ERRATUM

João Paulo Lindquist Figueredo pointed out that the proof of [AD13, Theorem 1.3] is incomplete. As a result Theorem 1.3 in *loc. cit.* is unproven. That theorem should read as follows.

Theorem. Let $\mathscr{F} \subsetneq T_X$ be a del Pezzo foliation of rank $r \ge 3$ on a complex projective manifold $X \not\simeq \mathbb{P}^n$. Suppose that \mathscr{F} has log canonical singularities and is locally free along a general leaf. Then either $\rho(X) = 1$, or r = 3, X is a \mathbb{P}^m -bundle over \mathbb{P}^l and $\mathscr{F} \not\subset T_{X/\mathbb{P}^l}$.

Proof. Write $det(\mathscr{F}) \cong \mathscr{A}^{\otimes (r-1)}$, with \mathscr{A} an ample line bundle on X.

By [AD13, Theorem 1.1], \mathscr{F} is algebraically integrable. Consider a general log leaf $(\tilde{F}, \tilde{\Delta})$ of \mathscr{F} , and set $\mathscr{L} = \tilde{e}^* \mathscr{A}$. Then

$$-(K_{\tilde{F}}+\tilde{\Delta})\sim_{\mathbb{Z}} (r-1)c_1(\mathscr{L}).$$

By [AD16, Corollary 3.14], we have $\tilde{\Delta} \neq 0$. Applying [AD16, Theorem 2.15], we see that there is an *unsplit* dominating family H of rational curves on X. The theorem now follows from the proof of [AD13, Theorem 1.3] together with [AD13, Proposition 5.3], using the fact that the rationally connected quotient $X_0 \to T_0$ associated to H satisfies dim $(T_0) \ge 1$ if (and only if) $\rho(X) \ge 2$.

Remark. If r = 2, one can show that either \mathscr{F} satisfies the conclusion of the theorem or that $(\tilde{F}, \tilde{\Delta}, \mathscr{L}) \cong (\mathbb{P}^2, \mathscr{O}_{\mathbb{P}^2}(1), \mathscr{O}_{\mathbb{P}^2}(2)).$

References

- [AD13] Carolina Araujo and Stéphane Druel, On Fano foliations, Adv. Math. 238 (2013), 70-118.
- [AD16] _____, On Fano foliations 2, Foliation theory in algebraic geometry. Proceedings of the conference, New York, NY, USA, September 3–7, 2013, Cham: Springer, 2016, pp. 1–20.