ERRATUM

A. Höring pointed out that [DP13, Lemma 12] is wrong as stated. Indeed, let Y be a general quartic surface in \mathbb{P}^{3} and set $X:=\mathbb{P}_{Y}\left(\Omega_{Y}^{1}\right)$ with tautological divisor L and natural morphism $\pi: X \rightarrow Y$. Let H be the pull-back of a hyperplane section on Y. Then $D:=L+2 H$ is an ample divisor on X by [GO20, Proposition 3.1] while $D^{2} \cdot L<0$. The conclusion of [DP13, Lemma 12] fails for a general complete intersection curve C of elements of $|m D|(m \gg 1)$ since there is a surjective morphism $\pi^{*} \Omega_{Y}^{1} \rightarrow \mathscr{O}_{X}(L)$ so that $\left(\pi^{*} \Omega_{Y}^{1}\right)_{\mid C}$ is not nef.

It is not true in general, as claimed at the bottom of page 590 of [DP13], that the maximally destabilizing subsheaf is invariant under the action of the Galois group G since the polarization is not invariant under G. As a consequence, [DP13, Corollary 13] is also wrong as stated.

To correct the proof of Theorem 18 of [DP13] which relies on [DP13, Corollary 13], one can argue as follows.

Lemma. Let X be a smooth complex projective variety and let X° be an open subset of X with $\operatorname{codim}_{X}(X \backslash$ $\left.X^{\circ}\right) \geq 2$. Let Y° be a smooth variety with $\operatorname{dim}\left(Y^{\circ}\right) \geqslant 1$ and let $\pi^{\circ}: X^{\circ} \rightarrow Y^{\circ}$ be a proper surjective equidimensional morphism with reduced fibers. Suppose that a general fiber F of π° is a Fano manifold with $\rho(F)=1$. Let \bar{Y} be a normal projective birational model of Y°. Suppose that \bar{Y} is not uniruled. Then there exists a complete curve $C \subseteq Y^{\circ}$ passing through a general point such that $\Omega_{Y_{0} \mid C}^{1}$ is nef.

Proof. Since K_{X} is not pseudo-effective by assumption, we may run a minimal model program for X and end with a Mori fiber space (see [BCHM10, Corollary 1.3.3]). Therefore, there exists a sequence of maps

where the ψ_{i} are either divisorial contractions or flips, and π_{m} is a Mori fiber space. The spaces X_{i} are normal, \mathbb{Q}-factorial, and X_{i} has terminal singularities for all $0 \leqslant i \leqslant m$. Moreover, Exc ψ_{i} is covered extremal rational curves. Since \bar{Y} is not uniruled and $\rho(F)=1$, we see that general fibers of π° must be disjoint from $\operatorname{Exc} \psi_{i} \circ \cdots \circ \psi_{0}$ for all i.

Let Z be a resolution of the graph of $\psi:=\psi_{m-1} \circ \cdots \circ \psi_{0}$ with natural morphisms $p: Z \rightarrow X$ and $q: Z \rightarrow X_{m}$. Shrinking Y° and using the miracle flatness theorem (see [Mat89, Theorem 23.1]), we may assume without loss of generality that $Z^{\circ} \rightarrow Y^{\circ}$ is flat where $Z^{\circ}:=p^{-1}\left(X^{\circ}\right)$. By the rigidity lemma (see [MFK94, Proposition 6.1]), there exists a morphism $\iota: Y^{\circ} \rightarrow Y_{m}$ and a commutative diagram as follows:

The rational map ψ induces an isomorphism from an open set $X^{\circ \circ} \subseteq X^{\circ}$ onto an open set $X_{m}^{\circ \circ}$ contained in the smooth locus of X_{m} with $\operatorname{codim}_{X_{m}}\left(X_{m} \backslash X_{m}^{\circ \circ}\right) \geq 2$. Moreover, we may assume that the general fiber $F \subset X^{\circ \circ}$. Let $Y_{m}^{\circ} \subseteq Y_{m}$ be an open set with $\operatorname{codim}_{Y_{m}}\left(Y_{m} \backslash Y_{m}^{\circ}\right) \geq 2$ contained in the smooth locus of Y_{m} such that the induced morphism $X_{m}^{\circ}:=\pi_{m}^{-1}\left(Y_{m}^{\circ}\right) \rightarrow Y_{m}^{\circ}$ is equidimensional. Replacing $X_{m}^{\circ \circ}$ by $X_{m}^{\circ \circ} \cap X_{m}^{\circ}$, we may assume that $X_{m}^{\circ \circ} \subseteq X_{m}^{\circ}$.

Notice that ι is birational. It follows that Y_{m} is not uniruled. Let $B \subseteq Y_{m}^{\circ} \subseteq Y_{m}$ be a general complete intersection curve in the sense of Mehta-Ramanathan for $\left(\Omega_{Y_{m}}^{1}\right)^{* *}$. Arguing as in the last paragraph of the proof of [DP13, Lemma 12] and using the fact that Y_{m} is not uniruled, we see that $\Omega_{Y_{m} \mid B}^{1}$ is nef. Let
$B_{1} \subseteq \pi_{m}^{-1}(B)$ be a general complete intersection curve. By general choice of B_{1} and using the fact that $\operatorname{codim}_{X_{m}}\left(X_{m} \backslash X_{m}^{\circ \circ}\right) \geq 2$, we have $B_{1} \subseteq X_{m}^{\circ \circ} \cong X^{\circ \circ}$. Observe that the restrictions of π° and $\pi_{m} \circ\left(\psi_{\mid X^{\circ \circ}}\right)$ to $X^{\circ \circ} \cong X_{m}^{\circ \circ}$ induce the same fibration on $X^{\circ \circ}$ since $\pi_{m} \circ\left(\psi_{\mid X^{\circ \circ}}\right)=\iota \circ\left(\pi^{\circ}{ }_{\mid X^{\circ \circ}}\right)$ and since both $\pi^{\circ}{ }_{\mid X^{\circ \circ}}$ and $\pi_{m} \circ\left(\psi_{\mid X^{\circ \circ}}\right)$ are equidimensional with fibers of the same dimension. This in turn implies that π_{m} has reduced fibers along B_{1}. Set $B_{2}:=\psi_{\mid X^{\circ \circ}}^{-1}\left(B_{1}\right) \cong B_{1}$. By general choice of B_{1}, we may therefore also assume that π_{m} (resp. π°) has smooth fibers along B_{1} (resp. B_{2}). Then

$$
\left(\left(\pi^{\circ}\right)^{*} \Omega_{Y^{\circ}}^{1}\right)_{\mid B_{2}} \cong\left(T_{X^{\circ}} / T_{X^{\circ} / Y^{\circ}}\right)_{\mid B_{2}}^{*} \cong\left(T_{X_{m}} / T_{X_{m} / Y_{m}}\right)_{\mid B_{1}}^{*} \cong\left(\left(\pi_{m}\right)^{*} \Omega_{Y_{m}^{1}}\right)_{\mid B_{1}}
$$

In particular, if $C:=\pi^{\circ}\left(B_{2}\right)$, then $\Omega_{Y_{0} \mid C}^{1}$ is nef.
The proof of Corollary 13 in [DP13] shows that the following holds.
Lemma. Let X be a smooth complex projective variety and let X° be an open subset of X with $\operatorname{codim}_{X}(X \backslash$ $\left.X^{\circ}\right) \geq 2$. Let Y° be a smooth variety and let $\pi^{\circ}: X^{\circ} \rightarrow Y^{\circ}$ be a proper surjective morphism. Assume that the generic fiber of π° is isomorphic to a projective space. Let \bar{Y} be a normal projective birational model of Y°. If \bar{Y} is uniruled, then there exists a minimal free morphism $f: \mathbf{P}^{1} \rightarrow Y_{0}$.

The proof of Theorem 18 can then be easily adapted.
Acknowledgement. Many thanks to A. Höring for pointing out the error in [DP13] and providing the counterexample to Lemma 12 in loc. cit.

References

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468.
[ByB04] A. Biał ynicki Birula, Finite equivalence relations on algebraic varieties and hidden symmetries, Transform. Groups 9 (2004), no. 4, 311-326.
[Che04] I. A. Cheltsov, Regularization of birational automorphisms, Mat. Zametki 76 (2004), no. 2, 286-299.
[DP13] Stéphane Druel and Matthieu Paris, Characterizations of projective spaces and hyperquadrics, Asian J. Math. 17 (2013), no. 4, 583-595.
[GO20] Frank Gounelas and John Christian Ottem, Remarks on the positivity of the cotangent bundle of a K3 surface, Épijournal Géom. Algébrique 4 (2020), Art. 8, 16.
[Gro66] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
[KSCT07] Stefan Kebekus, Luis Solá Conde, and Matei Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65-81.
[Mat89] Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.

