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Abstract. In this paper we consider various notions of positivity for distributions on complex
projective manifolds. We start by analyzing distributions having big slope with respect to curve
classes, obtaining characterizations of generic projective space bundles in terms of movable
curve classes. We then apply this result to investigate algebraicity of leaves of foliations,
providing a lower bound for the algebraic rank of a foliation in terms of invariants measuring
positivity. We classify foliations attaining this bound, and describe those whose algebraic rank
slightly exceeds this bound.
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1. Introduction

The existence of sufficiently positive subsheaves of the tangent bundle of a complex
projective manifoldX imposes strong restrictions onX . In particular, several special
varieties can be characterized by positivity properties of their tangent bundle. Early
results in this direction includeKobayashi andOchiai’s characterizations of projective
spaces and hyperquadrics [23] and Mori’s characterization of projective spaces [26].
There are many ways of measuring positivity of a torsion free sheaf. One way is
to consider slopes with respect to movable curve classes ˛ 2 Mov.X/. We refer to
Section 2.3 for the notion of slope and its properties. When ˛ is an ample class, we
have the following characterization of projective spaces due to Höring.
Theorem 1.1. Let X be an n-dimensional complex normal projective variety, L an
ample line bundle on X , and F � TX a distribution. Set ˛ WD ŒLn�1� 2 Mov.X/.
If �˛.F ˝L�/ > 0, then
� .X;L/ Š .Pn;OPn.1// [22, Theorem 1.1], and
� F D TPn [5, Theorem 1.3].

Projective space bundles provide counter-examples to the statement of Theo-
rem 1.1 if we replace the ample class ˛ D ŒLn�1� with more general movable curve
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classes. More precisely, let Y be a complex projective manifold, and E an ample
vector bundle of rank rC1 > 2 onY . Consider the projectivizationX D PY .E/, with
tautological line bundle OX .1/ and natural morphism � WX ! Y . Let ˛ 2 Mov.X/
be the class of a line contained in a fiber of � . Then

�˛
�
TX=Y ˝OX .�1/

�
D
1

r
> 0:

So there is an open neighborhoodU � Mov.X/ of ˛ such that�ˇ .TX=Y ˝OX .�1//

> 0 for every ˇ 2 U . The following characterization of generic P r -bundles shows
that these are all the new examples that arise when the ample class ˛ D ŒLn�1�

is replaced with an arbitrary movable class ˛ 2 Mov.X/ in Theorem 1.1. By a
generic P r -bundle we mean an almost proper dominant map XÜ Y to a normal
projective variety Y with general fibers isomorphic to P r . See Section 2.3 for the
notion of �max

˛ .
Theorem 1.2. Let X be a normal Q-factorial complex projective variety, and L

an ample line bundle on X . If �max
˛ .TX ˝ L�/ > 0 for some movable curve class

˛ 2 Mov.X/, then X is a generic P r -bundle for some positive integer r .
Theorem 1.2 follows from the more refined statement in Theorem 3.1.

Corollary 1.3. Let X be a normal Q-factorial complex projective variety, and
suppose that X is not a generic P r -bundle for any positive integer r . Let L be
an ample line bundle on X . Then, for any positive integer m and any torsion-free
quotient .�1X ˝L/˝m� Q of positive rank, det.Q/ is pseudo-effective.

Next we apply these results to investigate algebraicity of leaves of holomorphic
foliations on complex projective manifolds.

A central problem in the theory of holomorphic foliations is to find conditions
that guarantee the existence of algebraic leaves. Algebraic leaves of holomorphic
foliations correspond to algebraic solutions of complex differential equations. It
has been noted that positivity of foliations on complex projective varieties tend to
improve algebraicity of leaves ([1–4, 6, 7, 10–12, 14, 15, 25]). In order to measure
algebraicity of leaves, we introduce the algebraic rank. The algebraic rank ra.F / of a
holomorphic foliationF on a complex algebraic varietyX is themaximumdimension
of an algebraic subvariety through a general point of X that is tangent to F . These
maximal algebraic subvarieties tangent toF are the leaves of a subfoliationF a � F ,
the algebraic part of F (see Definition 2.4).

In a series of papers, we have addressed Fano foliations ([1–4]). These are
holomorphic foliations F on complex projective varieties with ample anti-canonical
class �KF . For a Fano foliation F on a complex projective manifold X , a rough
measure of positivity is the index �.F /, which is the largest integer dividing �KF

in Pic.X/. Our works on Fano foliations with high index indicated that the larger is
the index, the larger is the algebraic rank of the Fano foliation. Nowwe investigate this
relation between positivity and algebraicity of leaves for a wider class of foliations
than Fano foliations.
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We first introduce a new invariant measuring positivity for foliations with big anti-
canonical class.
Definition 1.4. Let X be a complex projective manifold, and F a holomorphic
foliation on X with big anti-canonical class �KF . The generalised index of F is
defined as follows (see Lemma 4.1):

y�.F / WD max
˚
t 2 R j �KF � tACE, where A is an ample divisor

and E is a pseudo-effective R-divisor
	
:

We provide a lower bound for the algebraic rank in terms of the generalised index,
and classify foliations attaining this bound. We refer to Definition 2.4 for the notions
of pull-back and purely transcendental foliations.
Theorem 1.5. LetX be an n-dimensional complex projective manifold, andF ¨ TX
a foliation on X with big anti-canonical class. Then the algebraic rank and the
generalised index of F satisfy

ra.F / > y�.F /:

Moreover, equality holds if and only if X Š Pn and F is the linear pull-back of a
purely transcendental foliation on Pn�r

a.F / with zero canonical class.
The following are immediate consequences of Theorem 1.5.

Corollary 1.6. LetX be ann-dimensional complex projectivemanifold, andF ¨ TX
a Fano foliation of index �.F / on X . Then the algebraic rank of F satisfies the
following inequality:

ra.F / > �.F /:
Moreover, equality holds if and only if X Š Pn and F is the linear pull-back of a
purely transcendental foliation on Pn�r

a.F / with zero canonical class.
Corollary 1.7. LetX be an n-dimensional complex projective manifold, L an ample
divisor on X , and F ¨ TX a foliation of rank r on X . Suppose that �KF � rL is
pseudo-effective. Then .X;OX .L// Š .Pn;OPn.1//, and F is induced by a linear
projection of Pn.

Finally, we address foliations F whose algebraic rank and generalised index
satisfy ra.F / 6 y�.F /C 1.
Theorem 1.8. LetX be a complex projective manifold, andF ¨ TX a foliation onX
with big anti-canonical class. Suppose that the algebraic rank and the generalised
index of F satisfy ra.F / 6 y�.F /C 1. Then the closure of a general leaf of F a is
rationally connected.

The following is an immediate consequence of Theorem 1.8.
Corollary 1.9. LetX be a complex projectivemanifold, andF ¨ TX aFano foliation
of index �.F / onX . Suppose that the algebraic rank ofF satisfies ra.F / D �.F /C1.
Then the closure of a general leaf of F a is rationally connected.
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We remark that codimension 1 Fano foliations F of index n�3 on n-dimensional
projective manifolds were classified in [4]. When X 6Š Pn, then either F is
algebraically integrable or ra.F / D �.F /C 1.

Notation and conventions. We always work over the field C of complex numbers.
Varieties are always assumed to be irreducible. We denote by Xns the nonsingular
locus of a variety X . When X is a normal variety, and F is a quasi-coherent sheaf
of generic rank r on X , we denote by TX the sheaf .�1X /

�, and by det.F / the
sheaf .^rF /��. If E is a vector bundle on a variety X , we denote by PX .E/ the
Grothendieck projectivization ProjX .S�E/.
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2. Foliations

2.1. Basic notions. Let X be a normal variety.
Definition 2.1. A distribution on X is a coherent saturated subsheaf F � TX . By
saturated we mean that the quotient TX=F is torsion-free.

The rank r of F is the generic rank of F . The codimension of F is defined as
q WD dimX � r .

The normal sheaf of F is the sheaf NF WD .TX=F /
��.

The canonical class KF of F is any Weil divisor on X such that OX .�KF / Š

det.F /. We say that F is Q-Gorenstein if KF is a Q-Cartier divisor.
Definition 2.2. A foliation on X is a distribution F � TX that is closed under the
Lie bracket.

Let Xı � Xns be the maximal open subset such that FjXns is a subbundle of TXns .
By Frobenius’ theorem, through any point of Xı there is a maximal connected and
immersed holomorphic submanifold L � Xı such that TL D FjL. We say that
such L is a leaf of F . A leaf is called algebraic if it is open in its Zariski closure.
2.3. To a codimension q distribution F on a normal variety X , one naturally
associates a unique (up to scaling) twisted q-form !F 2 H

0.X;�
q
X ˝ det.NF //.
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This form does not vanish in codimension 1, and completely determines the
distribution F . (See for instance [3, Paragraph 3.5] for details.)
Definition 2.4 (The algebraic and transcendental parts of a foliation [2, Definition 2]).
Let F be a foliation of rank r on a normal varietyX . There exist a normal variety Y ,
unique up to birational equivalence, a dominant rational map with connected fibers
'WXÜ Y , and a foliation G on Y such that the following conditions hold (see [24,
Section 2.3]).
(1) G is purely transcendental, i.e. there is no positive-dimensional algebraic

subvariety through a general point of Y that is tangent to G .
(2) F is the pull-back of G via '. This means the following. Let Xı � X and

Y ı � Y be smooth open subsets such that ' restricts to a smooth morphism
'ıWXı ! Y ı. Then FjXı D .d'

ı/�1.GjY ı/. In this case we write F D '�1G .
The foliation F a on X induced by ' is called the algebraic part of F , and its

rank is the algebraic rank of F , which we denote by ra. When ra D r , we say
that F is algebraically integrable. The foliation G � TY is called the transcendental
part of F .

Next we relate the canonical class of a foliation with those of its algebraic and
transcendental parts. For that we introduce some notation.
Definition 2.5. Let � WX ! Y be a dominant morphism of normal varieties.

LetD be a Weil Q-divisor on Y . If � WX ! Y is equidimensional, we define the
pull-back ��D ofD to be the unique Q-divisor on X whose restriction to ��1.Yns/
is .�j��1.Yns//

�Dj��1.Yns/. This agrees with the usual pull-back ifD is Q-Cartier.
We define the ramification divisor R.�/ of � as follows. Let Y ı � Y be a dense

open subset such that codim.Y n Y ı/ > 2 and � restricts to an equidimensional
morphism �ıWXı D ��1.Y ı/! Y ı. Set

R.�ı/ D
X
Dı

�
.�ı/�Dı �

�
.�ı/�Dı

�
red

�
;

where Dı runs through all prime divisors on Y ı. Then R.�/ is the Zariski closure
of R.�ı/ in X .

Assume that either KY is Q-Cartier, or that � is equidimensional. We define the
relative canonical divisor of X over Y as KX=Y WD KX � ��KY .
2.6 (The canonical class of a pull-back foliation). Let � WX ! Y be a dominant
morphism with connected fibers between normal varieties, G a foliation on Y , and
F D ��1G � TX its pull-back via � , as in Definition 2.4 (2). Assume that � is
equidimensional. Let fBigi2I be the (possibly empty) set of prime divisors on Y
contained in the set of critical values of � and invariant by G . A straightforward
computation shows that

KF D �
�KG CKX=Y �

X
i2I

�
��Bi � .�

�Bi /red
�
: (2.1)
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In particular, if F is induced by � , then (2.1) reads

KF D KX=Y �R.�/: (2.2)

Remark 2.7. Let 'WX Ü Y be a dominant rational map with connected fibers
between normal varieties, and F a foliation on X . Suppose that the general fiber
of ' is tangent to F . This means that, for a general point x on a general fiber F of ',
the linear subspace Fx � TxX determined by the inclusion F � TX contains TxF .
Then, by [1, Lemma 6.7], there is a foliation G on Y such that F D '�1G . We
remark that this is not true in general if F is just a distribution.

2.8 (Restricting foliations to subvarieties). Let X be a smooth variety, and F a
codimension q foliation on X . Let Z be a smooth subvariety with dimZ > q.
Suppose that Z is generically transverse to F . This means that the associated
twisted q-form !F 2 H

0.X;�
q
X ˝ det.NF // restricts to a nonzero twisted q-form

on Z, and so F induces a foliation FZ of codimension q on Z. Then there
is an effective divisor B on Z such that FZ corresponds to a twisted q-form in
H 0.Z;�

q
Z ˝ det.NF /jZ.�B// non vanishing in codimension 1. A straightforward

computation shows that

KFZ CKX jZ D KF jZ CKZ � B:

When Z is a general hyperplane section, we show that B D 0.

Lemma 2.9. Let X � PN be a smooth projective variety, and F a foliation of
codimension q 6 dimX � 2 on X . Let H � PN be a general hyperplane. Then F

induces a foliation FX\H of codimension q on X \H with

KFX\H D .KF CH/jX\H :

Proof. Let H � PN be a general hyperplane, and set Z WD X \H . Notice that Z
is smooth and that Z is generically transverse to F . Let B be the effective divisor
on Z introduced in 2.8. If B1 is a prime divisor on Z, then B1 � Supp.B/ if and
only if F is tangent toH at a general point of B1.

Let Xı � X be the open subset where F is a subbundle of TX , and consider the
incidence subset

I ı D f.x;H/ 2 Xı � .PN /� j x 2 H and Fx � TxH g:

An easy dimension count gives that

dim I ı D dimX CN � .dimX � q/ � 1 6 dimX CN � 3:

It follows that ifH is general, then B D 0.
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2.2. Algebraically integrable foliations. Throughout this subsection, we let X be
a normal projective variety, and F a Q-Gorenstein algebraically integrable foliation
on X .
Definition 2.10 ([2, Definition 3.11]). Let i WF ! X be the normalization of the
closure of a general leaf of F . There is a canonically defined effective Q-divisor�F
on F such that KF C�F �Q i�KF . The pair .F;�F / is called a general log leaf
of F .

In the setup of Definition 2.10, we often write LjF for the pull-back i�L of a
Cartier divisor L on X .
2.11 (The family of log leaves of F [2, Lemma 3.9 and Remark 3.12]). There
is a unique proper subvariety Y 0 of the Chow variety of X whose general point
parametrizes the closure of a general leaf of F (viewed as a reduced and irreducible
cycle in X ). Let Y be the normalization of Y 0, and Z ! Y 0 � X the normalization
of the universal cycle, with induced morphisms:

Z
� //

�

��

X

Y:

(2.3)

Then �WZ ! X is birational and, for a general point y 2 Y , �.��1.y// � X is the
closure of a leaf of F . We refer to the diagram (2.3) as the family of leaves of F .

LetFZ be the foliation onZ induced byF (or�). By (2.2),KFZDKZ=Y �R.�/.
Moreover, there is a canonically defined effective Weil Q-divisor � on Z such that

KFZ C� D KZ=Y �R.�/C� �Q ��KF : (2.4)

Note that � is �-exceptional since ��KFZ D KF .
Let y 2 Y be a general point, set Zy WD ��1.y/ and �y WD �jZy . Then

.Zy ; �y/ coincides with the general log leaf .F;�F / from Definition 2.10.
We will need the following observation.

Lemma2.12. LetX be a smooth projective variety, andF analgebraically integrable
foliation on X . In the setup of Paragraph 2.11 above, we have

Supp.�y/ D Exc.�/ \Zy :

In particular, the singular locus of Zy is contained in Supp.�y/.

Proof. Since � is �-exceptional and Supp.�y/ D Supp.�/ \ Zy , we must have
Supp.�y/ � Exc.�/ \Zy .

To prove that Exc.�/ \ Zy � Supp.�y/, we first reduce to the case when F

has rank 1. Suppose that F has rank r > 2, and consider an embedding X � PN .
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Let L � PN be a general linear subspace of codimension r � 1. By Lemma 2.9,
F induces a foliation by curves FX\L on X \ L with

KFX\L D
�
KF C .r � 1/H

�
jX\L

; (2.5)

where H is a hyperplane in PN . Notice that the closure of a general leaf of FX\L
is �.Zy/ \ L for a general point y 2 Y . Moreover, the general log leaf of FX\L
is .Zy \ ��1.L/;�y \ ��1.L//. This follows from the definition of general log
leaf, (2.5), and the usual adjunction formula. Let E be an irreducible component
of Exc.�/ meeting Zy . Since the restriction of � to E \ Zy is finite, we have
dim �.E/ > r � 1. In particular, �.E/ \ L ¤ ;. Moreover, Exc.�/ \ Zy �
Supp.�y/ if and only if Exc.�/ \ Zy \ ��1.L/ � Supp.�y/ \ ��1.L/. Since
Exc.�/ \ ��1.L/ D Exc.�j��1.L//, we may assume that F has rank 1.

When F has rank 1, F is a line bundle on X by [1, Remark 2.3] and [20,
Proposition 1.9]. If E is an irreducible component of Exc.�/ that dominates Y ,
then �.E/ is contained in the singular locus of F . Apply [13, Lemme 1.2] (see
also [1, Lemma 5.6]) to conclude that E \ Zy � Supp.�y/, completing the proof
of the lemma.

Corollary 2.13. LetX be a smooth projective variety, and F ¨ TX an algebraically
integrable foliation on X , with general log leaf .F;�F /. Suppose that either
�.X/ D 1, or F is a Fano foliation. Then �F ¤ 0.

Proof. Let the notation be as in Paragraph 2.11, and suppose that�F D 0. It follows
from Lemma 2.12 that no irreducible component of Exc.�/ dominates Y . Hence, F

is induced by a rational map XÜ Y that restricts to a smooth proper morphism on
a dense open subset of X . This is impossible if �.X/ D 1. Moreover, F is smooth,
and in particular log canonical. On the other hand, an algebraically integrable
Fano foliation whose general log leaf is log canonical has the special property that
there is a common point in the closure of a general leaf (see [1, Proposition 5.3]
and [3, Proposition 3.13]). We conclude that �F ¤ 0.

We end this subsection with a consequence of [21, Lemma 2.14] (see also
[10,11,15] for related results). Recall that aWeil Q-divisorD on a normal projective
variety X is said to be pseudo-effective if, for any ample divisor L on X and
any rational number " > 0, there exists an effective Weil Q-divisor E such that
D C "L �Q E.

Lemma 2.14. LetX be a normal projective variety,L an ample divisor onX , and F

aQ-Gorenstein algebraically integrable foliation onX . LetF be the normalization of
the closure of a general leaf ofF , and let �F W yF ! F be a resolution of singularities.
If K yF C �

�
FLjF is pseudo-effective, then so is KF C L.
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Proof. Consider the family of leaves of F as in Paragraph 2.11:

Z
� //

 

��

X

Y:

By [15, Lemma 4.2], there exists a finite surjective morphism �1WY1 ! Y

with Y1 normal and connected satisfying the following property. If Z1 denotes
the normalization of the product Y1 �Y Z, then the induced morphism  1WZ1 ! Y1
has reduced fibers over codimension one points in Y1. Let �1WZ1 ! Z be the natural
morphism. Let �2WY2 ! Y1 be a resolution of singularities, and Z2 a resolution of
singularities of the product Y2 �Y1 Z1, with natural morphism �2WZ2 ! Z1. We
have a commutative diagram:

Z2
�2; birational //

 2
��

Z1
�1; finite //

 1
��

Z

 

��

�; birational // X

Y2
�2; birational

// Y1
�1; finite

// Y:

Let F1 Š F be a general fiber of  1, and set L1 WD .� ı �1/�L. Let F2 be the fiber
of  2WZ2 ! Y2 mapping to F1, and set L2 WD ��2L1.

By Paragraph 2.11, there is a canonically defined �-exceptional effective Q-Weil
divisor � on Z such that

KZ=Y �R. /C� �Q ��KF ; (2.6)

where R. / denotes the ramification divisor of  . Moreover, a straightforward
computation shows that

��1
�
KZ=Y �R. /

�
D KZ1=Y1 : (2.7)

Suppose that K yF C �
�
FLjF is pseudo-effective. We may assume without loss of

generality that the restriction of �2WZ2 ! Z1 to F2 factors through yF ! F Š F1.
This implies that KF2 C L2jF2 is pseudo-effective as well. By [21, Lemma 2.14],
KZ2=Y2CL2 is also pseudo-effective. This implies that .� ı�1 ı�2/�.KZ2=Y2CL2/
is too. Set Zı1 WD Z1 n �2.Exc.�2// and Y ı1 WD Y1 n �2.Exc.�2//. Since  1 is
equidimensional, we have  1.Zı1/ � Y ı1 .

Notice that codim Y1nY
ı
1 > 2, codim Z1nZ

ı
1 > 2, and that �2 (respectively,�2)

induces an isomorphism

��12 .Z1 nZ
ı
1/ Š Z1 nZ

ı
1

(respectively, ��12 .Y1 n Y ı1 / Š Y1 n Y ı1 ). It follows that

.�2/�.KZ2=Y2 C L2/ D KZ1=Y1 C L1:
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From (2.6) and (2.7), we conclude that

.� ı �1 ı �2/�.KZ2=Y2 C L2/ D deg.�1/.KF C L/

is pseudo-effective, completing the proof of the lemma.

2.3. Foliations defined by stability conditions. Let X be a normal projective var-
iety, and F � TX a foliation on X . Harder–Narasimhan filtrations of F allow one
to construct subfoliations of F that inherit some of the positivity properties of F

(see for instance [1, Section 7]). However, the classical notion of slope-stability with
respect to an ample line bundle is not flexible enough to be applied in many situations
in birational geometry. The papers [9] and [17] extend a number of known results
from the classical case to the setting where stability conditions are given by movable
curve classes.
Definition 2.15. A curve class ˛ 2 N1.X/R is movable ifD � ˛ > 0 for all effective
Cartier divisors D on X . The set of movable classes is a closed convex cone
Mov.X/ � N1.X/R, called the movable cone of X . If X is smooth, then Mov.X/
is the closure of the convex cone in N1.X/R generated by classes of curves whose
deformations cover a dense subset of X by [8].
2.16 (The Harder–Narasimhan filtration with respect to a movable curve class).
Let X be a normal, Q-factorial, projective variety, ˛ 2 N1.X/R a movable curve
class, and F a torsion-free sheaf of positive rank on X .

The slope of F with respect to ˛ is the real number

�˛.F / D
det.F / � ˛
rank.F /

:

The sheaf F is ˛-semistable if, for any subsheaf E ¤ 0 of F , one has
�˛.E/ 6 �˛.F /.

The maximal and minimal slopes of F with respect to ˛ are defined by

�max
˛ .F / WD sup

˚
�˛.E/ j 0 ¤ E � F is a coherent subsheaf

	
;

�min
˛ .F / WD inf

˚
�˛.Q/ j Q ¤ 0 is a torsion-free quotient of F

	
:

By [17, Corollary 2.26], there exists a unique filtration of F by saturated
subsheaves

0 D F0 ¨ F1 ¨ � � � ¨ Fk D F ;

with ˛-semistable quotients Qi D Fi=Fi�1 such that �˛.Q1/ > �˛.Q2/ > � � � >

�˛.Qk/. This filtration is called the Harder–Narasimhan filtration of F .
Using the basic properties of slopes and the Harder–Narasimhan filtration, one

can check that, for 1 6 i 6 k,

�min
˛ .Fi / D �˛.Qi / D �

max
˛ .F =Fi�1/: (2.8)
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The sheaf F1 is called the maximal destabilizing subsheaf of F .
Suppose that �max

˛ .F / > 0, and set s WD maxf1 6 i 6 k j �˛.Qi / > 0g > 1.
The positive part of F with respect to ˛ is the sheaf F C˛ WD Fs .

The following is a useful criterion for a subsheaf of a foliation to be a foliation.
We include a proof for the reader’s convenience.

Lemma 2.17 ([10, Lemma 4.10]). LetX be a normal, Q-factorial, projective variety
and F � TX a foliation on X . Let G � F be a saturated subsheaf and suppose
that, for some movable curve class ˛ 2 N1.X/R,

2�min
˛ .G / > �max

˛ .F =G /:

Then G is also a foliation on X .

Proof. Note thatG is saturated in TX . Integrability ofG is equivalent to the vanishing
of the map ^2G ! F =G induced by the Lie bracket. This vanishing follows from
the inequality

�min
˛ .^2G=Tors/ > �max

˛ .F =G /:

So it is enough to prove that

�min
˛ .^2G=Tors/ > 2�min

˛ .G /: (2.9)

Observe .^2G=Tors/�� Š .^2G /�� is a direct summandof .G˝G /��. Therefore,
we have

�min
˛ .^2G=Tors/ D �min

˛ ..^2G /��/

> �min
˛ ..G ˝ G /��/

D 2�min
˛ .G / .by [17, Theorem 4.2]),

proving (2.9).

Corollary 2.18. In the setup of Paragraph 2.16, suppose that F � TX is a foliation
on X with �max

˛ .F / > 0. Then Fi � TX is also a foliation on X whenever
�˛.Qi / > 0.

We end this subsection with a remarkable result of Campana and Păun concerning
algebraic integrability of foliations.

Theorem 2.19. Let X be a normal Q-factorial projective variety, ˛ 2 N1.X/R a
movable curve class, and F � TX a foliation on X . Suppose that �min

˛ .F / > 0.
Then F is algebraically integrable, and the closure of a general leaf is rationally
connected.

In particular, if F is purely transcendental, then KF is pseudo-effective.
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Proof. Let �W yX ! X be a resolution of singularities. By [17, Proposition 2.7
and Remark 2.8], we have �min

˛ .F / D �min
��˛

�
��1F

�
, where ��˛ 2 Mov. yX/ is the

numerical pull-back of ˛. The claim now follows from [10, Theorem 4.7] applied
to ��1F .

The following is an immediate consequence of Corollary 2.18 and Theorem 2.19.
Corollary 2.20. In the setup of Paragraph 2.16, suppose that F � TX is a foliation
on X with �max

˛ .F / > 0. Then, for 1 6 i 6 s, Fi � TX is an algebraically
integrable foliation, and the closure of a general leaf is rationally connected.

3. Characterization of generic projective space bundles

Theorem 3.1. Let X be a normal Q-factorial projective variety, and L an ample
line bundle on X . Suppose that �max

˛ .TX ˝L�/ > 0 for some movable curve class
˛ 2 Mov.X/, and let T1 be the maximal destabilizing subsheaf of TX with respect
to ˛.
(1) Then T1 is induced by a generic P r1-bundle structure �1WXÜ Y1 onX , and L

restricts to OPr1 .1/ on a general fiber of �1. Moreover, �max
˛

�
.TX=T1/˝L�

�
6

0.
(2) If F is a foliation onX and �˛.F ˝L�/ > 0, then T1 � F , and equality holds

if and only if F is algebraically integrable.

Proof. Step 1. Suppose first that F is an algebraically integrable foliation of rank r ,
and �˛.F ˝L�/ > 0 for some movable curve class ˛ 2 Mov.X/. We show that F

is induced by a generic P r -bundle structure � WXÜ Y on X and that L restricts
to OPr .1/ on a general fiber of � .

LetF be the normalization of the closure of a general leaf ofF , and let �F W yF!F

be a resolution of singularities. Let L be a divisor on X such that OX .L/ Š L.
IfK yFCdimF ���FLjF is pseudo-effective, then so isKF CdimF �L by Lemma 2.14.
This is absurd since �r�˛.F ˝L�/ D .KF C dimF � L/ � ˛ < 0 by assumption,
proving that K yF C dimF � ��FLjF is not pseudo-effective. Apply [22, Lemma 2.5]
to conclude that .F;LjF / Š .P r ;OPr .1//. Consider the family of leaves of F as in
Paragraph 2.11:

Z
� //

 

��

X

Y:

By [2, Proposition 4.10], we have

.Z; ��L/ Š .PY
�
E/;OPY .E/.1/

�
;

where E WD  ��
�L.



Vol. 94 (2019) Algebraicity of foliations 845

Suppose that the exceptional set Exc.�/ dominates Y under  . Consider a
resolution of singularities �W yY ! Y , and set yZ D P yY .�

�E/ Š yY �Y Z with
natural morphisms y W yZ ! yY and y�W yZ ! X . The exceptional set Exc.y�/ also
dominates yY under y . Note that Exc.y�/ has pure codimension one since X is
Q-factorial. Let yE be an irreducible component of Exc.y�/ dominating yY . Then

O yZ.�
yE/ Š OP yY .�

�E/.�k/˝ y 
�I

for some positive integer k, and some line bundle I on yY . In particular,
h0. yY ;Sk��E ˝ I�/ > 1. Let y� be a divisor on yZ such that

O yZ.
y�/ Š OP yY .�

�E/.1/:

Notice that OP yY .�
�E/.1/ is the pull-back of OPY .E/.1/ Š ��L under the natural

morphism P yY .�
�E/! PY .E/ Š Z, and hence it is semi-ample. From Lemma 3.2

below, we conclude thatm0.K yZ= yYCry�Cs yE/ is effective for some positive integerm0
and every sufficiently large integer s. This in turn implies that

y��.K yZ= yY C r
y� C s yE/ D KF C rL

is pseudo-effective. Thus �˛.F ˝ L�/ 6 0, yielding a contradiction. This proves
that the map � WXÜ Y induced by  is almost proper, and so F is induced by a
generic P r -bundle structure on X .

Step 2. We prove statement (1).
Let 0 D T0 ¨ T1 ¨ � � � ¨ Tk D TX be the Harder–Narasimhan filtration of TX

with respect to ˛, and set Qi D Ti=Ti�1. By Corollary 2.20, T1 is an algebraically
integrable foliation on X . Moreover, �˛.T1 ˝L�/ > 0. From Step 1 applied to T1,
we conclude that T1 is induced by a generic P r1-bundle structure �1WXÜ Y1 onX
and L restricts to OPr1 .1/ on a general fiber of �1.

Suppose that

�max
˛ ..TX=T1/˝L�/ D �˛.Q2 ˝L�/ > 0:

By Corollary 2.20, T2 is an algebraically integrable foliation on X . By Step 1, T2
is induced by a generic P r2-bundle structure on X . This is impossible since P r2

cannot admit a generic P r1-bundle structure with r1 < r2. Thus �˛.Q2˝L�/ 6 0,
proving (1).

Step 3. Suppose that F is a foliation on X , and �˛.F ˝L�/ > 0 for some movable
curve class ˛ 2 Mov.X/. Let F1 � F be the maximal destabilizing subsheaf of F

with respect to ˛. By Corollary 2.20, F1 is an algebraically integrable foliation
on X . Moreover, we have �˛.F1 ˝L�/ > 0. By Step 1, F1 is induced by generic
P s1-bundle structure on X . Let T1 � TX be as in Step 2. By [17, Corollary 2.17],
F1 � T1 since

�min
˛ .F1 ˝L�/ D �˛.F1 ˝L�/ > 0 and �max

˛ ..TX=T1/˝L�/ 6 0

by Step 2. Hence, we must have F1 D T1.
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IfF is algebraically integrable, then fromStep 1, we conclude thatF1 D T1 D F .

Recall that a vector bundle E on a normal projective variety Y is said to be semi-
ample if the line bundle OPY .E/.m/ on PY .E/ is generated by its global sections for
some positive integer m.
Lemma 3.2. Let Y be a normal projective variety, M a line bundle on Y , and E a
semi-ample vector bundle on Y . Suppose that h0.Y;SkE˝M/ > 1 for some integer
k > 1. Then there exists an integer m0 > 1 such that

h0
�
Y;Sm0.sk�1/E ˝ det.E/˝m0 ˝M˝m0s

�
> 1

for every sufficiently large integer s.

Proof. Let E be a semi-ample vector bundle on Y . By [16, Corollary 1], the vector
bundle E� ˝ det.E/ is semi-ample. Let m0 be a positive integer such that the line
bundle OZ.m0/ on Z WD PY .E� ˝ det.E// is generated by its global sections. Set

V WD H 0
�
Y;Sm0.E� ˝ det.E//

�
Š H 0

�
Z;OZ.m0/

�
;

and consider the exact sequence

0!K ˝OZ.m/! V ˝OZ.m/! OZ.m0 Cm/! 0:

Pick a point y on Y , and denote by Zy the fiber over y of the natural morphism
Z ! Y . Let m1 be a positive integer such that h1.Zy ;KjZy ˝ OZy .m// D 0

for m > m1. Then the map

V ˝H 0
�
Zy ;OZy .m/

�
! H 0

�
Zy ;OZy .m0 Cm/

�
is surjective for every m > m1, and thus the morphism

V ˝ Sm
�
E� ˝ det.E/

�
! Sm0Cm

�
E� ˝ det.E/

�
is generically surjective. This yields, for every m > m1, an injective map of sheaves

Sm0Cm.E/ ,! V � ˝ Sm.E/˝ det.E/˝m0 : (3.1)

Let M be a line bundle on Y , and k a positive integer such that h0.Y;SkE˝M/ > 1.
Let s be an integer such that m WD m0.sk � 1/ > m1. The m0s-th power of a
nonzero global section of SkE˝M is a nonzero global section of Sm0skE˝M˝m0s .
Then (3.1) yields

1 6 h0
�
Y;Sm0skE ˝M˝m0s

�
6 dimV � h0

�
Y;Sm0.sk�1/E ˝ det.E/˝m0 ˝M˝m0s

�
;

completing the proof of the lemma.
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Proof of Corollary 1.3. Suppose that there is a positive integer m, an ample line
bundle L, a torsion-free quotient .�1X ˝ L/˝m � Q of positive rank, and a
movable class ˛ 2 Mov.X/ such that �˛.Q/ < 0. Then �min

˛ ..�1X ˝L/˝m/ < 0.
This implies that �max

˛ ..TX ˝ L�/˝m/ > 0. Thus, by [17, Theorem 4.2] (see
also [9, Proposition 6.1]), �max

˛ .TX ˝L�/ > 0. Theorem 3.1 then implies that X is
a generic P r -bundle for some positive integer r .

4. Bounding the algebraic rank

We start this section by justifying the definition of generalised index in Definition 1.4.

Lemma 4.1. LetX be a complex projective manifold, andD a big divisor onX . Set

y�.D/ WD sup
˚
t 2 R j D � tACE where A is an ample divisor

and E is a pseudo-effective R-divisor
	
:

Then there exists an ample divisor A0 and a pseudo-effective R-divisor E0 on X
such thatD �y�.D/A0 CE0.

Proof. Set t0 D y�.D/2 < 1. Pick a real number t > t0, an ample divisor At and a
pseudo-effective R-divisor Et on X such that D � tAt C Et . Then 1

t0
D � At D

. t
t0
� 1/At C

1
t0
Et is pseudo-effective. In order to prove the lemma, it is enough to

show that there are finitely many classes of integral effective divisors B on X such
that 1

t0
D � B is pseudo-effective. Let C1; : : : ; Cm be movable curves on X such

that ŒC1�; : : : ; ŒCm� is a basis of N1.X/R. If B is an effective divisor on X such that
1
t0
D�B is pseudo-effective, then we have 0 6 B �Ci 6 1

t0
D �Ci . These inequalities

define a compact set � � N1.X/R. Since the set of classes of effective divisors
is discrete in N1.X/R, the compact set � contains at most finitely many of these
classes.

Next we show that the algebraic rank of a foliation is bounded from below by its
generalised index, and classify foliations attaining this bound (Theorem 1.5). We fix
the notation to be used in what follows.

Notation 4.2. LetF � TX be a foliationwith big anti-canonical class and generalised
index y�. Denote by F a the algebraic part of F , and by ra its algebraic rank. By
Lemma 4.1, there is an ample divisorL and a pseudo-effective R-divisorE such that
�KF �y�LCE. Set L WD OX .L/, and ˛0 D ŒLn�1� 2 Mov.X/. For any movable
curve class ˛ 2 Mov.X/, we denote by F C˛ the positive part of F with respect to ˛,
as defined in Paragraph 2.16, and by r˛ D rank.F C˛ / its rank.



848 C. Araujo and S. Druel CMH

Proof of Theorem 1.5. We follow Notation 4.2, and assume that F ¤ TX .
For any movable curve class ˛ 2 Mov.X/ such that �˛.F C˛ ˝L�/ 6 0, we have

y��˛.L/ 6 det.F / � ˛
6 det.F C˛ / � ˛ .since �˛.F =F C˛ / 6 0/
6 r˛�˛.L/ .since �˛.F C˛ ˝L�/ 6 0/
6 ra�˛.L/ .since F C˛ � F a by Theorem 2.19/:

(4.1)

By Theorem 1.1, we have�˛0.F C˛0˝L�/ 6 0 for the ample class ˛0, and (4.1) gives
that y� 6 ra.

Suppose from now on that y� D ra. Then (4.1) shows that, for any movable curve
class ˛ 2 Mov.X/ such that �˛.F C˛ ˝ L�/ 6 0 (in particular for ˛ D ˛0), we
have F a D F C˛ , and �˛.F a ˝ L�/ D 0. Moreover E � ˛0 D 0, and thus E D 0

and �KF �y�L.
Next we show that �˛.F a ˝ L�/ D 0 for every ˛ 2 Mov.X/. Suppose

that this is not the case. Since the ample class ˛0 lies in the interior of
Mov.X/ and �˛0.F a ˝L�/ D 0, there must exist a class ˛ 2 Mov.X/ such that
�˛.F

a ˝L�/ > 0. By Theorem 3.1, there is a dense open subset Xı � X and
a P r

a -bundle structure �ıWXı ! Y ı such that F a
jXı
D TXı=Y ı , and L restricts

to OPra .1/ on any fiber of �ı. By Remark 2.7, there is a foliation G on Y ı such that
FjXı D .�ı/�1G . By shrinking Y ı if necessary, we may assume that G is locally
free, and F =TXı=Y ı Š �

�G . Therefore, for a general fiber F of �ı, we have

OPra .y�/ Š det.F /jF Š det.TXı=Y ı/jF Š OPra .r
a
C 1/;

contradicting our assumption that y� D ra. We conclude that �˛.F a ˝L�/ D 0 for
every ˛ 2 Mov.X/.

This implies that�KF a � raL, and henceF a is an algebraically integrable Fano
foliation. Let .F;�F / be a general log leaf of F a, so that �.KF C�F / � raLjF .
By Corollary 2.13,�F ¤ 0, and thusKF C raLjF � ��F is not pseudo-effective.
By [22, Lemma 2.5],�

F;L;OF .�F /
�
Š
�
P r

a

;OPra .1/;OPra .1/
�
:

In particular, .F;�F / is log canonical. By [1, Proposition 5.3], there is a common
point x in the closure of a general leaf of F a. This implies that X is covered by
rational curves passing through x having degree 1 with respect to L. It follows
that X is a Fano manifold with Picard number �.X/ D 1, and hence �KF a � raL

implies that �KF a � raL. By [5, Theorem 1.1], X Š Pn and F a is induced by a
linear projection � WPnÜ Pn�ra . By Remark 2.7, there is a foliation G on Pn�ra

such that F D ��1G . By (2.1) and (2.2), outside the center of the linear projection
� WPnÜ Pn�ra , we have ��KG � KF �KF a � 0, and thus KG � 0.
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Finally, we describe foliations F whose algebraic rank slightly exceeds the
generalised index, namely y�.F / < ra.F / 6 y�.F / C 1. We start by addressing
foliations F with KF � 0 and algebraic rank ra D 1.
Lemma 4.3. LetX be a complex projective manifold with Picard number �.X/ D 1,
and let F be a foliation on X . Suppose that KF � 0 and that F has algebraic
rank 1. Then the closure of a general leaf of the algebraic part of F is a rational
curve.

Proof. There exist a normal projective variety Y, a dominant rational map � WXÜY

of relative dimension 1, and a purely transcendental foliation G on Y such that
F D ��1G . Denote by C the foliation induced by � , i.e. the algebraic part of F .

After replacing Y with a birationally equivalent variety, we may assume that Y
is the family of leaves of C . Let Xı � X be an open subset with complement
of codimension at least 2 such that � restricts to an equidimensional morphism
�jXı WX

ı ! Y . By (2.1) and (2.2) applied to �jXı , there is an effective divisor R
on X such that, on Xı, we have

�KC � �
�KG CR:

By Theorem 2.19, KG is pseudo-effective, and hence so is �KC . If KC 6� 0, then
the lemma follows from Theorem 2.19. Suppose from now on that KC � 0, and
let .F;�F / be a general log leaf of C , so that KF C �F � 0. By Corollary 2.13,
�F ¤ 0. Thus deg.KF / < 0, and hence F Š P1.

Proof of Theorem 1.8. We follow Notation 4.2, and assume thaty� < ra 6 y�C 1. We
will show that the closure of a general leaf of F a is rationally connected.
Step 1. Let ˛ 2 Mov.X/ be a movable curve class. If �˛.F C˛ ˝L�/ < 0, then (4.1)
gives that ra � 1 6 y� < r˛ 6 ra: Hence, F C˛ D F a. By Theorem 2.19, the closure
of a general leaf of F a is rationally connected. If �˛.F C˛ ˝ L�/ D 0, then (4.1)
gives that

ra � 1 6 y� 6 r˛ 6 ra;
and hence F C˛ has codimension at most 1 in F a. If F C˛ D F a, then, as before,
the closure of a general leaf of F a is rationally connected. Suppose that F C˛ has
codimension 1 in F a. Theny� D ra � 1. Let ˇ 2 Mov.X/ be another movable curve
class. If F C

ˇ
6� F C˛ , then F C˛ C F C

ˇ
D F a and Theorem 2.19 applied to both ˛

and ˇ gives that the closure of a general leaf of F a is rationally connected.
Therefore, from now on we may assume the following.

Additional assumption. For any ˛ 2 Mov.X/, �˛.F C˛ ˝L�/ > 0. If ˛ 2 Mov.X/
is such that �˛.F C˛ ˝L�/ D 0, then F C˛ has codimension 1 in F a, and F C

ˇ
� F C˛

for any ˇ 2 Mov.X/.
By Theorem 1.1, we have �˛0.F C˛0 ˝ L�/ 6 0 for the ample class ˛0. The

additional assumption and (4.1) for ˛ D ˛0 give that r˛0 D ra � 1 D y�, E D 0

and �KF �y�L.
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Step 2. Suppose that �˛.F C˛ ˝L�/ D 0 for every ˛ in a nonempty open subset U
of Mov.X/. From the additional assumption, it follows that F C˛ D F C˛0 and
�˛.F

C
˛0
˝L�/ D 0 for every ˛ 2 U . Thus

�KF˛0
� r˛0L:

By Theorem 1.5, X Š Pn, and F C˛0 is induced by a linear projection
� WPnÜ Pn�r˛0 . Since X Š Pn, we must have

�KF �y�L � �KF˛0
:

By Remark 2.7, there is a foliation G on Pn�r˛0 such that F D ��1G , andKG � 0.
Moreover, since F C˛0 has codimension 1 in F a, G has algebraic rank 1. By
Lemma 4.3, the closure of a general leaf of the algebraic part of G is a rational
curve, and thus the closure of a general leaf of F a is rationally connected.

Step 3. By Step 2, we may assume that �˛.F C˛ ˝L�/ > 0 for some ˛ 2 Mov.X/.
By Theorem 3.1, F C˛ is induced by a generic P r˛ -bundle structure �˛WX Ü Y˛
on X , and L restricts to OPr˛ .1/ on general fibers of �˛ . If necessary, we can
replace ˛ by the class of a line on a fiber of �˛ . As in (4.1), we have

.ra � 1/ Dy� D det.F / � ˛
6 det.F C˛ / � ˛
D .r˛ C 1/;

and thus r˛ > ra � 2. Moreover, by Corollary 1.7, �K
F
C
˛
� r˛L is not pseudo-

effective. Thus, there exists a nonempty open subset V of Mov.X/ such that, for
every ˇ 2 V , �ˇ .F C˛ ˝L�/ < 0. The additional assumption implies in particular
that F C

ˇ
¤ F C˛ for every ˇ 2 V .

By Step 2, we may assume that �ˇ .F Cˇ ˝L�/ > 0 for some ˇ 2 V . As before,
F C
ˇ

is induced by a generic P rˇ -bundle structure �ˇ WX Ü Yˇ on X , L restricts
to OPrˇ .1/ on general fibers of �ˇ , and rˇ > ra � 2. Notice that F C˛ \ F C

ˇ
D 0

and F C˛ C F C
ˇ
� F a. If F C˛ C F C

ˇ
D F a, then we conclude as before that the

closure of a general leaf of F a is rationally connected. So we may assume that
F C˛ C F C

ˇ
¨ F a. This can only happen if .r˛; rˇ ; ra/ D .1; 1; 3/.

LetH˛ andHˇ be the dominating unsplit families of rational curves onX whose
general members correspond to lines on fibers of �˛ and �ˇ , respectively. Denote by
�ıWXı ! T ı the .H˛;Hˇ /-rationally connected quotient of X (see for instance [1,
6.4] for this notion). By [5, Lemma 2.2], we may assume that codim X n Xı > 2,
T ı is smooth, and �ı has irreducible and reduced fibers. Applying [19, Corollaires
14.4.4 et 15.2.3], we see that �ı is flat. This in turn implies that its fibers are
Cohen–Macaulay since both X and T ı are smooth. By [1, Lemma 6.9], there is an
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inclusion TXı=T ı � F a
jXı

. If TXı=T ı D F a
jXı

, then the closure of a general leaf
of F a is rationally connected. So we may assume that dimT ı D dimXı � 2. By
Remark 2.7, there is a foliation G ı on T ı such that FjXı D �ı�1G ı. By (2.1), we
have

�KXı=T ı D �KF jXı C �
ı�KGı :

Since codim X n Xı > 2, a general complete intersection curve in X is contained
in X nXı. Let C ! T ı be the normalization of a complete curve passing through a
general point, denote by XC the fiber product C �T ı Xı, and by �C WXC ! C the
natural morphism. By [18, Corollaire 5.12.4], XC satisfies Serre’s condition S2. On
the other hand, XC is smooth in codimension 1 since the fibers of �C are reduced. It
follows that XC is a normal variety by Serre’s criterion for normality. We have

�KXC =C D �KF jXC C �C
�KGı jC :

If KGı � C > 0, then �KXC =C is ample, contradicting [5, Theorem 3.1]. Hence,
KGı � C < 0, and [1, Proposition 7.5] implies that the closure of a general leaf of F

is rationally connected.

Question 4.4. Is there a foliation F withy�.F / 62 N andy�.F / < ra.F / < y�.F /C1?
From the proof of Theorem 1.8, we see that in this case we must have F C˛ D F a for
every ˛ 2 Mov.X/ such that �˛.F C˛ ˝L�/ 6 0.

References

[1] C. Araujo and S. Druel, On Fano foliations, Adv. Math., 238 (2013), 70–118.
Zbl 1282.14085 MR 3033631

[2] C. Araujo and S. Druel, On codimension 1 del Pezzo foliations on varieties with mild
singularities, Math. Ann., 360 (2014), no. 3-4, 769–798. Zbl 1396.14035 MR 3273645

[3] C. Araujo and S. Druel, On Fano foliations. II, in Foliation theory in algebraic geometry.
Proceedings of the conference, (New York, NY, September 3–7, 2013), 1–20, Springer,
Cham, 2016. Zbl 1382.14012 MR 3644241

[4] C. Araujo and S. Druel, Codimension 1Mukai foliations on complex projective manifolds,
J. Reine Angew. Math., 727 (2017), 191–246. Zbl 1395.32016 MR 3652251

[5] C. Araujo, S. Druel, and S. J. Kovács, Cohomological characterizations of projective
spaces and hyperquadrics, Invent. Math., 174 (2008), no. 2, 233–253. Zbl 1162.14037
MR 2439607

[6] F. Bogomolov andM.McQuillan, Rational curves on foliated varieties, in Foliation theory
in algebraic geometry, 21–51, Simons Symp., Springer, Cham, 2016. Zbl 1337.14041
MR 3644242

[7] J.-B. Bost, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst.
Hautes Études Sci., (2001), no. 93, 161–221. Zbl 1034.14010 MR 1863738

https://zbmath.org/?q=an:1282.14085
http://www.ams.org/mathscinet-getitem?mr=3033631
https://zbmath.org/?q=an:1396.14035
http://www.ams.org/mathscinet-getitem?mr=3273645
https://zbmath.org/?q=an:1382.14012
http://www.ams.org/mathscinet-getitem?mr=3644241
https://zbmath.org/?q=an:1395.32016
http://www.ams.org/mathscinet-getitem?mr=3652251
https://zbmath.org/?q=an:1162.14037
http://www.ams.org/mathscinet-getitem?mr=2439607
https://zbmath.org/?q=an:1337.14041
http://www.ams.org/mathscinet-getitem?mr=3644242
https://zbmath.org/?q=an:1034.14010
http://www.ams.org/mathscinet-getitem?mr=1863738


852 C. Araujo and S. Druel CMH

[8] S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, The pseudo-effective cone of
a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic
Geom., 22 (2013), no. 2, 201–248. Zbl 1267.32017 MR 3019449

[9] F. Campana and T. Peternell, Geometric stability of the cotangent bundle and the universal
cover of a projective manifold. With an appendix by Matei Toma, Bull. Soc. Math. France,
139 (2011), no. 1, 41–74. Zbl 1218.14030 MR 2815027

[10] F. Campana andM. Păun, Foliations with positive slopes and birational stability of orbifold
cotangent bundles,Publ.Math. Inst. Hautes Études Sci., 129 (2019), 1–49. Zbl 1423.14109
MR 3949026

[11] F. Campana and M. Păun, Orbifold generic semi-positivity: an application to families of
canonically polarized manifolds, Ann. Inst. Fourier (Grenoble), 65 (2015), no. 2, 835–861.
Zbl 1338.14012 MR 3449168

[12] D. Cerveau and A. Lins Neto, Irreducible components of the space of holomorphic
foliations of degree two in CP.n/, n � 3, Ann. of Math. (2), 143 (1996), no. 3, 577–
612. Zbl 0855.32015 MR 1394970

[13] S. Druel, Caractérisation de l’espace projectif, Manuscripta Math., 115 (2004), no. 1,
19–30. Zbl 1070.14012 MR 2092774

[14] S. Druel, A decomposition theorem for singular spaces with trivial canonical class of
dimension at most five, Invent. Math., 211 (2018), no. 1, 245–296. Zbl 1419.14063
MR 3742759

[15] S. Druel, On foliations with nef anti-canonical bundle, Trans. Amer. Math. Soc., 369
(2017), no. 11, 7765–7787. Zbl 1388.14056 MR 3695844

[16] T. Fujiwara, Varieties of small Kodaira dimensionwhose cotangent bundles are semiample,
Compositio Math., 84 (1992), no. 1, 43–52. Zbl 0763.14015 MR 1183561

[17] D. Greb, S. Kebekus, and T. Peternell, Movable curves and semistable sheaves, Internat.
Math. Res. Notices, (2016), no. 2, 536–570. Zbl 1342.14022 MR 3493425

[18] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math., (1965), no. 24, 231pp.
Zbl 0135.39701 MR 199181

[19] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math., (1966), no. 28, 255pp.
Zbl 0144.19904 MR 217086

[20] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), no. 2, 121–176.
Zbl 0431.14004 MR 597077

[21] A. Höring, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom., 21 (2012),
no. 4, 721–751. Zbl 1253.14007 MR 2957694

[22] A. Höring, Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations, Ann.
Inst. Fourier (Grenoble), 64 (2014), no. 6, 2465–2480. Zbl 1348.14054 MR 3331171

[23] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and
hyperquadrics, J. Math. Kyoto Univ., 13 (1973), 31–47. Zbl 0261.32013 MR 316745

[24] F. Loray, J. V. Pereira, and F. Touzet, Singular foliations with trivial canonical class, Invent.
Math., 213 (2018), no. 3, 1327–1380. Zbl 06933334 MR 3842065

https://zbmath.org/?q=an:1267.32017
http://www.ams.org/mathscinet-getitem?mr=3019449
https://zbmath.org/?q=an:1218.14030
http://www.ams.org/mathscinet-getitem?mr=2815027
https://zbmath.org/?q=an:1423.14109
http://www.ams.org/mathscinet-getitem?mr=3949026
https://zbmath.org/?q=an:1338.14012
http://www.ams.org/mathscinet-getitem?mr=3449168
https://zbmath.org/?q=an:0855.32015
http://www.ams.org/mathscinet-getitem?mr=1394970
https://zbmath.org/?q=an:1070.14012
http://www.ams.org/mathscinet-getitem?mr=2092774
https://zbmath.org/?q=an:1419.14063
http://www.ams.org/mathscinet-getitem?mr=3742759
https://zbmath.org/?q=an:1388.14056
http://www.ams.org/mathscinet-getitem?mr=3695844
https://zbmath.org/?q=an:0763.14015
http://www.ams.org/mathscinet-getitem?mr=1183561
https://zbmath.org/?q=an:1342.14022
http://www.ams.org/mathscinet-getitem?mr=3493425
https://zbmath.org/?q=an:0135.39701
http://www.ams.org/mathscinet-getitem?mr=199181
https://zbmath.org/?q=an:0144.19904
http://www.ams.org/mathscinet-getitem?mr=217086
https://zbmath.org/?q=an:0431.14004
http://www.ams.org/mathscinet-getitem?mr=597077
https://zbmath.org/?q=an:1253.14007
http://www.ams.org/mathscinet-getitem?mr=2957694
https://zbmath.org/?q=an:1348.14054
http://www.ams.org/mathscinet-getitem?mr=3331171
https://zbmath.org/?q=an:0261.32013
http://www.ams.org/mathscinet-getitem?mr=316745
https://zbmath.org/?q=an:06933334
http://www.ams.org/mathscinet-getitem?mr=3842065


Vol. 94 (2019) Algebraicity of foliations 853

[25] F. Loray, J. V. Pereira, and F. Touzet, Foliations with trivial canonical bundle on Fano
3-folds, Math. Nachr., 286 (2013), no. 8-9, 921–940. Zbl 1301.37032 MR 3066408

[26] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2), 110 (1979),
no. 3, 593–606. Zbl 0423.14006 MR 554387

Received November 28, 2017

C. Araujo, IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brazil
E-mail: caraujo@impa.br

S. Druel, Institut Camille Jordan, Université Lyon, CNRS, Université Claude Bernard,
Lyon 1, UMR 5208, 69622 Villeurbanne, France
E-mail: stephane.druel@math.cnrs.fr

https://zbmath.org/?q=an:1301.37032
http://www.ams.org/mathscinet-getitem?mr=3066408
https://zbmath.org/?q=an:0423.14006
http://www.ams.org/mathscinet-getitem?mr=554387
mailto:caraujo@impa.br
mailto:stephane.druel@math.cnrs.fr

	Introduction
	Foliations
	Basic notions
	Algebraically integrable foliations
	Foliations defined by stability conditions

	Characterization of generic projective space bundles
	Bounding the algebraic rank

