (we

refer to [18, Definition 3.1] for this notion), and a quasi-étale cover f : A × Z → T.

Recall that f branches only on the singular set of T, so that f −1(T◦) is smooth.

On the other hand, since f −1(T◦) has the complement of codimension at least two in

A × Zreg, we have π1

(
A × Zreg

) ∼= π1

(
f −1(T◦)

)
. Now, consider the representation

ρ : π1

(
A × Zreg

) ∼= π1

(
f −1(T◦)

) → π1

(
T◦) → PGL(2,C)

induced by G|M◦ . By [15, Theorem I], the induced representation

π1

(
Zreg

) → π1

(
A

) × π1

(
Zreg

) ∼= π1

(
A × Zreg

) → PGL(2,C)

has finite image. Thus, replacing Z by a quasi-étale cover, if necessary, we may assume

without loss of generality that ρ factors through the projection π1

(
A×Zreg

) → π1(A). Let

P be the corresponding P1-bundle over A. The natural projection P → A comes with a

flat connection GP ⊂ TP. By the GAGA theorem, P is a projective variety. By assumption,

its pull-back to A × Zreg agrees with f −1(T◦) ×T◦ M◦ over f −1(T◦). Moreover, the pull-

backs on A × Zreg of the foliations G and GP agree as well, wherever this makes sense. In

particular, G is algebraically integrable if and only if so is GP. Now, one readily checks

that GP is closed under pth powers for almost all primes p. Theorem 5.1 then follows

from [12, Proposition 9.3]. �
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Codimension One Foliations with Trivial Canonical Class 25

6 Algebraic integrability II

In this section, we provide an algebraicity criterion for leaves of mildly singular

codimension one algebraic foliations with numerically trivial canonical class on klt

spaces X with ν(X) = 1 (Theorem 6.4). We confirm the Ekedahl, Shepherd-Barron and

Taylor conjecture in this special case.

We will need the following auxiliary result, which might be of independent

interest.

Proposition 6.1. Let X be a projective variety with klt singularities and let β : Z → X

be a resolution of singularities. Let also ϕ : Z → H := DN/� be a generically finite

morphism to a quotient of the polydisc DN with N � 2 by an arithmetic irreducible

lattice in � ⊂ PSL(2,R)N . Let H be a codimension one foliation on H induced by one of

the tautological foliations on DN , and denote by G the induced foliation on X. Suppose

that ϕ(Z) is not tangent to H . Suppose furthermore that there exists an open set X◦ ⊆
X with complement of codimension at least 3 and an analytic quasi-étale Q-structure

{pi : Xi → X◦}i∈I on X◦ such that either p−1
i G is regular or it is given by the local 1-form

d(x1x2) where (x1, . . . , xn) are analytic coordinates on Xi. Then X is of general type.

Proof. For the reader’s convenience, the proof is subdivided into a number of steps.

By a result of Selberg, there exists a torsion-free subgroup �1 of � of finite index. Set

H1 := DN/�1, and denote by π : H1 → H the natural finite morphism. Recall that H has

isolated quotient singularities. It follows that π is a quasi-étale cover since N � 2. One

readily checks that there is only one separatrix for H at any (singular) point.

Step 1. We first show the following.

Claim 6.2.The rational map ϕ ◦ β−1 : X ��� H is a well-defined morphism over X◦.

Proof. Let Z1 be the normalization of Z ×H H1, and let X1 be the normalization of X in

the function field of Z1.

Let (Dj)j∈J be the set of codimension one irreducible components of the branched

locus of f1. Observe that ϕ maps β−1∗ (Dj) to a (singular) point. It follows that Dj is
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26 S. Druel and W. Ou

invariant under G since there is only one separatrix for H at any point and ϕ(Z) is

not tangent to H by assumption. Let X̂1 → X1 be a finite cover such that the induced

cover p : X̂1 → X is Galois. We may assume without loss of generality that p is quasi-

étale away from the branch locus of f1. Therefore, there exist positive integers (mj)j∈J

such that

KX̂1
= p∗(KX +

∑
j∈J

mj − 1

mj
Dj

)
.

By Lemma 6.3, the pair
(
X◦,

∑
j∈J

mj−1
mj

Dj|X◦
)

is klt. It follows that X̂◦
1 := p−1(X◦

1) has klt

singularities as well.

Suppose that the rational map ϕ ◦ β−1 : X ��� H is not a well-defined morphism

on X◦. By the rigidity lemma, there exist x ∈ X◦ such that dim ϕ
(
β−1(x)

)
� 1. Let Ẑ1

be the normalization of X̂1 ×X1
Z1, and denote by β̂1 : Ẑ1 → X̂1 and ϕ̂1 : Ẑ1 → H1 the

natural morphisms. Then, there is a point x1 ∈ X̂◦
1 := p−1(X◦

1) with p(x1) = x such that

dim ϕ̂1

(
β̂−1

1 (x)
)
� 1. On the other hand, β̂−1

1 (x) is rationally chain-connected since X̂◦
1 has

klt singularities ([21, Corollary 1.6]). This yields a contradiction since H1 is obviously

hyperbolic. This finishes the proof of the claim. �

Step 2. Let F ⊆ Z be a prime divisor which is not β-exceptional and set G = β(F). We

show that dim ϕ(F) � 1. We argue by contradiction and assume that dim ϕ(F) = 0. Let

S ⊆ X be a two-dimensional complete intersection of general elements of a very ample

linear system on X. We may assume without loss of generality that S is contained in X◦

and that it has klt singularities. Set C := S ∩ G. By Step 1, the rational map ϕ ◦ β−1 is

a well-defined morphism in a neighborhood of S. But then C2 < 0 since C is contracted

by the generically finite morphism ϕ ◦ β−1|S : S → H. On the other hand, arguing as

in Step 1, we see that G must be invariant under G . Applying Lemma 3.6, we see that

C2 = C · G = 0, yielding a contradiction.

Step 3. We use the notation of Step 1. Recall that π : H1 → H is étale away from finitely

many points. By Step 2, the natural map Z ×H H1 → Z is a quasi-étale cover away

from the exceptional locus of β. This immediately implies that f1 is a quasi-étale cover.
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Codimension One Foliations with Trivial Canonical Class 27

Let Z2 → Z1 be a resolution of singularities. We obtain a diagram as follows:

Let Ek (1 � k � N) be the codimension one regular foliations on H1 induced by the

tautological foliations on DN so that �1
H1

∼= ⊕
1�k�N N ∗

Ei
. Set n := dim X. We may assume

without loss of generality that the natural map
⊕

1�k�n ϕ∗
2N ∗

Ei
→ �1

Z2
is generically

injective. Now observe that the line bundle N ∗
Ei

is hermitian semipositive, so that ϕ∗
2N ∗

Ei

is nef. On the other hand, we have c1(ϕ∗
2N ∗

E1
)·· · ··c1(ϕ∗

2N ∗
En

) > 0. This immediately implies

that κ(Z2) = ν(Z2) = dim Z2. It follows that κ(X1) = ν(X1) = dim X1 since β2 is a birational

morphism. Applying [30, Proposition 2.7], we see that ν(X) = ν(X1) = dim X1 = dim X

since KX1
∼Q f ∗

1 KX . This completes the proof of the proposition.

Lemma 6.3. Let X be a variety of dimension n with quotient singularities and let G

be a codimension one foliation on X. Let {pi : Xi → X}i∈I be an analytic quasi-étale Q-

structure on X. Suppose that either p−1
i G is regular or it is given by the 1-form x2dx1 +

λix1dx2 where (x1, . . . , xn) are analytic coordinates on Xi and λi ∈ Q>0. Let (Dj)j∈J be

pairwise distinct prime divisors on X. Suppose that Dj is invariant under G for every

j ∈ J. Then the pair
(
X,

∑
j∈J ajDj

)
has klt singularities for any real numbers 0 ≤ aj < 1.

Proof. It suffices to prove the statement locally on X for the analytic topology. We

may therefore assume without loss of generality that there exist a (connected) smooth

analytic complex manifold Y and a finite Galois holomorphic map p : Y → X, totally

branched over the singular locus and étale outside of the singular set. We may also

assume that p−1G is given by the 1-form y2dy1 + λy1dy2, where λ ∈ Q>0 and (y1, . . . , yn)

are analytic coordinates on Y. This immediately implies that the divisor
∑

j∈J Ci has

normal crossing support, where Cj := p−1(Dj). Therefore, the pair
(
Y,

∑
j∈J ajCj

)
has klt

singularities for any real numbers 0 ≤ aj < 1. On the other hand, we have

KY +
∑
j∈J

ajCj = p∗(KX +
∑
j∈J

ajDj

)

and thus
(
X,

∑
j∈J ajDj

)
has klt singularities as well. This finishes the proof of the

lemma.
�

The following is the main result of this section.
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28 S. Druel and W. Ou

Theorem 6.4. Let X be a normal projective variety with klt singularities, and let G be

a codimension one foliation on X. Suppose that G is canonical with KG ≡ 0 and that

ν(X) = 1. Suppose in addition that G is closed under pth powers for almost all primes

p. Then G is algebraically integrable.

Proof. For the reader’s convenience, the proof is subdivided into a number of steps.

Step 1. Applying [12, Proposition 8.14] together with Lemma 2.4, we may assume

without loss of generality that there is no positive-dimensional algebraic

subvariety tangent to G passing through a general point of X. To prove the

statement, it then suffices to show that dim X = 1.

Step 2. Arguing as in Steps 1 and 2 of the proof of [12, Theorem 10.4], we see that

we may also assume that X is Q-factorial and that KX is movable.

Step 3. Recall from [17, Proposition 9.3] that there is an open set X◦ ⊆ X with

quotient singularities whose complement in X has codimension at least

three. Let {pα : Xα → X◦}α∈A be a quasi-étale Q-structure on X◦ (Fact 3.2).

Notice that p−1
α G is obviously closed under pth powers for almost all

primes p. By [27, Corollary 7.8], we see that we may assume that p−1
α G|X◦

is defined at singular points (locally for the analytic topology) by the 1-form

x2dx1 + λx1dx2 where (x1, . . . , xn) are local analytic coordinates on Xα and

λ ∈ Q>0.

Let S ⊆ X be a two-dimensional complete intersection of general elements of

a very ample linear system |H| on F. We may assume that S ⊂ X◦ and that S has klt

singularities. Let also L be the foliation of rank one on S induced by G . By general

choice of S, we may also assume that the collection of charts {pα : Xα → X◦}α∈A induces

a quasi-étale Q-structure {qα : Sα → S}α∈A on S, where Sα := p−1
α (S) and qα := pα |Sα

,

and that q−1
α L is defined at a singular point x (locally for the analytic topology) by a

closed holomorphic 1-form with isolated zeroes or by the 1-form x2dx1 + λx1dx2 where

(x1, x2) are local analytic coordinates on Sα and λ ∈ Q>0. In the former case, we have

BB(q−1
α L , x) = 0, and in the latter case, we have BB(q−1

α L , x) = −λ(1 − λ−1)2. On the

other hand, by [12, Proposition 3.6], we have det NL
∼= (det NG )|S. It follows that

c1(NL )2 = K2
X · Hdim F−2 � 0

since KX is movable by Step 2. This implies that λ = 1 by Proposition 3.9.

Step 4. Let β : Z → X be a resolution of singularities with exceptional set E, and suppose

that E is a divisor with simple normal crossings. Suppose in addition that the restriction
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Codimension One Foliations with Trivial Canonical Class 29

of β to β−1(Xreg) is an isomorphism. Let E1 be the reduced divisor on Z whose support

is the union of all irreducible components of E that are invariant under β−1G . Note that

−c1(NG ) ≡ KX by assumption. By [12, Proposition 4.9] and [12, Remark 4.8], there exists

a rational number 0 � ε < 1 such that

ν
( − c1(Nβ−1G ) + εE1

) = ν
( − c1(NG )

) = 1.

By [34, Theorem 6] applied to β−1G , we may assume that there exists an arithmetic

irreducible lattice � of PSL(2,R)N for some integer N � 2, as well as a morphism ϕ : Z →
H := DN/� of quasi-projective varieties such that G = ϕ−1H , where H is a weakly

regular codimension one foliation on H induced by one of the tautological foliations on

the polydisc DN . Note that ϕ is generically finite as there is no positive-dimensional

algebraic subvariety tangent to G passing through a general point of X. Moreover, ϕ(Z)

is not tangent to H since G has codimension one.

Proposition 6.1 then says that X must be of general type. Thus, dim X = ν(X) = 1,

completing the proof of the theorem. �

The same argument used in the proof of Theorem 6.4 shows that the following

holds using the fact that weekly regular foliations on smooth spaces are regular (we

refer to [12, Section 5] for this notion).

Theorem 6.5. Let X be a normal projective variety with klt singularities, and let G

be a weakly regular codimension one foliation on X. Suppose that G is canonical with

KG ≡ 0. Suppose in addition that ν(X) = 1. Then G is algebraically integrable.

7 Foliations defined by closed rational 1-forms

Let X be a normal projective variety, and let G ⊂ TX be a codimension one foliation.

Suppose that G is given by a closed rational 1-form ω with values in a flat line bundle

L . Then the twisted rational 1-form ω is not uniquely determined by G in general. The

following result addresses this issue.

Proposition 7.1. Let X be a normal projective variety with klt singularities, and let

G ⊂ TX be a codimension one foliation with canonical singularities. Suppose that G is

given by a closed rational 1-form ω with values in a flat line bundle L whose zero set

has codimension at least two. Suppose furthermore that KX is not pseudo-effective, and
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30 S. Druel and W. Ou

that KG ≡ 0. Then, there exists a quasi-étale cover f : X1 → X such that f −1G is given by

a closed rational 1-form with zero set of codimension at least two.

To prove Proposition 7.1, we will need the following auxiliary result.

Lemma 7.2. Let X be a smooth quasi-projective variety, and let G ⊂ TX be a

codimension one foliation with canonical singularities. Suppose that G is given by

a closed rational 1-form ω with values in a flat line bundle whose zero set has

codimension at least two. Suppose in addition that the residue of ω at a general point of

any irreducible component of its polar set is zero. Let B be a codimension two irreducible

component of the singular set of G which is contained in the polar set of ω and let (Di)i∈I

be the set of irreducible components of the polar set of ω containing B. If x ∈ B is a

general point, then G has a first integral at x of the form f := ∏
i∈I f mi

i where fi is a local

holomorphic equation of Di at x and mi is a positive integer for every i ∈ I.

Proof. Let S ⊆ X be a two-dimensional complete intersection of general elements of

some very ample linear system on X. Notice that S is smooth and that the foliation L of

rank one on S induced by G has canonical singularities in a Zariski open neighborhood

of the generic point of B ∩ S by Proposition 2.10.

Let now x ∈ B ∩ S be a general point. Let also fi be a local holomorphic equation

of Di at x. By [7, Théorème III.2.1, Première partie], there exist positive integers mi

and a local holomorphic function g at x such that G is given in some analytic open

neighborhood of x by the 1-form

d
( g∏

i∈I f mi
i

)
.

Set f := ∏
i∈I f mi

i . We may also assume that fi and g are relatively prime at x for any

i ∈ I. By general choice of S, the restrictions of g and f to S are relatively prime

nonzero local holomorphic functions. In particular, L is given by d
(g

f

)
on some analytic

open neighborhood of x in S. Now, recall from [28, Observation I.2.6], that L has only

finitely many separatrices at x. This immediately implies that g(x) = 0. Let i0 ∈ I.

Then
(
fi0g

− 1
mi0

)mi0 · ∏
i∈I\{i0} f mi

i is a holomorphic first integral of G at x, proving the

lemma. �

The proof of Proposition 7.1 makes use of the following minor generalization of

[27, Proposition 3.11].
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Lemma 7.3. Let X be a normal variety with quotient singularities and let G be a

codimension one foliation on X with canonical singularities. Suppose that G is given

by a closed rational 1-form ω with zero set of codimension at least two. Let D be the

reduced divisor on X whose support is the polar set of ω. Then (X, D) has log canonical

singularities.

Proof. Let {pα : Xα → X}α∈A be a quasi-étale Q-structure on X. The claim follows

easily from [27, Proposition 3.11] applied to p−1
α G on Xα for any α ∈ A together with [25,

Proposition 3.16]. �

We will also need the following generalization of [27, Corollary 3.10].

Lemma 7.4. Let X be a normal projective variety with klt singularities, and let G ⊂
TX be a codimension one foliation with canonical singularities. Suppose that KG ≡ 0.

Suppose furthermore that X is uniruled and let X ��� R be the maximal rationally chain

connected fibration. Then any algebraic leaf of G dominates R.

Proof. Consider a commutative diagram:

where X1 and R1 are smooth projective varieties. Applying [16, Theorem 1.1], we see that

R1 is not uniruled. This in turn implies that KR1
is pseudo-effective by [4, Corollary 0.3].

Set M := f ∗
1 OR1

(−KR1
) and q := dim R1, and let ω ∈ H0

(
X1, �q

X1
⊗ M

)
be the twisted

q-form induced by df1. Let G1 be the pull-back of G on X1. Then, ω yields a nonzero

section σ ∈ H0
(
X1, ∧q(G ∗

1 ) ⊗ M
)

by [12, Proposition 4.22]. On the other hand, ∧qG ∗
1 ⊗ M

is semistable with respect to the pull-back on X1 of any ample divisor on X by [12,

Lemma 8.14] together with [8, Theorem 5.1]. This immediately implies that codimension

one zeroes of σ are β-exceptional. Now, let F be the closure of an algebraic leaf of G and

denote by F1 its proper transform on X1. If F1 does not dominate R1, then σ must vanish

along F1, yielding a contradiction. �

Proof of Proposition 7.1 For the reader’s convenience, the proof is subdivided into a

number of steps. By assumption, there exist prime divisors (Di)1�i�r on X and positive

integers (mi)1�i�r such that NG
∼= OX

( ∑
1�i�r miDi

) ⊗ L .
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Step 1. Let X ��� R be the maximal rationally chain connected fibration. Recall that

it is an almost proper map and that its general fibers are rationally chain connected.

Consider a commutative diagram:

where X1 and R1 are smooth projective varieties. Notice that general fibers of X1 → R1

are rationally chain connected by [21, Theorem 1.2] and recall from [7, Proposition III.

1.1, Première partie], that the hypersurfaces Di are invariant under G . By Lemma 7.4,

we conclude that Di dominates R for every 1 � i � r. Now, ω induces a closed rational

1-form ω1 on X1 with values in the flat line bundle β∗L .

Arguing as in [27, Section 8.2.1], one concludes that β∗L is torsion if the residue

of ω1 at a general point of Di is nonzero for some 1 � i � r.

Suppose from now on that the residue at a general point of Di is zero for any

1 � i � r.

Step 2. Arguing as in Steps 1 and 2 of the proof of [12, Proposition 11.6], we may assume

without loss of generality that the following holds.

(1) There is no positive-dimensional algebraic subvariety tangent to G passing

through a general point in X.

(2) The variety X is Q-factorial.

Step 3. Since KX is not pseudo-effective by assumption, we may run a minimal model

program for X and end with a Mori fiber space ([3, Corollary 1.3.3]). Therefore, there

exists a sequence of maps

where the ϕi are either divisorial contractions or flips, and ψm is a Mori fiber space.

The spaces Xi are normal, Q-factorial, and Xi has klt singularities for all 0 � i � m. Let

Gi be the foliation on Xi induced by G . Arguing as in Step 2 of the proof of [12, Theorem

9.4], we see that KGi
≡ 0 and that Gi has canonical singularities. Moreover, ω induces a

closed rational 1-form ωm on Xm with values in a flat line bundle Lm, whose zero set
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has codimension at least two. By construction, Gm is given by ωm, and if Lm is a torsion

flat line bundle then so is L .

We will show in Steps 4 − 6 that either Lm is torsion, or Xm is smooth, the polar

locus of ωm is a smooth connected hypersurface, say D1,m := (ϕm−1 ◦ · · · ◦ ϕ0)∗D1, and

Gm can be defined by a nowhere vanishing (closed) logarithmic 1-form with poles along

D1,m �D′
1,m for some smooth (connected) hypersurface D′

1,m. Taking this for granted, one

concludes that the conclusion of Proposition 7.1 holds for X as in Step 3 of the proof of

[12, Proposition 11.6].

For simplicity of notation, we will assume in the following that X = Xm, writing

ψ := ψm.

Step 4. Arguing as in Step 5 of the proof of [12, Proposition 11.6], we see that the

following additional properties hold.

(1) We have dim Y = dim X − 1.

(2) Moreover, ψ(D1) = Y, m1 = 2 and D1 · F = 1, where F denotes a general fiber

of ψ . Moreover, ψ(Di) � Y for any 2 � i � r.

Step 5. Recall from [17, Proposition 9.3] that klt spaces have quotient singularities in

codimension two.

By Lemma 7.3,
(
X,

∑
1�i�r Di

)
has log canonical singularities in codimension

two. Let 2 � i � r. Lemma 7.5, then says that there exists a Zariski open set Y◦
i containing

the generic point of ψ(Di) and a finite cover g◦
i : T◦

i → Y◦
i of smooth varieties such that

the normalization M◦
i of the fiber product T◦

i ×Y X is a P1-bundle over T◦
i and such that

the map M◦
i → X◦

i is a quasi-étale cover, where X◦
i := ψ−1(Y◦

i ). By Lemma 2.4, the pull-

back GM◦
i

of G|X◦
i

to M◦
i has canonical singularities. Applying Lemma 7.2 and shrinking

Y◦
i , if necessary, we see that GM◦

i
is defined locally for the analytic topology by a closed

1-form with zero set of codimension at least two or by the 1-form x2dx1 + λx1dx2 where

(x1, . . . , xn) are analytic coordinates on Xi and λ ∈ Q>0. On the other hand, the restriction

of G to X \ ∪1�i�rDi is locally defined by closed 1-forms with zero set of codimension at

least two by assumption. Therefore, there exist a closed subset Z ⊂ X of codimension at

least three and an analytic quasi-étale Q-structure {pj : Xj → X \ Z}j∈J on X \ Z such that

p−1
j G is defined by a closed 1-form with zero set of codimension at least two or by the

1-form x2dx1 + λjx1dx2 where (x1, . . . , xn) are analytic coordinates on Xi and λj ∈ Q>0

(Fact 3.3). Proposition 4.1 then says that there exists an open subset Y◦ ⊆ Yreg with

complement of codimension at least two and a finite cover g : T → Y such that the

following holds. Set T◦ := g−1(Y◦) and X◦ := ψ−1(Y◦).

(1) The variety T has canonical singularities and KT ∼Z 0; T◦ is smooth.
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(2) The normalization M◦ of the fiber product T◦ ×Y X is a P1-bundle over T◦

and the map M◦ → X◦ is a quasi-étale cover.

(3) The pull-back of G|X◦ yields a flat Ehresmann connection on M◦ → T◦.

Moreover, there exists a Q-divisor B on Y such that KY + B is torsion (see the

proof of Proposition 4.1).

Step 6. Suppose from now on that L is not torsion, and let aY : Y → A(Y) be the Albanese

morphism. Arguing as in Step 7 of the proof of [12, Proposition 11.6], we conclude that

aY is generically finite.

If B = 0, then Y is uniruled. But this contradicts the fact that aY is generically

finite. Therefore, B = 0 and KY is torsion. The argument used in Step 7 of the proof of

[12, Proposition 11.6] then shows that X and D1 are smooth and that G can be defined

by a nowhere vanishing (closed) logarithmic 1-form with poles along D1 � D′
1 for some

smooth (connected) hypersurface D′
1. This finishes the proof of the proposition. �

Lemma 7.5. Let X be a quasi-projective variety with klt singularities and let ψ : X → Y

be a Mori fiber space where Y is a smooth quasi-projective variety. Suppose in addition

that dim Y = dim X − 1 and that there exists a section D ⊂ X of ψ . Let G ⊂ Y be an

irreducible hypersurface and set E := ψ−1(G). Suppose furthermore that (X, D + E) has

log canonical singularities over the generic point of G. Then, there exist a Zariski open

neighborhood Y◦ of the generic point of G in Y and a finite Galois cover g◦ : T◦ → Y◦

of smooth varieties such that the normalization M◦ of the fiber product T◦ ×Y X is a

P1-bundle over T◦ and such that the map M◦ → X◦ is a quasi-étale cover, where X◦ :=
ψ−1(Y◦).

Proof. By [17, Proposition 9.3], klt spaces have quotient singularities in codimension

two. Shrinking Y, if necessary, we may therefore assume that X has quotient singu-

larities. In particular, X is Q-factorial. Since ψ is a Mori fiber space with Q-factorial

singularities and D is a section of ψ , any irreducible component of ψ−1(y) meets D at

the unique intersection point of D and ψ−1(y). Let B ⊂ Y be a one-dimensional complete

intersection of general members of a very ample linear system passing through a general

point y of G and set S =: ψ−1(B) ⊂ X. Notice that S is klt and that (S, D ∩ S + E ∩ S) is log

canonical. This easily implies that the support of D ∩ S + E ∩ S has at most two analytic

branches at any point. This in turn implies that ψ−1(y) is irreducible and proves that ψ

has irreducible fibers in a neighborhood of the generic point of G.

Write ψ∗G = mE for some positive integer. Let Y◦ be a Zariski open neighbor-

hood of the generic point of G in Y and let g◦ : T◦ → Y◦ be a finite Galois cover of
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smooth varieties with ramification index m at any point over the generic point of G. Let

M◦ be the normalization of the fiber product T◦ ×Y X. Shrinking Y◦, if necessary, we

may assume without loss of generality that the map ϕ◦ : M◦ → T◦ has reduced fibers

([19, Théorème 12.2.4]). Observe that the map f ◦ : M◦ → X◦ is a quasi-étale cover, where

X◦ := ψ−1(Y◦). It follows that
(
M◦, (f ◦)−1(D ∩ X◦) + (f ◦)−1(E ∩ X◦)

)
is log canonical.

Moreover, (f ◦)−1(D ∩ X◦) is a section of ϕ◦ and any irreducible component of any fiber

of ϕ◦ meets this section by construction. Arguing as above, we conclude that ϕ◦ has

irreducible fibers over general points in ϕ◦((f ◦)−1(E∩X◦)
)
. The lemma then follows from

[24, Theorem II.2.8]. �

8 Proof of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1 We maintain notation and assumptions of Theorem 1.1. By [12,

Lemma 12.5], we have ν(X) � 1. If ν(X) = 0, then Theorem 1.1 follows from [12, Lemma

10.1] and [12, Proposition 10.2].

We may therefore assume from now on that ν(X) ∈ {−∞, 1}.
By [12, Proposition 12.3] together with [12, Lemma 8.15], either G is closed under

pth powers for almost all primes p, or it is given by a closed rational 1-form with values

in a flat line bundle whose zero set has codimension at least two ([12, Remark 12.4]).

If G is closed under pth powers for almost all primes p, then it is algebraically

integrable by Theorems 5.1 and 6.4. The statement then follows from [12, Theorem 1.5].

Suppose now that G is given by a closed rational 1-form ω with values in a flat

line bundle L whose zero set has codimension at least two. By assumption, there exists

an effective divisor D on X such that NG
∼= OX(D) ⊗ L . On the other hand, c1(NG ) ≡

−KX since KG ≡ 0. This immediately implies that ν(X) = −∞ since ν(X) ∈ {−∞, 1}. By

Proposition 7.1, there exists a quasi-étale cover f : X1 → X such that f −1G is given by

a closed rational 1-form with zero set of codimension at least two. Note that X1 has klt

singularities. Moreover, f −1G is canonical with Kf −1G ≡ 0 by Lemma 2.4. Theorem 1.1

follows from [12, Theorem 11.3] in this case. This finishes the proof of Theorem 1.1. �

Proof of Corollary 1.3 We maintain notation and assumptions of Corollary 1.3. By [11,

Theorem 8.1] (see also [33, Theorem 1.7]), there exists a projective birational morphism

β : X1 → X such that

(1) X1 is Q-factorial with klt singularities,

(2) we have Kβ−1G = β∗KG and

(3) G1 := β−1G is F-dlt we refer to ([11, Paragraph 3.2] for this notion).
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By [30, Proposition V.2.7] and property (2), we have ν(KG1
) = ν(KG ) = 0. Moreover, G1 has

canonical singularities by Lemma 2.3. Thus, we may run a minimal model program for

G1 and end with a minimal model. There exist a projective three-fold X2 with Q-factorial

klt singularities and a KG1
-negative birational map ϕ : X1 ��� X2 such that KG2

is nef,

where G2 denotes the foliation on X2 induced by G1. Since ϕ is KG1
-negative and using

[30, Proposition V.2.7] again, we see that ν(KG2
) = 0. Since KG2

is nef, we must have

KG2
≡ 0. On the other hand, using the fact that ϕ is KG1

-negative together with Lemma

2.3, we conclude that G2 has canonical singularities as well. The corollary now follows

from Theorem 1.1. �
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