ERRATUM

A. Höring pointed out that [DP13, Lemma 12] is wrong as stated. Indeed, let Y be a general quartic surface in \mathbb{P}^3 and set $X := \mathbb{P}_Y(\Omega^1_Y)$ with tautological divisor L and natural morphism $\pi \colon X \to Y$. Let H be the pull-back of a hyperplane section on Y. Then D := L + 2H is an ample divisor on X by [GO20, Proposition 3.1] while $D^2 \cdot L < 0$. The conclusion of [DP13, Lemma 12] fails for a general complete intersection curve C of elements of |mD| $(m \gg 1)$ since there is a surjective morphism $\pi^*\Omega^1_Y \to \mathscr{O}_X(L)$ so that $(\pi^*\Omega^1_Y)_{|C}$ is not nef.

It is not true in general, as claimed at the bottom of page 590 of [DP13], that the maximally destabilizing subsheaf is invariant under the action of the Galois group G since the polarization is not invariant under G. As a consequence, [DP13, Corollary 13] is also wrong as stated.

To correct the proof of Theorem 18 of [DP13] which relies on [DP13, Corollary 13], one can argue as follows.

Lemma. Let X be a smooth complex projective variety and let X° be an open subset of X with $\operatorname{codim}_X(X \setminus X^{\circ}) \geq 2$. Let Y° be a smooth variety with $\dim(Y^{\circ}) \geq 1$ and let $\pi^{\circ} \colon X^{\circ} \to Y^{\circ}$ be a proper surjective equidimensional morphism with reduced fibers. Suppose that a general fiber F of π° is a Fano manifold with $\rho(F) = 1$. Let \overline{Y} be a normal projective birational model of Y° . Suppose that \overline{Y} is not uniruled. Then there exists a complete curve $C \subseteq Y^{\circ}$ passing through a general point such that $\Omega^{1}_{Y_{0}|C}$ is nef.

Proof. Since K_X is not pseudo-effective by assumption, we may run a minimal model program for X and end with a Mori fiber space (see [BCHM10, Corollary 1.3.3]). Therefore, there exists a sequence of maps

$$X := X_0 \xrightarrow{\psi_0} X_1 \xrightarrow{\psi_1} \cdots \xrightarrow{\psi_{i-1}} X_i \xrightarrow{\psi_{i-1}} X_{i-1} \xrightarrow{\psi_{i+1}} \cdots \xrightarrow{\psi_{i+1}} X_m$$

$$\downarrow^{\pi_i}$$

$$Y_m$$

where the ψ_i are either divisorial contractions or flips, and π_m is a Mori fiber space. The spaces X_i are normal, \mathbb{Q} -factorial, and X_i has terminal singularities for all $0 \leq i \leq m$. Moreover, $\operatorname{Exc} \psi_i$ is covered extremal rational curves. Since \overline{Y} is not uniruled and $\rho(F) = 1$, we see that general fibers of π° must be disjoint from $\operatorname{Exc} \psi_i \circ \cdots \circ \psi_0$ for all i.

Let Z be a resolution of the graph of $\psi := \psi_{m-1} \circ \cdots \circ \psi_0$ with natural morphisms $p: Z \to X$ and $q: Z \to X_m$. Shrinking Y° and using the miracle flatness theorem (see [Mat89, Theorem 23.1]), we may assume without loss of generality that $Z^{\circ} \to Y^{\circ}$ is flat where $Z^{\circ} := p^{-1}(X^{\circ})$. By the rigidity lemma (see [MFK94, Proposition 6.1]), there exists a morphism $\iota: Y^{\circ} \to Y_m$ and a commutative diagram as follows:

The rational map ψ induces an isomorphism from an open set $X^{\circ\circ} \subseteq X^{\circ}$ onto an open set $X_m^{\circ\circ}$ contained in the smooth locus of X_m with $\operatorname{codim}_{X_m}(X_m \setminus X_m^{\circ\circ}) \ge 2$. Moreover, we may assume that the general fiber $F \subset X^{\circ\circ}$. Let $Y_m^{\circ} \subseteq Y_m$ be an open set with $\operatorname{codim}_{Y_m}(Y_m \setminus Y_m^{\circ}) \ge 2$ contained in the smooth locus of Y_m such that the induced morphism $X_m^{\circ} := \pi_m^{-1}(Y_m^{\circ}) \to Y_m^{\circ}$ is equidimensional. Replacing $X_m^{\circ\circ}$ by $X_m^{\circ\circ} \cap X_m^{\circ}$, we may assume that $X_m^{\circ\circ} \subseteq X_m^{\circ}$.

Notice that ι is birational. It follows that Y_m is not uniruled. Let $B \subseteq Y_m^{\circ} \subseteq Y_m$ be a general complete intersection curve in the sense of Mehta-Ramanathan for $(\Omega^1_{Y_m})^{**}$. Arguing as in the last paragraph of the proof of [DP13, Lemma 12] and using the fact that Y_m is not uniruled, we see that $\Omega^1_{Y_m|B}$ is nef. Let

ERRATUM

 $B_1 \subseteq \pi_m^{-1}(B)$ be a general complete intersection curve. By general choice of B_1 and using the fact that $\operatorname{codim}_{X_m}(X_m \setminus X_m^{\circ\circ}) \ge 2$, we have $B_1 \subseteq X_m^{\circ\circ} \cong X^{\circ\circ}$. Observe that the restrictions of π° and $\pi_m \circ (\psi_{|X^{\circ\circ}})$ to $X^{\circ\circ} \cong X_m^{\circ\circ}$ induce the same fibration on $X^{\circ\circ}$ since $\pi_m \circ (\psi_{|X^{\circ\circ}}) = \iota \circ (\pi^{\circ}_{|X^{\circ\circ}})$ and since both $\pi^{\circ}_{|X^{\circ\circ}}$ and $\pi_m \circ (\psi_{|X^{\circ\circ}})$ are equidimensional with fibers of the same dimension. This in turn implies that π_m has reduced fibers along B_1 . Set $B_2 := \psi_{|X^{\circ\circ}}^{-1}(B_1) \cong B_1$. By general choice of B_1 , we may therefore also assume that π_m (resp. π°) has smooth fibers along B_1 (resp. B_2). Then

$$((\pi^{\circ})^*\Omega^1_{Y^{\circ}})_{|B_2} \cong (T_{X^{\circ}}/T_{X^{\circ}/Y^{\circ}})^*_{|B_2} \cong (T_{X_m}/T_{X_m/Y_m})^*_{|B_1} \cong ((\pi_m)^*\Omega_{Y_m^1})_{|B_1}.$$

In particular, if $C := \pi^{\circ}(B_2)$, then $\Omega^1_{Y_0|C}$ is nef.

The proof of Corollary 13 in [DP13] shows that the following holds.

Lemma. Let X be a smooth complex projective variety and let X° be an open subset of X with $\operatorname{codim}_X(X \setminus X^{\circ}) \geq 2$. Let Y° be a smooth variety and let $\pi^{\circ} \colon X^{\circ} \to Y^{\circ}$ be a proper surjective morphism. Assume that the generic fiber of π° is isomorphic to a projective space. Let \overline{Y} be a normal projective birational model of Y° . If \overline{Y} is uniruled, then there exists a minimal free morphism $f : \mathbf{P}^1 \to Y_0$.

The proof of Theorem 18 can then be easily adapted.

Acknowledgement. Many thanks to A. Höring for pointing out the error in [DP13] and providing the counterexample to Lemma 12 in *loc. cit.*

References

- [BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
- [ByB04] A. Biał ynicki Birula, Finite equivalence relations on algebraic varieties and hidden symmetries, Transform. Groups 9 (2004), no. 4, 311–326.
- [Che04] I. A. Cheltsov, Regularization of birational automorphisms, Mat. Zametki 76 (2004), no. 2, 286–299.
- [DP13] Stéphane Druel and Matthieu Paris, Characterizations of projective spaces and hyperquadrics, Asian J. Math. 17 (2013), no. 4, 583–595.
- [GO20] Frank Gounelas and John Christian Ottem, Remarks on the positivity of the cotangent bundle of a K3 surface, Épijournal Géom. Algébrique 4 (2020), Art. 8, 16.
- [Gro66] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
- [KSCT07] Stefan Kebekus, Luis Solá Conde, and Matei Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65–81.
- [Mat89] Hideyuki Matsumura, *Commutative ring theory*, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.
- [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.