ERRATUM

It is not true in general, as claimed in the proof of [Dru19, Proposition 3.1], that the kernel of the morphism $T_X \to \Omega_X^{r-1} \otimes \mathscr{O}_X(-K_\mathscr{G})$ given by the contraction with β is a vector bundle \mathscr{E} on X such that $T_X \cong \mathscr{G} \oplus \mathscr{E}$. The following corrects the proof of *loc. cit.*

The contraction with β gives a morphism $\wedge^{r-1}\mathscr{G} \to \Omega^1_X \otimes \mathscr{O}_X(-K_\mathscr{G})$ such that the composed map $\wedge^{r-1}\mathscr{G} \to \Omega^1_X \otimes \mathscr{O}_X(-K_\mathscr{G}) \to \mathscr{G}^* \otimes \mathscr{O}_X(-K_\mathscr{G})$ is an isomorphism since $\beta(v)$ is constant and non-zero. The kernel \mathscr{E} of the induced map $T_X \to (\wedge^{r-1}\mathscr{G})^* \otimes \mathscr{O}_X(-K_\mathscr{G})$ then yields a decomposition $T_X \cong \mathscr{G} \oplus \mathscr{E}$ of T_X .

References

[Dru19] Stéphane Druel, On foliations with semi-positive anti-canonical bundle, Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 1, 315–321.