CODIMENSION 1 FOLIATIONS
WITH NUMERICALLY TRIVIAL
CANONICAL CLASS ON SINGULAR SPACES

STEPHANE DRUEL

Abstract

In this article, we describe the structure of codimension 1 foliations with canoni-
cal singularities and numerically trivial canonical class on varieties with terminal
singularities, extending a result of Loray, Pereira, and Touzet to this context.
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1. Introduction

In the last few decades, much progress has been made in the classification of complex
projective varieties. The general viewpoint is that complex projective varieties with
mild singularities should be classified according to the behavior of their canonical
class.
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Similar ideas can be applied in the context of foliations on complex projective
varieties. If ¢ is a foliation on a complex projective variety, then we define its canon-
ical class to be Ky = —c1(¥). In analogy with the case of projective varieties, one
expects the numerical properties of K« to reflect geometric aspects of ¢ (see, e.g.,
[41-[7], [20], [23], [66], [67], [ 78], [80]). This led, for instance, to the birational classi-
fication of foliations by curves on surfaces with quotient singularities (see [20], [67]),
generalizing most of the important results of the Enriques—Kodaira classification.
The classification exhibits an interesting feature, which is in sharp contrast with the
Enriques—Kodaira classification: there exist foliations with pseudoeffective canonical
bundle and negative Kodaira dimension. So the abundance conjecture fails already in
ambient dimension 2.

The present paper aims at describing one of the most basic classes of codimension
1 foliations, namely, (mildly) singular foliations with numerically trivial canonical
class on (mildly) singular spaces.

The Beauville-Bogomolov decomposition theorem asserts that any compact
Kihler manifold with numerically trivial canonical bundle admits an étale cover that
decomposes into a product of a torus, and irreducible, simply-connected Calabi—Yau
and holomorphic symplectic manifolds (see [13]). In [80], Touzet obtained a foliated
version of the Beauville-Bogomolov decomposition theorem for codimension 1 regu-
lar foliations with numerically trivial canonical bundle on compact Kihler manifolds.
The statement below follows from [80, Théoreéme 1.2] and [31, Lemma 5.9].

THEOREM (Touzet)

Let X be a complex projective manifold, and let 4 be a regular codimension 1 folia-

tion on X with K¢ = 0. Then one of the following holds.

) There exists a P'-bundle structure ¢ : X — Y onto a complex projective man-
ifold Y with Ky =0, and ¢ induces a flat holomorphic connection on ¢.

2) There exist an abelian variety A, and a simply connected projective manifold
Y with Ky =0, and a finite étale cover f : Ax Y — X such that f~'9 is
the pullback of a codimension 1 linear foliation on A.

3) There exist a smooth complete curve B of genus at least 2, and a complex
projective manifold Y with Ky =0, and a finite étale cover f: B XY — X
such that f =9 is induced by the projection morphism B x Y — B.

Loray, Pereira, and Touzet [66] recently described the structure of codimension
1 foliations with canonical singularities (we refer to Section 4 for this notion) and
numerically trivial canonical class on complex projective manifolds. However, with
the development of the minimal model program, it became clear that singularities
arise as an inevitable part of higher-dimensional life. In this article, we extend their
result to the singular setting. Our first main result is the following.
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THEOREM 1.1

Let X be a normal complex projective variety with canonical singularities, and let 4

be a codimension 1 foliation on X with canonical singularities. Suppose, furthermore,

that K4 ~q 0. Then one of the following holds.

H There exist a smooth complete curve C, a complex projective variety Y with
canonical singularities and Ky ~7 0, as well as a quasi-étale cover f: Y x
C — X such that £~ is induced by the projection Y x C — C.

2) There exist complex projective varieties Y and Z with canonical singularities,
as well as a quasi-étale cover f: Y x Z — X and a foliation 7 = ﬁ’%imz_l
on Z such that =9 is the pullback of H via the projection Y x Z — Z. In
addition, we have that Ky ~7z 0, that Z is an equivariant compactification of
a commutative algebraic group of dimension at least 2, and that 72 is induced
by a codimension 1 Lie subgroup.

Remark 1.2

In the setup of Theorem 1.1, suppose that Z is rational, and set n := dim Z. Then
Z is an equivariant compactification of (G,,)" or (G,,)" ! x G, (see the proof of
Lemma 11.7). In either case, Z is a toric variety by [10].

In Theorem 1.1 above, we assume that the canonical divisor K¢ is abundant. In
fact, we also show that abundance holds provided that X is terminal. Theorem 1.1
together with Theorem 1.3 then gives the structure of codimension 1 foliations with
canonical singularities and numerically trivial canonical class on varieties with termi-
nal singularities.

THEOREM 1.3

Let X be a normal complex projective variety, and let 4 be a codimension 1 foliation
on X with canonical singularities and K4 = 0. Suppose, in addition, that either X
has terminal singularities, or that X has canonical singularities and K¢ is Cartier.
Then K is torsion.

If dim X = 3, then Theorem 1.3 is a special case of [23, Theorem 1.7].

As a consequence of Theorem 1.1, we describe the structure of weakly regular
(we refer to Section 5 for this notion) codimension 1 foliations with torsion canonical
class, extending [80, Théoreme 1.2] to this context.

COROLLARY 1.4

Let X be a normal complex projective variety with canonical singularities, and let 4
be a weakly regular codimension 1 foliation on X. Suppose, furthermore, that either
Ky is Cartier and Ky = 0, or K¢ ~g 0. Then one of the following holds.
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) There exist a complex projective manifold Y with Ky = 0, a P'-bundle
¢: Z =Y, and a quasi-étale cover f: Z — X such that f~'9 induces a
flat holomorphic connection on .

2) There exists an abelian variety A as well as a simply connected projective
manifold Y with Ky =0, and a finite étale cover f :Y x A — X such that
£~ is the pullback of a codimension 1 linear foliation on A.

3) There exist a smooth complete curve C, a complex projective variety Y with
canonical singularities and Ky ~7 0, as well as a quasi-étale cover f:Y x
C — X such that £~ is induced by the projection Y x C — C.

However, from the point of view of birational classification of foliations, this
class of singularities is inadequate. Indeed, the foliated analogue of the minimal model
program aims in particular to reduce the birational study of mildly singular folia-
tions with numerical dimension 0 on complex projective manifolds to the study of
associated minimal models, that is, mildly singular foliations with numerically trivial
canonical class on kit (Kawamata log terminal) spaces (see, e.g., [23, Theorem 1.7]).
Building on the results of the present paper, it has been shown that Theorems 1.1 and
1.3 are valid for codimension 1 foliations with canonical singularities on projective
varieties with kit singularities (see [33]).

If ¢ is a regular foliation on a complex manifold X and L is a compact leaf
with finite holonomy group, then the holomorphic version of the local Reeb stability
theorem asserts that there exist an invariant open analytic neighborhood U of L and
an unramified Galois cover f1: U; — U such that the pullback fl_lgw of 4y to Uj
is induced by a proper submersion U; — §. The proofs of our main results rely on
the following global version of the Reeb stability theorem.

THEOREM 1.5

Let X be a normal complex projective variety with kit singularities, and let G be
an algebraically integrable foliation on X with canonical singularities. Suppose that
Koy = 0. Then there exist complex projective varieties Y and Z with kit singularities
and a quasi-étale cover f: Y x Z — X such that f~'% is induced by the projection
YxZ-—>Y.

Outline of the proof
The main steps for the proofs of Theorems 1.1 and 1.3 are as follows. As we will see
below, our work owes a great deal to the general strategy introduced in [66].

Let X be a normal complex projective variety with terminal singularities, and let
% be a codimension 1 foliation on X with canonical singularities and K¢ = 0. An
analogue of the Bogomolov vanishing theorem says that X has numerical dimension
v(X) <1 (see Lemma 12.5).
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Following [66], we show that either ¢ is closed under pth powers for almost
all primes p, or ¢ is given by a closed rational 1-form (see Proposition 12.3) with
values in a flat line bundle, whose zero set has codimension at least 2. In the latter
case, one checks that v(X) < 0. If v(X) = 0, then one proves that ¢ is induced by a
linear foliation on an abelian variety (see Proposition 11.10 for a precise statement).
If v(X) = —o0, then one first reduces to the case where ¢ is defined by a closed
rational 1-form (see Proposition 11.6). One then shows that ¢ is as in Theorem 1.1(2)
(see Theorem 11.3). In particular, abundance holds in this case.

Suppose from now on that ¢ is closed under pth powers for almost all primes p.
We will prove that ¢ is algebraically integrable, confirming the generalization to foli-
ations by Ekedahl, Shepherd-Barron, and Taylor of the classical Grothendieck—Katz
conjecture in this special case. Theorem 1.1 then follows from Theorem 1.5. More-
over, abundance holds for algebraically integrable foliations with canonical singular-
ities and numerically trivial canonical class by Proposition 4.24, as an easy conse-
quence of a theorem of Ambro [1, Theorem 3.5] (see also [36, Theorem 1.2]).

Suppose that v(X) = —oo. In this case, we show that it is enough to prove the
statement under the additional assumptions that X is P! -bundle over an abelian vari-
ety A and ¢ is a flat connection on X — A. This follows from the minimal model
program together with [40, Theorem I] that says that the fundamental group of the
smooth locus of a projective kit variety with numerically trivial canonical class and
zero-augmented irregularity does not admit any finite-dimensional linear representa-
tion with infinite image. By a result of André [2, Théoréme 7.2.2], we see that we
can also suppose that ¢ and X — A are defined over a number field. The statement
then follows from a theorem of Bost [16, Theorem 2.9] who proved the Ekedahl—
Shepherd-Barron—-Taylor conjecture for flat invariant connections on principal bun-
dles with linear solvable structure groups defined over number fields.

Suppose now that v(X) = 0. Using Theorem 1.5, we first show that we may
assume that there is no positive-dimensional algebraic subvariety tangent to ¢ pass-
ing through a general point of X (see Proposition 8.13). Then, running a minimal
model program, one reduces to the case where Kx is torsion. A weak version of the
singular analogue of the Beauville-Bogomolov decomposition theorem due to Kawa-
mata [58, Proposition 8.3] implies that, perhaps after passing to a quasi-étale cover, ¢
is a linear foliation on an abelian variety. Then [16, Theorem 2.3] together with [34,
Proposition 3.6] implies that dim X = 1 and ¢ is the foliation by points.

Suppose finally that v(X) = 1. The proof in this case is much more involved.
We use the assumption that ¢ is closed under pth powers for almost all primes
p to conclude that it is weakly regular. On the other hand, Touzet described in
[81] the structure of codimension 1 foliations on complex projective manifolds
with pseudoeffective conormal bundle. As a consequence, either the normal sheaf
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N satisfies k(—c1(Ag)) = v(—c1(Ag)) =1 and ¥ is algebraically integrable,
or k(—c1(Ag)) = —o0 and v(—c1(A%)) = 1. In the latter case, ¢ is induced by a
codimension 1 tautological foliation on a quotient of a polydisk DV for some N > 2
by an arithmetic irreducible lattice I' € PSL(2, R)¥ . Using the fact that ¢ is weakly
regular, we then show that the image of the map X — DV /T is a curve, yielding a
contradiction (see Theorem 10.4).

These steps are addressed throughout the paper, and are collected together in
Section 12.

Structure of the paper

Section 2 gathers notation, known results, and global conventions that will be used
throughout the paper. In Section 3, we recall the definitions and basic properties of
foliations. In Section 4, we establish a number of properties of foliations with canon-
ical singularities. In particular, we analyze the behavior of foliations with canoni-
cal singularities under finite covers and Q-factorial terminalization. We also address
foliations with algebraic leaves. In particular, we show that abundance holds for
algebraically integrable foliations with canonical singularities and numerically trivial
canonical class (see Proposition 4.24). Section 5 is devoted to weakly regular foli-
ations. We first establish basic properties. We then give criteria for a foliation with
trivial canonical class to be weakly regular (see Propositions 5.21 and 5.26). We end
this section with the local structure of rank 1 weakly regular foliations on surfaces
with quotient singularities. Sections 6 and 7 prepare for the proof of Theorem 1.5.
It is well known that an algebraically integrable regular foliation on a complex pro-
jective manifold is induced by a morphism onto a normal projective variety. In Sec-
tion 6, we extend this result to weakly regular foliations with canonical singularities
on mildly singular varieties (see Theorem 6.1). Section 8 is mostly taken up by the
proof of Theorem 1.5. Sections 9 and 10 prepare for the proofs of our main results.
In particular, we confirm the Ekedahl-Shepherd-Barron-Taylor conjecture for mildly
singular codimension 1 foliations with trivial canonical class first on projective vari-
eties with v(X) = —oo in Section 9, and then on those with v(X) > 0 in Section 10.
In Section 11, we describe codimension 1 foliations with numerically trivial canoni-
cal class defined by closed (twisted) rational 1-forms. With these preparations at hand,
the proofs of Theorems 1.1 and 1.3 and the proof of Corollary 1.4 which we give in
Section 12 become reasonably short.

2. Notation, conventions, and used facts

2.1. Global convention
Throughout the paper a variety is a reduced and irreducible scheme separated and of
finite type over a field.
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Given a scheme X, we denote by Xieg its smooth locus.

Suppose that k = C. (We will use the notions of terminal, canonical, klt, and
Ic (log canonical) singularities for pairs without further explanation or comment and
simply refer to [63, Section 2.3] for a discussion and for their precise definitions. We
refer to [59] and [63] for standard references concerning the minimal model program.)

2.2. Q-Factorializations and Q-factorial terminalizations

Definition 2.1

Let X be a normal complex quasiprojective variety with klt singularities. A Q-
factorialization is a small birational projective morphism f: Z — X, where Z is
Q-factorial with klt singularities.

FACT 2.2
The existence of Q-factorializations is established in [62, Corollary 1.37]. Note that
we must have Kz ~g f*Kx.

Definition 2.3

Let X be a normal complex quasiprojective variety with canonical singularities. A Q-
factorial terminalization of X is a birational crepant projective morphism : Z — X,
where Z is Q-factorial with terminal singularities.

FACT 2.4
The existence of Q-factorial terminalizations is established in [ 14, Corollary 1.4.3].

2.3. Projective space bundle
If & is a locally free sheaf of finite rank on a variety X, then we denote by P(&’) the
variety Projy (S°&’), and by Op(£)(1) its tautological line bundle.

2.4. Stability

The word stable will always mean slope-stable with respect to a given movable curve
class. The same goes for semistable and polystable. We refer to [52, Definition 1.2.12]
for their precise definitions.

2.5. Reflexive hull

Given a normal variety X, m € N, and coherent sheaves & and ¢4 on X, write & lm] . —
(&®my** Sl .= (Sm&)**, det& 1= (A™E&)** and § XY = (& ® ¥)**.
Given any morphism f: Y — X, write f*& := (f*&)**.
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2.6. Reflexive Kdhler differentials and pullback morphisms

Given a normal variety X, we denote the sheaf of Kihler differentials by Q}( If
0 < p <dim X is any integer, then write ng] := (Q%)**. The tangent sheaf (Q})*
will be denoted by T .

If D is a reduced effective divisor on X, then we denote by (X, D), the open
set where (X, D) is log smooth. We write ng] (log D) for the reflexive sheaf on
X whose restriction to U := (X, D)y, is the sheaf of logarithmic differential forms
Q{}(log D\y). We will refer to it as the sheaf of reflexive logarithmic p-forms. Sup-
pose that X is smooth, and let ¢ be a defining equation for D on some open set X °.
Let « be a rational p-form on X. Then « is a reflexive logarithmic p-form on X° if
and only if fo and tda are regular on X ° (see [74]).

Suppose that k = C.

If f:Y — X is any morphism between varieties, then we denote the standard
pullback maps of Kihler differentials by

df: f*Q4 - Q% and  df: HO(X,Q%) - H(Y,Q%).

Reflexive differential forms do not generally satisfy the same universal properties as
Kihler differentials. However, it has been shown in [42] and [60] that many of the
functorial properties do hold if we restrict ourselves to klt spaces.

THEOREM 2.5 ([60, Theorem 1.3])
Let f:Y — X be a morphism of normal varieties. Suppose that X is kit. Then there
exist pullback morphisms

denf: W QW and deaf: HOX. QP > HO(v. Q)

that agree with the usual pullback morphisms of Kdhler differentials wherever this
makes sense.

More precisely, the pullback morphism for reflexive forms satisfies the following
universal property (see [00, Proposition 6.1]). Let f: ¥ — X be any morphism of klt
spaces. Given a commutative diagram

o Z

\L B, resolution of singularities

g, dominant f| Yiea

where V' is smooth, we have
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dg o dreﬂ(ﬁYreg) =dao dreﬂﬂ-

2.7. Pullback of Weil divisors
Let ¥: X — Y be a dominant equidimensional morphism of normal varieties, and
let D be a Weil Q-divisor on Y. The pullback ¥*D of D is defined as follows.
We define ¥* D to be the unique Q-divisor on X whose restriction to W_I(Yreg) is
(w|w—1(Yreg))*(D|Ymg). This construction agrees with the usual pullback if D is Q-
Cartier.

We will need the following easy observation.

LEMMA 2.6

Let . X — Y be a projective and dominant morphism of normal varieties, and let
D be a Weil divisor on Y. Suppose in addition that  is equidimensional. If y* D is
Q-Cartier, then so is D.

Proof

The statement is local on Y, hence we may shrink ¥ and assume that Y is affine. By
[38, Theorem 6.3], there exists a subvariety Z € X such that ¥z: Z — Y is finite
and surjective. Replacing X by the normalization of Z, we may assume without loss
of generality that v is a finite morphism. Recall that ¥ * D is Q-Cartier by assumption.
Shrinking Y again, if necessary, we may also assume that there exist a positive integer
m and a rational function # on X such that divt = my* D. One then readily checks
that divNy,y (r) = m(deg ¥) D, where Ny, y (¢) denotes the norm of ¢. This shows
that D is Q-Cartier (see [63, Lemma 5.16] for a somewhat related result). Ul

2.8. Numerical dimension
Let D be a Q-divisor on a complex projective manifold X, and let A be an ample
divisor on X . Following Nakayama (see [69, Definition V.2.5]), we set
— h%X,0 D]+ 4
o(D, A) = max{k €70 | Tm " x(mD]+4) 0}

m—00 mk

if h%(X,0x(|mD] + A)) # 0 for some arbitrary large positive integer m, and
o(D, A) := —oo otherwise. The numerical dimension of D is defined as

V(D) :=max{o(D, A) | A ample divisor on X }.

Let now D be a (Q-Cartier Q-divisor on a normal projective variety X, and let
B: Z — X be aresolution of singularities. The numerical dimension of D is defined
as v(D) :=v(B*D). Then v(D) is independent of the resolution, and it depends only
on the numerical class of D by [69, Proposition V.2.7]. We refer to [69] for more
detailed properties.
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Remark 2.7

Recall that a Weil Q-divisor D on a normal projective variety X is said to be pseudo-
effective if, for any big Q-divisor B on X and any rational number ¢ > 0, there exists
an effective Q-divisor £ on X such that D + eB ~q E. If D is Q-Cartier, then D is
pseudoeffective if and only if v(D) > 0.

2.9. Quasi-étale morphisms
We will need the following definition.

Definition 2.8
A cover is a finite and surjective morphism of normal varieties.

A morphism f: Y — X between normal varieties is called a quasi-étale mor-
phism if f is finite and étale in codimension 1.

Remark 2.9
Let f: Y — X be a quasi-étale cover. By the Nagata—Zariski purity theorem, f
branches only on the singular set of X . In particular, we have f~!(X;eq) € Yreg.

The following elementary fact will be used throughout the paper.

FACT 2.10

Let f:Y — X be a quasi-étale cover between normal complex varieties. If Kx is
Cartier (resp., Q-Cartier), then Ky ~z f*Kx is Cartier (resp., Q-Cartier) as well.
If X is terminal (resp., canonical, klt), then so is Y by [6], Proposition 3.16].

2.10. Augmented irregularity

The irregularity of normal complex projective varieties is generally not invariant
under quasi-étale maps. The notion of augmented irregularity addresses this issue
(see [43, Definition 3.1]).

Definition 2.11
Let X be a normal complex projective variety. We denote the irregularity of X by
q(X) :=h' (X, Ox) and define the augmented irregularity as

G(X):=max{q(Y) | Y — X a quasi-étale cover} € NU {oo}.

Remark 2.12

By a result of Elkik [35, Théoréme 1], canonical singularities are rational. It fol-
lows that the irregularity is a birational invariant of complex projective varieties with
canonical singularities.
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Remark 2.13
The augmented irregularity of canonical varieties with numerically trivial canonical
class is finite. This follows easily from [58, Proposition 8.3].

The following result often reduces the study of varieties with trivial canonical
class to those with g(X) = 0 (see also [58, Proposition 8.3]).

THEOREM 2.14 ([43, Corollary 3.6])

Let X be a normal complex projective variety with canonical singularities. Assume
that Kx is numerically trivial. Then there exist an abelian variety A, a normal pro-
Jjective variety Y with Ky ~7 0 and q(Y) = 0, and a quasi-étale cover A x Y — X.

2.11. Automorphism group

Let X be a complex projective variety, and let Aut®(X) be the neutral component
of the automorphism group Aut(X) of X; Aut’(X) is an algebraic group of finite
type with dim Aut®(X) = h°(X, Tx). By Chevalley’s structure theorem on algebraic
groups, Aut®(X) has a largest connected affine normal subgroup G. Further, the quo-
tient group Aut®(X)/G is an abelian variety. By [82, Theorem 14.1], if G is nontriv-
ial, then X is uniruled. In particular, if X is canonical and Ky = 0, then Aut®(X) is
an abelian variety. Lemma 2.15 below extends this observation to klt spaces.

LEMMA 2.15

Let X be a complex projective variety with kit singularities. Assume that Kx is
numerically trivial. Then the neutral component Aut® (X ) of the automorphism group
Aut(X) of X is an abelian variety.

Proof

By [69, Corollary V.4.9], Ky is torsion. Let m be its Cartier index, and let f: ¥ — X
be the index 1 canonical cover, which is quasi-étale (see [63, Definition 2.52]). By
Fact 2.10, the variety Y is then klt. Moreover, we have Ky ~y 0 by construction, and
therefore Y has canonical singularities. On the other hand,

m—1

Y =~ Specy @ Ox(—iKx),
i=0

and hence there is an injective morphism of algebraic groups Aut’(X) C Aut®(Y).
The lemma then follows from [82, Theorem 14.1] applied to ¥ as explained above.
|
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Remark 2.16
Let X be a complex projective variety with klt singularities. Suppose that Kx ~z 0,
and set n := dim X . Then

dim Aut®(X)
=h°(X,Tx)
= 10X, 2 gince @ = Ty
=h""Y(X, Ox) by Hodge symmetry for kit spaces (see [43, Proposition 6.9])

=¢(X) by Serre duality using the assumption that Kx ~ 0.

3. Foliations
In this section, we have gathered a number of results and facts concerning foliations
which will later be used in the proofs.

Definition 3.1

A foliation on a normal variety X over a field k is a coherent subsheaf & C Ty such
that

(1) ¢ is closed under the Lie bracket, and

) 4 is saturated in Ty that is, the quotient T’y /¥ is torsion-free.

The rank r of ¢ is the generic rank of ¢. The codimension of ¢ is defined as
q:=dimX —r.

The canonical class Ky of ¢ is any Weil divisor on X such that Oy (—Kg) =
det¥.

Suppose that k = C.

Let X° C X, be the open set where ¥ X, is a subbundle of Tx,,,. A leaf of &
is a maximal connected and immersed holomorphic submanifold L. € X° such that
Ty, = 9. Aleaf is called algebraic if it is open in its Zariski closure.

The foliation ¥ is said to be algebraically integrable if its leaves are algebraic.

We will use the following notation.

Notation 3.2
Let ¥ : X — Y be a dominant equidimensional morphism of normal varieties.

Write Kx,y := Kx —¢*Ky. We will refer to it as the relative canonical divisor
of X overY.

Set

R(Y) =) (V*D = (*D),).

D
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where D runs through all prime divisors on Y. We will refer to it as the ramification
divisor of .

Example 3.3

Let ¢ : X — Y be a dominant equidimensional morphism of normal varieties, and let
% be the foliation on X induced by v. Then ¢ is the saturation in Ty of the kernel
of the tangent map

TWIW_I (Yreg) : T\[f_l (Yreg) - (wh[’_l (Yreg)))‘< TYfeg .

A straightforward computation then shows that
Ky ~z Kx/y — R(Y).

3.1. Foliations defined by q-forms
Let ¢ be a codimension ¢ foliation on an n-dimensional normal variety X. The
normal sheaf of 4 is Ny := (Tx/¥4)**. The gqth wedge product of the inclusion
NG — SZB;] gives rise to a nonzero global section w € H(X, Qg( X det.#) whose
zero locus has codimension at least 2 in X. Moreover, w is locally decomposable
and integrable. To say that w is locally decomposable means that, in a neighborhood
of a general point of X, w decomposes as the wedge product of ¢g local 1-forms
® = wi A+ Awy. To say that it is integrable means that for this local decomposition
one has dw; A w = 0 for every i € {1,...,q}. The integrability condition for w is
equivalent to the condition that ¢ is closed under the Lie bracket.

Conversely, let . be a reflexive sheaf of rank 1 on X, and let w € H°(X, ng X
Z) be a global section whose zero locus has codimension at least 2 in X. Suppose
that w is locally decomposable and integrable. Then the kernel of the morphism 7y —
Q‘;;l X.Z given by the contraction with @ defines a foliation ¢ of codimension g on
X with det. 4 =~ .Z. These constructions are the inverse of each other.

3.2. Foliations described as pullbacks
Let X and Y be normal varieties, and let ¢ : X --» Y be a dominant separable rational
map that restricts to a morphism ¢°: X° — Y°, where X° C X and Y° C Y are
smooth open subsets.

Let ¢ be a codimension ¢ foliation on Y. Suppose that the restriction ¥° of ¢ to
Y ° is defined by a twisted g-form ayo € H%(Y°, Q% ® det.#4o). Then aryo induces
a nonzero twisted g-form

axo :=dg°(wyo) € H(X°, Q% ® (¢°)*(det Ay yo)).
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Shrinking X° further, we may assume that axo is nowhere vanishing, so that axo
defines a codimension ¢ foliation &° on X°. The pullback ¢™'% of 4 via ¢ is the
foliation on X whose restriction to X ° is &°.

The following observation is rather standard. We include a proof here for the
reader’s convenience.

LEMMA 3.4

Let f: Y — X be a quasifinite dominant morphism of normal complex varieties, and

let 4 be a foliation on X of rank 1 <r <dim X — 1. Let also B be a codimension 1

irreducible component of the branch locus of f.

@))] Suppose that B is 9G-invariant (see Section 3.5 for this notion). Let D be
any irreducible component of f~V(B), and let m denote the ramification

index of f along D. Then the natural map det f [*]Ji{; — detg/Vf*_1 o van-

ishes at order m — 1 along D. Equivalently, the natural map f KMoy (Ky) —
Oy (K s-14) is an isomorphism at a general point in f~Y(B).
(2)  If B is not 9-invariant, then the map det f [*]./Vg* —det ANV

f-1g

phism at a general point in f~1(B). Equivalently, let D be any irreducible

s an isomor-

component of f ~1(B), and let m denote the ramification index of f along D.
Then the natural map f™ oy (Ky) — Oy (K s-14) vanishes at order m — 1
along D.

Proof
Set ¢ :=n —r. Replacing X by a dense open set X° with complement of codimen-
sion at least 2 in X and Y by f~!(X°), we may assume without loss of general-
ity that X and Y are smooth, that the branch locus of f is a smooth hypersurface
B C X, and that ¢ is a regular foliation. We may also assume that the ramification
divisor D := f~!(B) is smooth. Given a point x € B, there are analytic coordinates
(x1,...,x,) centered at x such that B is defined by x; = 0 and such that f is given
by (Vi,.--,¥n) = (¥", ¥2,..., yn) for some integer m > 1 and some local analytic
coordinates (y1,...,y,) centered at a point y in f~1(x).

Suppose first that B is ¢-invariant. Then ¢ is given by a local g-form dx; A
o1 + X100, where a € A9 (Ox x dxa @ -+ @ Ox x dxp,) is nowhere vanishing and
ar € N(Ox xdx1 ® - ® Ox x dxy). It follows that

df (dxy Aey + xp02) = yi' Y (mdyr Adf(ar) + y1df (a2))

vanishes at order m — 1 along D.

If B is not ¢-invariant, then ¢ is given by a nowhere vanishing g-form o3 €
N (Ox xdxy @+ ® Ox xdx,). But then df(a3) is a nowhere vanishing g-form.
This completes the proof of the lemma. O
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3.3. Ehresmann connection

Let 7: X — Y be a dominant morphism with ¥ smooth. A connection (also called
Ehresmann connection) on w is a distribution & C Tx such that the restriction of
the tangent map T7: Tx — n* Ty to & induces an isomorphism & = 7*Ty. The
connection is said to be flat if & is a foliation.

3.4. Projectable foliations

Let 7: X — Y be a dominant separable morphism between normal varieties, and let
% be a foliation on X . We say that ¥ is projectable under r if there exists a saturated
distribution . C Ty such that the restriction of the tangent map

. k
Tﬂl”_l(Yreg) . TXl”_l (Yreg) - nl”_l(Yreg) TYfeg

to ¢ 71 (Yieg) induces an isomorphism

@ ~ * sat
Jln_l(Yrag) = (ﬂln_l(Yreg) C%Tn_l(yreg)) ’

where (JT|7T—1(y_

. .
) P n—1(¥,e)) ™" denotes the saturation of 7, -1y,

reg)

. .
a1 () 1
* ~ k

(T TY )71 (Freg) = Tt (Freg) [ Yo

One then checks that .77 is a foliation on Y. We refer the reader to [30, Section 2.7]
for a more detailed explanation.

3.5. Invariant subvarieties
Let X be a normal variety, let ¥ € X be a closed subvariety, and let d be a derivation
on X. Say that Y is invariant under 0 if 3(%y) C Fy.

Let ¢ C Ty be afoliation on X . Say that Y is invariant under ¢ if for any local
section d of ¢4 over some open subset U of X, Y N U is invariant under 0. To prove
that Y is invariant under ¢ it is enough to show that ¥ NU of Y is invariant under ¥/
for some open set U € X suchthat Y N U isdensein Y. If X and Y are smooth and
¢ C Tx is a subbundle, then Y is invariant under ¢ if and only if 9y C Ty C Txy.

By [75, Theorem 5], the singular locus of a normal complex variety is invariant
under any derivation. Other examples of invariant subsets are provided by the follow-
ing easy result.

LEMMA 3.5
Let 4 C Ty be a foliation of rank r > 1 on a complex manifold X. Then any compo-
nent of the singular locus of 9 is invariant under 4.

Proof
We argue by induction on r > 1.
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If r = 1, then the singular set of ¢ is obviously invariant under 4.

Suppose from now on that r > 2. The statement is local on X, hence we may
shrink X and assume that X is affine. Let S be a component of the singular locus of
¢, and let also x € S be a general point. We may also assume that d(F(x}) € Fx}
for some d € H°(X,¥) € H°(X, Ty).But then &xd C Ty is a regular foliation at x
of rank 1. By a theorem of Frobenius, there exist an open neighborhood U of x with
respect to the analytic topology and an isomorphism of analytic varieties U = D x W
such that &x 0 C Ty is induced on U by the projection ¢: U =D x W — W, where
D is the complex open unit disk and W is a germ of smooth analytic variety. In
particular, there is a foliation " on W such that 4y = go_ljf ,and hence SN U =
@~ 1(T) for some component T of the singular set of .. By induction, we conclude
that T is invariant under ¢ . This immediately implies that S is invariant under ¢,
completing the proof of the lemma. O

3.6. The family of leaves

We refer the reader to [5, Remark 3.12] for a more detailed explanation. Let X be a
normal complex projective variety, and let ¢ be an algebraically integrable foliation
on X. There is a unique normal complex projective variety Y contained in the nor-
malization of the Chow variety of X whose general point parameterizes the closure of
a general leaf of ¢ (viewed as a reduced and irreducible cyclein X). Let Z — Y x X
denote the normalization of the universal cycle. It comes with morphisms

where B: Z — X is birational and, for a general point y € Y, B(v~1(y)) € X is the
closure of a leaf of ¢. The morphism Z — Y is called the family of leaves and Y is
called the space of leaves of 4.

Suppose furthermore that K¢ is Q-Cartier. There is a canonically defined effec-
tive Weil QQ-divisor B on Z such that

Kg-1g+ B~z Kz;y —R(Y) + B ~q B* Ky,

where R () denotes the ramification divisor of 1. Note that B is f-exceptional since
B Kg-14 ~z Kg.

The following property holds in addition. Let m be a positive integer, and let
X° C X be a dense open set such that Oxo(mKg|xo) = Oxo. Let f°: X7 — X° be
the associated cyclic cover, which is quasi-€tale (see [63, Definition 2.52]). Finally,
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let Z{ be the normalization of the product Z° xxo X7, where Z° := B~1(X°). If
BY: Z7 — X7 and g°: Z7 — Z° denote the natural morphisms, then there exists an
effective B7-exceptional divisor B} on Z7 such that

Kigoy-1(ro)-1(@y0) + BT ~2 (B K (ro)-1(40)-

Let Cy denote the non-(B) '(f°)~!(¥xo)-invariant part of the ramification
divisor R(g°) of g°. Using Lemma 3.4 applied to g° and (87'¢)|z>, we obtain
(&°)*(Byz°) ~q B{ + C7. By the negativity lemma, we have

(g°)*(Bjzo) = B} + Cy. (3.1)

3.7. Bertini-type results
The present subsection is devoted to the following auxiliary result.

PROPOSITION 3.6

Let X be a normal complex projective variety with dim X > 3, and let ¢ € Tx be a

foliation of rank 2 <r <dim X — 1. If H € |.Z| is a general member of a basepoint-

free linear system corresponding to £ € Pic(X), then Gy C Tx g and Gy : =Yg N

Ty is a foliation on H. In addition, the following hold.

(1)  Suppose that H is transverse to 4 at a general point in X. Then Gy has rank
r — 1, and there exists an effective divisor B on H such that

Kgy ~7,(Kg + H) g — B.

Moreover, if By is a prime divisor on H, then By C Supp B if and only if 9 is
tangent to H at a general point of B;.

2) Suppose that there is a dense open set X° C X.oo with complement of codi-
mension at least 2 satisfying the following property. For each x € X°, 4 is
regular at x, and there exist Hy € |.£| and H, € |.£| passing through x with
H, # H; such that any member of (Hy, H») is transverse to 4 at x. Then

Kegy ~7 (Kg + H)|g.
3) Suppose finally that £ is very ample. Then we have

Kgy ~7 (Kg + H) .

Proof

If H is sufficiently general, then we have an inclusion 4z C Tx |z and 95 = %z N
Ty is saturated in Ty by [47, Théoréme 12.2.1(i)]. On the other hand, ¥y is closed
under the Lie bracket. This proves that ¥ is a foliation.
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Set A4 :=Tx/9 andqg =n—r,andletw € H°(X, Q% Kdet.#) be a nonzero
twisted ¢-form defining 4. Let also wy € H(H, 2%, Wdet.4{) be the induced g-
form, and let B be the maximal effective divisor on H such that oy € H(H, Q% X
det A g MOy (—B)). Then wy is a twisted g-form defining ¥ since the sheaf ¥y is
reflexive by [4, Remark 2.3]. A straightforward computation then shows that K, ~z
(K¢ + H)|g — B using the adjunction formula Ky ~7 (Kx + H)|g. This shows
item (1).

Now, item (2) follows from item (1) and an easy dimension count (see the proof
of [8, Lemma 2.9]), while item (3) is an immediate consequence of item (2). |

4. Singularities of foliations

There are several notions of singularities for foliations. The notion of reduced folia-
tions has been used in the birational classification of foliations by curves on surfaces
(see [20]). More recently, notions of singularities coming from the minimal model
program have been shown to be very useful when studying the birational geometry
of foliations. We refer the reader to [67, Section I] for an in-depth discussion. Here
we only recall the notion of canonical foliation following McQuillan (see [67, Defi-
nition 1.1.2]).

Definition 4.1

Let ¢ be a foliation on a normal complex variety X . Suppose that K¢ is Q-Cartier.
Let B: Z — X be a projective birational morphism. Then there are uniquely defined
rational numbers a(E, X, %) such that

Kg-1g~gB*Kg+ Y a(E.X.9)E,
E

where E runs through all exceptional prime divisors for 8. The rational numbers
a(E, X,¥) do not depend on the birational morphism 8, but only on the valuations
associated to the E. We say that ¢ is canonical if K¢ is Q-Cartier and, for all £
exceptional over X, a(E, X,¥) > 0.

Note that, in general, Definition 4.1 requires some understanding of the numbers
a(E, X,9) for all exceptional divisors of all birational modifications of X .

4.1. Elementary properties
In this subsection, we analyze the behavior of canonical singularities with respect to
birational maps, finite covers, and projections.
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LEMMA 4.2

Let B: Z — X be a birational projective morphism of normal complex varieties, and

let 4 be a foliation on X. Suppose that K¢ is Q-Cartier.

(1) Suppose that Kg-14 ~q B*Ky + E for some effective B-exceptional Q-
divisor on Z. If B~'Y is canonical, then so is 4.

(2)  IfKg-14 ~q B* Ky, then G is canonical if and only if so is B 9.

Proof

We can write Kg—14 ~q B* K + E for some f-exceptional Q-divisor on Z.
Suppose first that E is effective and that 719 is canonical. Let y: Z; — X

be a birational projective morphism of normal varieties, and let ' be a prime y-

exceptional divisor on Z;. We have to show that a(F, X,¥) > 0. Since a(F, X,9)

depends only on the valuation associated to F, we may assume that y factorizes

through B. Let 81: Z; — Z be the induced morphism. Write

Ky—lg ~Q )/*Kg + E
for some Q-divisor £; on Z; with support contained in Exc 8 o ;. Then
Ky—lg ~Q ﬂTKﬂ—lg + El - IBTE

Note that £y — BTE is supported on Excf;. Indeed, we have (B1)«+E1 — E =
(B1)x(E1 — BTE) ~q 0 since (B1)«Kgop,)~1w ~z Kg—14. On the other hand,
(B1)«E1 — E is B-exceptional, and hence we must have (81)«E; — E = 0. This
shows that E; — B} E is B1-exceptional. Since 71 is canonical by assumption,
Ey — BT E is effective, and hence so is E. This proves item (1).

Suppose now that E = 0. If B71% is canonical, then so is ¢ by item (1). The
above computation also shows that a(F, Z, 87'9) = a(F, X,¥) for any prime f-
exceptional divisor on Z. In particular, if ¢ is canonical, then 87'¢ is canonical as
well. This proves item (2). |

LEMMA 4.3

Let f: X1 — X be a quasifinite dominant morphism of normal complex varieties,
and let 9 be a foliation on X with K¢ Q-Cartier. Suppose that any codimension
1 component of the branch locus of [ is 4-invariant. If 4 is canonical, then so is

.

Proof

Set 4 := f~'9. By Lemma 3.4, we have K¢, ~z f*Kg. In particular, K¢, is
Q-Cartier. Let B1: Z; — X; be a birational projective morphism, and let E; be a
B1-exceptional prime divisor on Z;. By [61, Theorem 3.17], there exist a projective
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birational morphism §: Z — X and a commutative diagram

g
Z]HZ

N

X]HX
f

such that £ := g(E;) is a f-exceptional prime divisor on Z. Let m denote the
ramification index of g along E;. By Lemma 3.4, if E is B~!%-invariant, then
a(E1. X1,.%)=ma(E,X,9),anda(E(, X1,%) =ma(E, X,¥9)+m—1 otherwise.
In particular, if ¢ is canonical, then so is £ ~'%, proving the lemma. 0

The following example shows that the converse is not true in general.

Example 4.4

Let G be a finite subgroup of GL(2,C) that does not contain any quasireflections,
and set X := A2/G. Suppose that G ¢ SL(2,C), so that X is not canonical. Let Y
be a normal variety, and consider the foliation ¢ on X x Y induced by the projection
X xY —Y.Letalso f: A2xY — X x Y be the quasi-étale cover induced by the
projection morphism A? — A?/G = X. Then ¢ is not canonical while f !¢ is (see
Example 4.16 below).

LEMMA 4.5

Let Y and Z be normal complex projective varieties, and let 7€ be a foliation on Y .
Denote by Vr: Y x Z — Y the projection, and set G := . If 4 is canonical,
then so is .

Proof

Suppose that ¢ is canonical. Let 8: Y7 — Y be a projective birational morphism
with Y7 normal, and let F; = Y] be a fiber of the projection Y} X Z - Y x Z — Z.
Denote by y: Y1 X Z — Y x Z the natural morphism, and set F := y(F;) = Y. One
then checks that K¢ ~7 Kyxz;y + Y*K 5 and Ky—lg ~z2 Ky, xz/v, +WTK13—1%¢,
where ¥1: Y x Z — Y| denotes the projection. It follows that K|z ~7 K and
Ky_lgIFl ~7 Kpg—1 4. In particular, K » is Q-Cartier. By assumption, K,—1¢4 ~q
y*Kg + E for some effective y-exceptional Q-divisor, and hence Kg-1,, ~q
B* K » + E|Fr. This proves the lemma. a
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4.2. Q-Factorial terminalization
In this subsection, we analyze the behavior of canonical singularities with respect to
Q-factorial terminalizations.

We will need the following auxiliary result.

LEMMA 4.6

Let X be a normal complex quasiprojective variety with kit singularities, let 1 < p <
dim X be an integer, and let o7 < ng] be a saturated reflexive subsheaf of rank 1.
Suppose that </ is a line bundle for some positive integer m. Let B: Z — X be a
resolution of singularities with exceptional set E, and assume that E is a divisor with
simple normal crossings. Let 8 C Q; denote the saturation of ™oz C QIZ’., and
let E denote the reduced divisor on Z whose support is the union of all irreducible
components E' of E such that & is not saturated in Q%(log E) at general points of
E’. Then there exist an effective S-exceptional Q-divisor E» and a rational number
0 <e <1 suchthat B*ci1() + E2 ~g c1(B) + €E;.

Remark 4.7
In the setup of Lemma 4.6, [42, Theorem 4.3] shows that there is an embedding
il c QL.

Remark 4.8

In the setup of Lemma 4.6, suppose furthermore that 1 < p <dim X — 1, and that
&/ is the conormal sheaf of a foliation ¢ on X. Then Supp E, is the union of all
irreducible components of E that are invariant under f~'%.

Proof of Lemma 4.6
The proof is very similar to that of [42, Theorem 7.2], and so we leave some easy
details to the reader.

Note that & is a line bundle by [50, Proposition 1.9]. To prove the statement,
it suffices to show that there exists a rational number 0 < ¢ < 1 such that, if o is
any section of /™! over some open set U C X, then the rational section (8 w)*o
of #®™ is regular on B~ (U) \ Supp E; and has poles of order at most me along
(Supp E1) N B~H(U).

The statement is local on X, hence we may shrink X, and assume that .o/ ] ~
Ox.Let g: Y — X be the associated cyclic cover (see [63, Definition 2.52]), and
let T denote the normalization of the fiber product ¥ x y Z with natural morphisms
y: T —Y and f: T — Z. Note that Y is kit by Fact 2.10 and that gl*l.o7 >~ @y .

Let 0 € H%(X, «7"]) be a nowhere vanishing section, and consider the pullback
B*o, which is a rational section of
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A" CS"QY,

possibly with poles along E. Applying [42, Theorem 4.3] to y and using the fact that
g™ is locally free, we see that there is an embedding

y*(gart) = (y*ga)®m < sl
This immediately implies that
(Bo f)*o e HT,S"QY).

Set n :=dim X. Let z € Supp E be a general point, and let (z1,...,z,) be local
coordinates on some open neighborhood U of z in Z such that z; = 0 is a local equa-
tion of E;. Lett € T be such that f(¢) = z, and let (¢1,...,?,) be local coordinates
on some open neighborhood V of ¢ in T with f(V) C U. We may assume without
loss of generality that f is given by (¢1,...,%) — (tfl,tz, .., tp)on V.

Suppose first that & is not saturated in Q%(log E) at z. Shrinking U, if nec-
essary, we may assume that %y is generated by dz; A a; + zjo2, where o) €
AP0y dzy @ -+ @ Oy dzy) is nowhere vanishing and o, € QF, = AP(Oy dz; @

@ Oy dzy). Then %™, C S’”Q;lU is generated by (dz; A a1 + z1a2)®™ and
fr#®m,, < smQP s generated by 1”170 (kydty A df (@) + ndf (@2))®™.
One then checks that f*o has a pole of order at most m(1 — —) along z; = 0 since
(Bo f)*o isregularon V.

If % is saturated in Q%(log E) at z, then we may assume that %y is generated
by a nowhere vanishing p-form «; with oy € AP(Oy dzy & --- @ Oy dzy,). Arguing
as above, one concludes that f*o is regular in codimension 1 on U.

Write f*Ey =) ;¢; ki F;, where the F;’s are prime divisors on 7" and the k;’s
are positive integers, and let 0 < & < 1 be a rational number such that e > 1 — L for all
indices i € I. We conclude that 8*o (viewed as a rational section of the hne bundle
#A®™) is regular on X \ Supp E; and has poles of order at most me along Supp E;.
This finishes the proof of the lemma. O

The following is an easy consequence of Lemma 4.6.

PROPOSITION 4.9

Let X be a normal complex projective variety with kit singularities, and let 4 be a
codimension 1 foliation on X such that ¢1(Ng) is Q-Cartier. Let B: Z — X be a
resolution of singularities with exceptional set E, and assume that E is a divisor with
simple normal crossings. Let also E| denote the reduced divisor on Z whose support
is the union of all irreducible components of E that are invariant under B~'9. There
exists a rational number 0 < ¢ < 1 such that
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K (—c1(Ng)) = k(—c1(A-14) + €E1) and
v(—c1(Ay)) = V(—Cl(e/’%—lg) + ¢E).

In particular, —cy(Ng) is pseudoeffective if and only if so is —c1(Ng-14) + eE1.

Proof

Applying Lemma 4.6 and using Remark 4.8, we see that there exist an effective 8-
exceptional Q-divisor E, and a rational number 0 < ¢ < 1 such that —8*c;(A%) +
Ey ~q —c1(Ag-14) + eE1. By [69, Lemma I11.3.11], we have x(—B%c1(A%) +
E>) = k(—c1(Ag)) since E, is effective and B-exceptional. We also have
v(—=B*c1(Ag) + Ez) = v(—c1(A%)) by [69, Proposition V.2.7]. This proves the
proposition. U

The following results often reduce the study of mildly singular foliations with
numerically trivial canonical class on varieties with canonical singularities to those
on varieties with terminal singularities.

PROPOSITION 4.10

Let X be a normal complex projective variety with canonical singularities, and let G
be a foliation on X . Suppose that 4 is canonical and that K is Cartier. Let B: Z —
X be a Q-factorial terminalization of X. Then B~'Y is canonical with K B—ly ~L
B*Kq.

Proof

Note that c; (#) is Q-Cartier since ¢;(4%) ~z K¢ — Kx. Recall also that Kz ~q
B* Kx. Applying Lemma 4.6 to det. 4 on a resolution of Z, we see that there exist
effective B-exceptional Q-divisors E; and E, with Eq reduced, and a rational number
0 <& <1 such that ¢;(Ap-14) + E2 ~q B*c1(A%) + ¢E;. On the other hand, we
have Kg-14 ~7 B*Ky + F for some effective integral f-exceptional Weil divisor
F since ¢ is canonical and Ky is Cartier. Since Kg—14 ~q Kz + ¢1(43-14) and
Ky ~7 Kx + ¢1(#4y), we must have ¢E; = F + E, by the negativity lemma. It
follows that F' = 0, and hence Kg-14 ~z B*Ky. By Lemma 4.2, we see that 71¢
is canonical, completing the proof of the proposition. O

Example 4.11 below shows that Proposition 4.10 is wrong if one drops the
assumption that K¢ is Cartier.

Example 4.11
Let E be an elliptic curve, and set X; := E x P!. Let G be a cyclic group of order
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2 acting on E by x > —x and acting on P! by (x : y) = (y : x), where (x : y) are
homogeneous coordinates on P'. Set X := X;/G, and denote by f: X; — X the
projection map, which is two-to-one quasi-étale cover. We obtain a rational surface
containing eight rational double points. Consider the foliation ¢4 on X given by the
morphism X — P!/G = P!, The canonical divisor K« is not Cartier, but 2K is.
Let B: Z — X be the blowup of the eight singular points, and denote by E; the §-
exceptional divisors. We have Kg-14 ~q B* Ky + % > i Ei. Now, we claim that ¢
and ;6_1% are canonical. By Lemma 4.2, it suffices to show that ,8_1% is canonical.
Any of the four singular fibers of Z — P! is a chain of three smooth rational curves:
the union of two reduced disjoint (—2)-curves and a (—1)-curve with multiplicity 2.
Moreover, it has simple normal crossings. Thus, 8714 is locally given by the 1-form
2u dv + v du, and hence canonical (see [67, Fact 1.2.4(d)] or Proposition 4.15 below).

LEMMA 4.12

Let X be a normal complex projective variety with canonical singularities, and let 4
be a foliation on X. Suppose that 4 is canonical and that det Ay is Cartier. Let
B: Z — X be a Q-factorial terminalization of X. Then B~'% is canonical with
Kg-14 ~7 B*Ky.

Proof

Recall that Kz ~g 8*Kx. By [42, Theorem 4.3], there is an effective S-exceptional
Weil divisor £ on Z such that ¢;(Ag-14) ~7 B*ci1(ANy) — E. Since Kg-14 ~q
Kz +c1(ANg-14) and Ky ~q Kx + c1(A), we must have Kg—14 ~q B* Ky — E.
It follows that £ = 0 since ¢ is canonical by assumption. Applying Lemma 4.2, we
see that 719 is canonical. This finishes the proof of the lemma. O

4.3. Algebraically integrable foliations
In this subsection, we address algebraically integrable foliations with canonical sin-
gularities.

LEMMA 4.13

Let X be a normal complex projective variety, and let 4 be an algebraically inte-

grable foliation on X. Suppose that & is canonical. Let ¥ : Z — Y be the family

of leaves, and let B: Z — X be the natural morphism (see Section 3.6). Then the

following hold.

(1) The foliation B~'% is canonical with Kg-14 ~q B*Kg.

2) There exists a dense open set Y° C'Y such that Z has canonical singularities
over Y °. In particular, a general fiber of ¥ has canonical singularities.
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(3)  If P is a prime divisor on Y and C := (Y* P)req, then the pair (Z,C) is Ic
over an open neighborhood of the generic point of P.

Proof
Recall from Section 3.6 that there is an effective Weil Q-divisor B on Z such that

Kg-14 + B ~g B*Ky. A.1)

On the other hand, since ¢ is canonical by assumption, there exists an effective Weil
Q-divisor E on Z such that

Kﬁ—lgNQﬁ*K{q—FE. 4.2)
From equations (4.1) and (4.2), we obtain
B+ FE ~Q 0.

This immediately implies that B =0 and E = 0, and shows that Kg—14 ~q f*Ky.
By Lemma 4.2, 874 is then canonical, proving item (1).

Let B1: Z1 — Z be aresolution of singularities, and set ¥; := ¥ o 8. By Exam-
ple 3.3, we have Kﬂ—lg ~z Kz/y — R(¥) and Kﬂl—lﬂ_]g ~7z KZ]/Y —R(Y) + Fi1,
where R(y¥) and R(y;) denote the ramification divisors of ¥ and v/, respectively,
and F is a B;-exceptional Q-divisor on Z such that v; (Supp F1) has codimension
at least 2 in Y. In particular, Kz,y — R(y) is Q-Cartier. Since f~'¢/ is canonical,
there exists an effective §;-exceptional Q-divisor E£1 on Z; such that

Kﬂl—lﬂ—lg’\’(@ IBTKB—Ig‘l‘E] (43)

Set also Y° :=Y \ ¥ (Supp R(¥1) U Supp Fy), Z° := ¥~ (¥°), and VAR
¥ 1 (Y°). Equation (4.3) then gives

Kze ~q B1Kzo + Evjze.

This shows that Z° has canonical singularities. Item (2) follows easily.

To prove item (3), we may assume that 8: Z; — Z is a log resolution of (Z, C).
Shrinking Y, if necessary, we may assume that Y is smooth, and that y; is also
equidimensional. Then K prlp—ly = Kz,;v — R(¥1). We may also assume without
loss of generality that either R(y¥1) = 0 or ¥;(Supp R(y1)) = P. It follows that
C =y*P — R(Y) and that Cy := (¥ P)rea = ¥ P — R(Y1). Equation (4.3) now
yields

KZ1 + C; NQ,B*(KZ +C)+E1.

Since C; is reduced, we conclude that (Z,C) is Ic, completing the proof of the
lemma. O
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Remark 4.14
In the setup of Lemma 4.13(1), suppose in addition that K¢ is Cartier. Then

Kﬂ—lg ~7, ,B*Kg
The converse is also true if dimY = 1 by Proposition 4.15 below.

PROPOSITION 4.15

Let X be a normal complex projective variety, and let . X — Y be a surjective
morphism onto a smooth projective curve. Denote by 4 the foliation induced by V.
Let B: X1 — X be aresolution of singularities, and denote by R () the ramification
divisor of Y1 := ¥ o B. If X has canonical singularities over Y \ 1 (Supp R(1))
and, for any point P in ¥y (Supp R(V1)), the pair (X, (Y™ P)ieq) is lc over an open
neighborhood of P, then 9 is canonical.

Proof
Let R(¥) denote the ramification divisor of v, and denote by B(i) the reduced
divisor on Y with support ¥ (Supp R(/)). By Example 3.3, we have K¢ = Ky,y —
R(y). Note that K¢ is Q-Cartier since R(Y¥) = ¢ *B({¥) — (Y*B(¥))req and Ky +
(V* B(Y))eq is Q-Cartier.

Let B: X1 — X be a resolution of singularities, and let £ be the S-exceptional
divisor on X; such that

Kg-14~qB*Ky + E. (4.4)

Denote by B(/1) the reduced divisor on ¥ with support 1 (Supp R(v/1)). Set C :=
(Y *B(¥1))rea and Cy := (¥ B(¥1))rea- Then (4.4) above yields

Kx, +Ci=p*(Kx +C)+ E.

Since X has canonical singularities over Y° := Y \ 1 (Supp R(¥1)), we see that
E is effective over Y°. On the other hand, since the pair (X,C) is lc over some
open neighborhood of Supp B(v1), we conclude that E is effective over some open
neighborhood of Supp B(1). This proves that E is effective, completing the proof
of the proposition. O

Example 4.16

Let Y and Z be normal projective varieties, and let ¢ be the foliationon X :=Y x Z
induced by the projection Y x Z — Y. Then ¢ is canonical if and only if Z has canon-
ical singularities. Indeed, if ¢ is canonical, then Z has canonical singularities by
Lemma 4.13 above. Suppose that Z has canonical singularities, and let 8;: Z; — Z
be a resolution of singularities. Let also Y; — Y be a resolution of Y;. Let ¢ be
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the foliation on Y7 x Z induced by the projection Y; x Z — Y7, and denote by
y1: X1:=Y1 X Z — Y x Z = X the natural morphism. Notice that K¢ is Q-Cartier
and that Ky, ~q y; Kg. Thus, by Lemma 4.2, it suffices to show that ¢, is canonical.
Let ¥, be the foliation on X5 := Y7 x Z; induced by the projection ¥Y; x Z; — Y7,
and denote by y,: X, =Y X Z1 — Y1 X Z = X the natural morphism. Since Z has
canonical singularities, K¢, ~q y5 K¢, + E, for some effective and y,-exceptional
Weil Q-divisor. Now, %, is canonical since it is a regular foliation (see Lemma 5.9).
In particular, if y3: X3 — X» is any projective birational morphism with X3 normal,
then K yyla, ~Q v3 K4, + E3 for some effective and y3-exceptional Weil Q-divisor.
It follows that 1(7,3_165.2 ~q (V20v3)* Ky, + y5 E2 + E3. This shows that ¢ is canon-
ical.

The following result, which will be crucial for the proof of Theorem 6.1, extends
[8, Lemma 2.12] to the singular setting.

PROPOSITION 4.17

Let 4 be a foliation of rank r > 1 on a normal complex projective variety X. Sup-
pose that ¢ is algebraically integrable and that Ky is Q-Cartier. Let : Z — Y be
the family of leaves, and let B: Z — X be the natural morphism (see Section 3.6).
Let also B be the effective B-exceptional Q-divisor on Z such that Kg-14 + B ~q
B*Ky. If E is a B-exceptional prime divisor on Z such that y(E) =Y, then E C
Supp B.

Remark 4.18
Proposition 4.17 says that ¢ is not canonical along B(E).

Proof of Proposition 4.17
We argue by induction on r > 1. Let E be a B-exceptional prime divisor on Z, and
assume that Yy (E) =Y.

Suppose first that » = 1. Let m be a positive integer, and let X° C X be a
nonempty open set such that Oxo (m Ky xo) = Oxo. Suppose in addition that S(£) N
X° #0. Let f°: X7 — X° be the associated cyclic cover, which is quasi-étale (see
[63, Definition 2.52]). Finally, let Z7 be the normalization of the product Z° x xo X7,
where Z°:= B71(X°), and let 5: Z — X} and g°: Z; — Z° denote the natural
morphisms. Recall from Section 3.6 that there exists an effective f7-exceptional divi-
sor B} on Z7 such that Kgoy-1(ro)-1 (@ xo) T B} ~7 0. Moreover, (g°)*(B|z°) — B}
is effective (see (3.1)). Since Y (E£) = Y by assumption, we see that F is not invariant
under B14. Let E7 be a prime divisor on Z7 such that g°(E7) = E N Z°. Notice
that £ is not invariant under (87) ' (f°) ! (4|x-) and that EY is B{-exceptional. By
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[75, Theorem 5], the singular locus of X7 is invariant under any derivation on X.
Thus, if B7(E7) is contained in X7 \ (X7 )reg, then E7 C Supp B by Lemma 4.19
below. Suppose that B7(E7) N (X7 )reg 7 9. By construction, the image in X7 of any
irreducible component of a general fiber of the composed map Z7 — Z° — Y is
the closure of a leaf of (f°)~! (9 xe). Since E 1 is B7-exceptional, we see that there
are infinitely many such subvarieties through a general point of 87(E7). Therefore,
B3 (EY) is contained in the singular locus of (f°)~! (9x2), and hence E 1 € Supp B}
by Lemma 4.19 again and Lemma 3.5. In either case, since (g°)*(B|z°) — By is
effective, we see that E C Supp B. This proves the proposition when r = 1.

Suppose from now on that r > 2. We may assume without loss of generality that
X C PN for some positive integer N .

Let H C X be a general hyperplane section. We may assume that H and G :=
B~1(H) are normal varieties (see [47, Théoréme 12.2.4]). Set y := Bc: G—H
and & : =%y NTy,sothat y~'& = 7149 N Tg. Applying [47, Théoréme 12.2.4]
again, we see that general fibers of Y| : G — Y are integral by general choice of H.
This implies that ¥ : G — Y is the family of leaves of &. Since the restriction of
B to any fiber of  is finite, we have dim B(E) > r — 1 > 1. In particular, E|g is a
nonzero divisor on G.

Using Proposition 3.6 and the formula Kg—14 + B ~q B* Ky, we obtain

Kg ~z Kg g + H (4.5)
and
K, 15~z Kﬂ_]‘«’flG + Gig — Bg ~qy*Ks — BG — Bg., (4.6)
for some effective y-exceptional divisor Bg on G. By induction, we must have
Supp E\G € Supp(Bg + Bjg).

Given a general fiber F of ¥, we may assume that H N Fy is smooth by Bertini’s
theorem. This immediately implies that Y (Supp Bg) C Y (see Proposition 3.6(1)).
On the other hand, by general choice of H, any irreducible component of £ N G is
mapped onto Y by v . Therefore, we have Supp E|g < Supp B, and hence

E C Supp B.

This completes the proof of the proposition. t

LEMMA 4.19
Let Z and X be normal complex varieties, and let B: Z — X be a birational pro-
Jective morphism. Let 4 be a foliation of rank 1 on X. Suppose that Ky is Cartier,
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and write Kg—14 ~7 B* K4 + B for some B-exceptional divisor Bon Z. Let E C Z
be a prime divisor not contained in Supp B. If B(E) is contained in a proper closed
G-invariant subvariety Y C X, then E is invariant under f~'9.

Proof
The statement is local on X, hence we may shrink X and assume that K¢ ~7 0 and
that X is affine, X € AN for some integer N > 1.

Let 07 € HO(Z,TZ X &z (B)) be such that ,B_lg X O0z(B) = 070z, and
denote by dy € H°(X, Tx) the derivation on X induced by 9z, so that ¥ = Oxdx.
By construction, dz is a regular derivation on Z \ Supp B.

Let f be a nonzero regular function on X, vanishing on Y, such that m := vg (f)
is minimal, where vg denotes the divisorial valuation on the field of rational functions
on X induced by E. Note that m is positive since f vanishes on Y. Let also g be a
local equation of E on some open subset U € Z \ Supp(B). There exists a function
u on U such that u|gny # 0 and f o Bjy = ug™. It follows that

0z(f o B)v = g"dzju () +mug™ oz (g).
On the other hand, we have
Iz(fop)=PBodx(f)
and thus
ve(3z(f o B)) =ve(dx(f)) =vE(f)=m

by choice of f, using the fact that dx (/) vanishes on Y since f does and Y is
-invariant.

Suppose that vg (0z(g)) = 0. We have vg(dzy (1)) > 0 since dz |y is regular
on U, and thus

vE(§"0zw () = m.
But then
vE (8™ 0z10 () +mug™ oz (g)) = ve (mug™ oziy(g) =m—1

since vg (1) = 0, yielding a contradiction. This shows that vg(dz(g)) > 1, proving
the lemma. u

The following easy consequences of Lemma 4.19 might be of independent inter-
est.
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PROPOSITION 4.20

Let Z and X be normal complex varieties, and let B: Z — X be a proper birational
morphism. Let 07 € H°(Z,Tz), and let dx € H°(X, Tx) be the induced derivation
on X. Suppose that dx # 0 in codimension 1. Let also E C Z be a prime divisor. If
B(E) is contained in the singular locus of X, then E is invariant under 0.

Proof

By [75, Theorem 5], the singular locus of X is invariant under dx. Let B be the
maximal effective divisor on Z such that 3z € H°(Z, Tz X 0z (—B)). Observe that
B is B-exceptional since dx # 0 in codimension 1 by assumption. If £ C Supp B,
then dz g = 0 and E is invariant under dz. If E is not contained in Supp B, then the
claim follows from Lemma 4.19 above applied to the foliation ¥ = O0xd C Tx. O

Recall that an equivariant resolution of a normal variety X is a projective bira-
tional morphism 8: Z — X with Z smooth such that 8 restricts to an isomorphism
over the smooth locus of X and such that 8.7z = Tx. The following consequence
of Lemma 4.19 is a special case of [41, Corollary 4.7].

COROLLARY 4.21

Let X be a normal complex variety, and let §: Z — X be an equivariant resolu-
tion of X. Then B+«Tz(—log E) = Tx, where E denotes the union of all prime B-
exceptional divisors.

4.4. Singularities of foliations with numerically trivial canonical class

In general, Definition 4.1 requires some understanding of the numbers a(E, X,¥)
for all exceptional divisors of all birational modifications of X. However, if Ky is
Q-Cartier and K¢ = 0, then we have the following characterization of canonical sin-
gularities, due to Loray, Pereira, and Touzet when X is smooth.

PROPOSITION 4.22

Let X be a normal complex projective variety, and let & be a foliation on X with Ky
Q-Cartier and Ko = 0. Then & has canonical singularities if and only if 4 is not
uniruled.

Proof

The same argument used in the proof of [66, Corollary 3.8] shows that the conclusion
of Proposition 4.22 holds. One only needs to replace the use of [66, Theorem 3.7] by
Theorem 4.23 below. O
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THEOREM 4.23
Let X be a normal complex projective variety, and let 4 be a foliation on X with
canonical singularities. Then ¢ is uniruled if and only if Ky is not pseudoeffective.

Proof
Let B: Z — X be aresolution of singularities.

Suppose first that K¢ is not pseudoeffective. Then Kg—14 is not pseudoeffective
as well. Applying [22, Theorem 4.7] to =1, we see that ¢ is uniruled.

Suppose now that ¢ is uniruled. The same argument used in the proof of [66,
Theorem 3.7] applied to B7'% shows that K g—1g is not pseudoeffective. This in turn
implies that K¢ is not pseudoeffective since ¢ is canonical, finishing the proof of the
theorem. O

4.5. Abundance for algebraically integrable foliations with numerically trivial
canonical class

Let X be a projective klt variety with numerically trivial canonical class. By a theo-

rem of Nakayama, Ky is torsion (see [69, Corollary V.4.9]). Proposition 4.24 below

extends Nakayama’s result to mildly singular algebraically integrable foliations.

PROPOSITION 4.24
Let X be a normal complex projective variety, and let 4 be an algebraically inte-
grable foliation on X . Suppose that & is canonical with K¢ = 0. Then K is torsion.

Proof

Let : Z — Y be the family of leaves, and let §: Z — X be the natural morphism
(see Section 3.6). Let also F be a general fiber of v. By Lemma 4.13, 714 is canon-
ical with Kg-14 ~q B* K¢, and moreover, F has canonical singularities. Recall from
Example 3.3 that Kg-14 = Kz;y — R(¥), where R(y) denotes the ramification divi-
sor of . From the adjunction formula, we conclude that Kr ~z Kz|r = 0, and thus
K is torsion by [69, Corollary V 4.9]. It follows that there exists a Q-divisor B on
Z with ¥ (Supp B) C Y such that

Kz/y —R(¥)~q B.

On the other hand, since Kz;y — R(¥) = 0 by assumption, there exists a Q-divisor
on Y such that B = ¥*D. This follows easily from [73, Theorem A.7]. Therefore,
we have

Kz 4+ v 1(C) ~q ¥*(Ky + C + D),

where C is the reduced divisor on Y with support ¥ (Supp R(y)). By Lemma 2.6, D
is Q-Cartier. Moreover, we have D = 0 by the projection formula. By Lemma 4.13
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applied to B~1¢, the discriminant of the lc-trivial fibration ¥ : (Z,¥1(C)) — Y is
C (we refer the reader to [ 1] for the definitions of lc-trivial fibration and discriminant).
From [1, Theorem 3.5] (see also [36, Theorem 1.2]), we conclude that D is torsion,
proving the proposition. O

5. Weakly regular foliations on singular spaces

5.1. Definitions and examples
There are several notions of regularity for foliations on singular spaces. We first recall
the notion of strongly regular foliation following [51, Definition 1.9].

Definition 5.1

Let ¢ be a foliation of rank » > 1 on a normal complex variety X. Say that ¢ is
strongly regular at x € X if x has an open analytic neighborhood U that is biholo-
morphic to D" x M, where I is the complex open unit disk and M is a germ of normal
complex analytic variety, such that ¢y is induced by the projection D" x M — M.
Say that ¢ is strongly regular it ¢ is strongly regular at any point x € X.

Remark 5.2

By [15, Lemma 1.3.2], ¢ is strongly regular at x € X if and only if ¢ is locally free in
a neighborhood of x and the natural map 'y — Ox (K«) induced by the rth wedge
product of the inclusion ¢4 < T is surjective at x.

Example 5.3
If Y and Z are normal varieties and ¢ is the foliation on X := Y x Z induced by the
projection Y x Z — Y, then ¥ is strongly regular if and only if Z is smooth.

The notion of strong regularity is, however, not flexible enough to allow for appli-
cations. The following notion of regularity for foliations addresses this issue (see [5,
Definition 3.57]).

Definition 5.4
Let ¢ be a foliation of rank » > 1 on a normal complex variety X. The rth wedge
product of the inclusion ¢ < Tx gives rise to a nonzero map Ox(—Kg) —
(A" Tx)**. We will refer to the dual map .QE,;] — Ox (K«) as the Pfaff field associated
to 9.

The singular locus S of ¢ is the closed subscheme of X whose ideal sheaf is
the image of the induced map Q[);] X O0x (—Ky) — Ox, which we will refer to as the
twisted Pfaff field associated to ¢.
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We say that & is weakly regular at x € X if x ¢ §. We say that ¢ is weakly
regular if S = 0.

Example 5.5
Let X be a normal variety, and consider ¢4 = Ty . Then ¢ is weakly regular.

A strongly regular foliation is weakly regular in the sense of Definition 5.4 above.
The converse is true if X is smooth by Frobenius’s theorem. Other examples of
weakly regular foliations are provided by the following results.

PROPOSITION 5.6

Let X be a normal complex variety, and let v : X — Y be a dominant morphism onto
avariety Y. Let 9 be the foliation on X induced by . Then 9 is weakly regular over
the generic point of Y .

Proof

Note that we may assume without loss of generality that Y is smooth. By [49, Propo-
sition I11.10.6], the tangent map Ty : Ty — ¥ *Ty is surjective along a general fiber
F of . The claim then follows from Lemma 5.7 below. O

LEMMA 5.7

Let X be a normal variety of dimension n > 2, and let ¢ C Tx be a foliation of
rank r > 1 on X. Set q :==n —r. Then & is weakly regular if and only if the map
n: (N Tyx)** Xdet.AS — Ox induced by the qth wedge product of the quotient map
Tx — N is surjective.

Proof
The wedge product of differential forms on X, induces an isomorphism of reflexive
sheaves

Q= (A1Tx)™* K 0x (Kx).
The canonical isomorphism Oy (Ky) =~ Ox (Kx) K det 4 then yields
QYR Oy (—Ky) = (A1 Tx)*™ Bdet. 4.

One readily checks that the map Qg;] X Ox (—Kg) — O induced by 7 is the twisted
Pfaff field associated with ¢. This shows the lemma. O

LEMMA 5.8
Let X be a normal variety, and let 9 be a foliation on X. Suppose that there exists a
distribution & on X such that Tx =9 @ &. Then 94 is weakly regular.



128 STEPHANE DRUEL

Proof

Set r := rank¥. Observe that det¥* =~ Ox(Kg) is a direct summand of Q[);] and
that the twisted Pfaff field QE,;] X 0x (—Kg) — Ox associated to ¢ is induced by the
projection Q[);] — det¥*. This immediately implies that ¢ is weakly regular. 0

5.2. Elementary properties
The following lemma says that a weakly regular foliation ¢ has mild singularities if
K« is Cartier.

LEMMA 5.9

Let X be a normal complex variety with kit singularities, and let 4 be a foliation
on X. Suppose that Ky is Cartier. If 4 is weakly regular, then it has canonical sin-
gularities.

Proof

Let Z be a normal variety, and let 8: Z — X be a birational projective morphism.
Letny: Q[};,] — Ox(Kg) and nz: Q[Zr] — 0z (Kg-14) be the Pfaff fields associated
to ¢ and B9, respectively. Recall from Section 2.6 that there exists a morphism of
sheaves dienf: B* Q[;] — Q[Zr] that agrees with the usual pullback morphism of Kih-
ler differentials wherever this makes sense. Next, we show that there exist a morphism
B*Ox(Kg) — Oz(Kg—14) and a commutative diagram as follows:

dreﬂﬂ

[r] [r]
ﬂ*QX QZ

B*nx l nz

B*Ox(Kg) —— Oz(Kg-14)
Let ¢ denote the kernel B*nx. Since B is birational, the image of J# by 1z o dien 8
is a torsion subsheaf of &z (Kg-14). But the latter is torsion-free by construction,

proving our claim. In particular, there is a B-exceptional effective divisor £ on Z
such that Kg—14 = B* Ky + E, proving the lemma. O

Remark 5.10
We will show that the converse is also true if ¢ is algebraically integrable with K¢ =
0 (see Corollary 5.23).

Example 5.11 below shows that Lemma 5.9 is wrong if one drops the assumption
that K¢ is Cartier.



CODIMENSION 1 FOLIATIONS WITH NUMERICALLY TRIVIAL CANONICAL CLASS 129

Example 5.11

Let Y and Z be normal varieties, and let ¢ be the foliation on X := Y x Z induced
by the projection ¥ x Z — Y. Then ¢ is weakly regular by Lemma 5.8. But ¢ has
canonical singularities if and only if Z has canonical singularities by Example 4.16.

Next, we analyze the behavior of weakly regular foliations with respect to smooth
morphisms, quasifinite maps, and birational modifications.

LEMMA 5.12
Let w: Y — X be a surjective étale morphism of normal varieties, and let 4 be a
foliation on X. Then 9 is weakly regular if and only if so is 1~'9.

Proof

Recall that the pullback of a reflexive sheaf by a flat morphism is reflexive as well by
[50, Proposition 1.8]. Note also that 71*(52[}:,] X Ox(—Ky)) = Qg] X Oy (—n*Ky)
since both are reflexive sheaves and agree on n_l(Xreg) = Y. Let n: Q[;] X
Ox(—Ky) — Ox be the twisted Pfaff field associated to &. One readily checks
that the induced map 7*7: Q[;] X Oy (—n*Ky) — Oy is the twisted Pfaff field
associated to 7~ 1%, The lemma follows since 7 is a faithfully flat morphism. O

PROPOSITION 5.13

Let X be a normal complex variety, let 4 be a foliation on X, and let w: Y — X

be a quasifinite dominant morphism. Suppose that any codimension 1 irreducible

component of the branch locus of m is ¢ -invariant. Then the following hold.

(1) If¥ is weakly regular, then so is t~'%.

2) Suppose in addition that 7 is finite and surjective. If 719 is weakly regular,
then so is 9.

Proof
Set r := rank¥, and let ny: Q[);] K Ox(—Ky) — Ox and ny: Q[Yr] X
Oy (—K,-14) — Oy be the twisted Pfaff fields associated to ¢ and 7~ '%, respec-
tively.

Suppose first that ¢ is weakly regular. By Lemma 3.4, we have K, —14 ~7z
7* Ko . This implies that

QU R Oy (—Kg)) = QR 0y (—K,-14).

One then checks that we have a commutative diagram
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QPR oy (-Kyg)) —— QIR Oy (K, -1y)

T nx $ l ny

ﬁy ﬁY

This shows that 7714 is a weakly regular foliation, proving item (1).

Suppose from now on that 7 is a finite cover and that 77'% is weakly regu-
lar. Let y: Y3 — Y be a finite cover such that the induced cover my: Y1 — X is
Galois with Galois group G. We may also assume that 77 is quasi-étale away from
the branch locus of 7. By item (1) applied to y, 7r; ¢ is weakly regular as well. Thus,
we may assume without loss of generality that 7 is Galois with Galois group G. By
Lemma 3.4, the tangent map 77 induces an isomorphism 7 ~!'% =~ (7*%)**. It fol-
lows that Oy (K —14) = Oy (n* Kg) as G-sheaves. Note that ny is G-equivariant.
By [42, Lemma A.4] and [18, Theorem 2], we have

(7 (@M R Oy (K 1-14)))© = QU R 0y (—Ky).

It follows that the map 7% : QU K Gy (—Ky) — Ox induced by 7y is the twisted
Pfaff field associated to &. From [42, Lemma A.3], we see that ny = ng is surjective.
This shows that ¢ is weakly regular, completing the proof of the proposition. O

The following is an immediate consequence of Proposition 5.13.

COROLLARY 5.14
Let X be a normal complex variety, let 4 be a foliation on X, and let w: Y — X be
a quasi-étale cover. Then 9 is weakly regular if and only if so is m~14.

LEMMA 5.15

Let m: Y — X be a projective birational morphism of normal complex varieties, and
let 4 be a foliation on X. Suppose that K¢ is Cartier and that K —14 ~z 7% Kqg.
Suppose furthermore that X has kit singularities. If 4 is weakly regular, then so is
9.

Proof

Letnx: Qg;] — Ox(Kg) and ny : ng] — Oy (K ,-14) be the Pfaff fields associated
to & and 719, respectively. Recall from the proof of Lemma 5.9 that there is a
commutative diagram
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refl T

N ol
X Y

T*nx l ny

n*0x(Ky) —— Oy(K,—14)
This immediately implies that 7~ is weakly regular, proving the lemma. O

LEMMA 5.16

Let w: Y — X be a dominant morphism of normal complex varieties, and let G be a

foliation on X.

(1) Suppose that Y = X x Z and that 7t is the projection onto X. Then K .14 ~7,
n*Key + Ky, x, and 9 is weakly regular if and only if so is 1 ='9.

) If 7 is a smooth morphism, then K 14 ~z n* Ky + Ky;x. Moreover, 9 is
weakly regular if and only if w =14 is weakly regular.

3) Suppose that X has kit singularities and that 7 is a small projective birational
map. Suppose in addition that Ky is Q-Cartier. Then K,—14 ~q 7*Kg.
Moreover, if 4 is weakly regular;, then so is m~'4.

Proof
Set r :=rank @, and let nx : QX 0y (—Ky) — Ox be the twisted Pfaff field asso-
ciated to ¢.

Suppose first that ¥ = X x Z and that & is the projection onto X. Denote by
p the projection onto Z, and set m := dim Z. Recall that the pullback of a reflexive
sheaf by a flat morphism is reflexive as well by [50, Proposition 1.8]. Then

719 ~ Ty/x @n*g’ép*Tz G n*9,

and hence K,—1y ~7 7*Ky + Ky;x ~z2 n*Ky + p*Kz.
We have

it~ P rrefmprel
i+j=r+m

and the twisted Pfaff field associated to 7 1% is the composed map
QU R Oy (K1)
— (7 QPR p* QU R oy (—K 1) = 7 (@Y K 0x (—Ky))

T*nx
—_— ﬂ*ﬁx ~ Oy.
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It follows that & is weakly regular if and only if so is 7 ~!% since 7 is a faithfully flat
morphism.

Suppose now that 7 is smooth. Set 7 := dimY —dim X, X° := X, and Y ° :=
7N (X°) C Y:e;. We have an exact sequence of vector bundles

00— TY°/X° —> (ﬂ_lg)lyo —> (7T|Yo)*fglxo —0

and thus K ,—14 ~z m* K4 + Ky, x since Y ° has complement of codimension at least
2in Y. We proceed to show that ¢ is weakly regular if and only if so is 77!%. The
statement is local on X for the étale topology by Lemma 5.12. Thus, we may assume
that Y = X x A™ and that r is given by the projection Y = X x A" — X. The claim
then follows from the previous case.

Suppose finally that X has klt singularities and that r is a small projective bira-
tional map. Suppose in addition that Ky is Q-Cartier. We clearly have K 14 ~q
7* Ky . Replacing X by an open subset, if necessary, we may assume that K¢ is tor-
sion. It follows that K —1 is torsion as well. By Corollary 5.14, replacing Y and X
by the associated cyclic quasi-€tale covers (see [63, Definition 2.52]), we may also
assume that K¢ is Cartier and that K;—14 ~z 7* Kg. The statement then follows
from Lemma 5.15. O

Remark 5.17
In the setup of Lemma 5.16(3), suppose in addition that K¢ is Cartier. Then
Kﬂ—lg ~7 JT*Kg.

LEMMA 5.18

Let X be a normal complex projective variety with kit singularities, and let 4 be an
algebraically integrable foliation on X with canonical singularities. Let : Z —Y
be the family of leaves, and let B: Z — X be the natural morphism (see Section 3.6).
If 9 is weakly regular; then so is B~'9.

Proof

By Lemma 4.13, we have Kg-14 ~q B* K«. Note that the statement is local on X.
Let m be a positive integer, and let X° € X be a dense open subset such that
Oxo(mKy|xo) = Oxo. Let f°: X7 — X° be the associated cyclic cover, which is
quasi-étale (see [63, Definition 2.52]), and let Z7 be the normalization of the product
Z° xxo Xy, where Z°:= B71(X®). Let also B7: Z; — X} and g°: Z} — Z°
denote the natural morphisms. Recall from Section 3.6 that K B~ (f°) (@ x0) L
(BD)* Koy (% xo) and that the support of the ramification divisor R(g°) of g° must
be (B5)71(f°)" (¥ xe)-invariant. By construction, K 71 @ x0) is Cartier. More-
over, (f°)"(%xe) is weakly regular by Corollary 5.14. Applying Lemma 5.15, we



CODIMENSION 1 FOLIATIONS WITH NUMERICALLY TRIVIAL CANONICAL CLASS 133

see that (85) 71 (/) 1 (“xo) = (g°) 1 ((B'9),z0) is weakly regular. The statement
then follows from Proposition 5.13. O

5.3. Criteria for weak regularity

Let ¢ be a foliation with numerically trivial canonical class on a complex projec-
tive manifold. Suppose that ¢ has a compact leaf. Then Theorem 5.6 in [66] asserts
that ¢ is regular and that there exists a foliation on X transverse to ¢ at any point
in X . In this subsection, we extend this result to mildly singular varieties (see Corol-
lary 5.22). We also show that algebraically integrable foliations with mild singulari-
ties and numerically trivial canonical class are weakly regular (see Corollary 5.23).
Finally, we provide another criterion for regularity of foliations (see Proposition 5.26).

We will need the following easy observations.

LEMMA 5.19

Let X be a normal complex variety, and let 4 be a foliation of rank r on X. Suppose

that Ky is Cartier, and let 1: QE;] — Ox (K«) be the Pfaff field associated to 4. Let

L C X be a subvariety which is not entirely contained in the union of the singular

loci of X and 4. Suppose in addition that dim L = r. Then the following hold.

) The variety LN X eg is a leafof%p(reg if and only if the composed map Q' L=
QE;]IL — Ox(Kg)|, factors through the natural map QSHL — QY.

(2)  Suppose that L N Xieg is a leaf of 9x,,,, and let F be the normalization of
L. Denote by n: F — X the natural morphism. Then there is a commutative

diagram
n*n
n*Qy —— n*Qlfl = n*ox(Ky)
dn
Qn ——— Q. prox(Ky)

Proof
Item (1) follows from [4, Lemma 2.7] using the fact that Ox (Ky),,, is torsion-free.
Item (2) follows from item (1) and [9, Proposition 4.5]. O
LEMMA 5.20

Let X be a normal complex projective variety, and let H be an ample divisor on X.
For any integer 1 <r < dim X, the image of c1(H)" € H" (X, Q%) under the natural
map H" (X, Q") — H" (X, Qg;]) is nonzero.
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Proof

In order to prove the lemma, it suffices to consider the case when r = dim X. Let
B: Z — X be a resolution of X. The image of ¢y (H)%mX e H4mX (X, Qdm¥X)
under the map H4mX(X,Q4m¥X) . pdmX(z QdmX) is nonzero, and hence
c1(H)%mX is nonzero as well. On the other hand, the kernel and the cokernel of the
natural map Q‘;}mx — Q[;imx] are supported on closed subsets of codimension at
least 2. It follows that the natural map HYmX (X, Q4m¥X) . pgdmX (y, Q[}?imx]) is
an isomorphism, completing the proof of the lemma. U

PROPOSITION 5.21

Let X be a normal complex projective variety, and let 4 be a foliation of rank r on
X with K¢y Cartier and K4 = 0. Let L C X be a proper subvariety which is not
entirely contained in the union of the singular loci of X and 9. Suppose that L N Xeg
is a leaf of Yx,.,- Let F be the normalization of L, and denote by n: F — X the
natural morphism. Suppose furthermore that the map ng : QE,,C] —>n*0x(Ky) given
by Lemma 5.19 is an isomorphism, and that F has rational singularities. Then 4 is
weakly regular, and there exists a decomposition Ty =94 @ & of Tx into involutive
subsheaves.

Proof
Let B: Z — X be an embedded resolution of L, and let T be the strict transform of
L in Z. Observe that Bj7: T — L factors through /' — L, and denote by y: T — F
the induced map.

Let H be an ample divisor on X. Let also n: Q[;] — Ox (K«) be the Pfaff field
associated to ¢. Consider the image ¢ of ¢ (H)" € H" (X, Q'y) under the composed
map

H™ (X, Q%) — H' (X, Q) > H" (X, 0x (Ky)).

We will show that ¢ # 0 and that H"(n*)(c) # 0, where H"(n*): H" (X,
Ox(Kg)) — H"(F,n*0x(Ky)) denotes the map induced by n*. By Lemma 5.19,
we have a commutative diagram

H"(n)
H'(X,Q%) —— H'(X,Q¥) — = H"(X,0x(Ky))
H’” (dn) H" (n*)

H™(F,Q) —— H"(F,.QUY) ——~ H"(F.n*0x(Ky))
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By assumption, the map H” (F, Q[}]) — H"(F,n*0x(Kg)) is an isomorphism. On
the other hand, by Lemma 5.20 above, the image of ¢{(H|r)" € H" (F, Q') under
the map H" (F, Q%) — H"(F, QE,,C]) is nonzero. This immediately implies that ¢ # 0
and that H" (n*)(c) # 0.

Consider the commutative diagram

H'(Z,B*0x(Ky)) — H'(T,(noy)*Ox(Kg))

]

H™ (X, 0x(Kg)) H"(F.n*0x(Ky))

Since F has rational singularities, the morphism H" (F,n*0x(K«)) — H" (T, (n o
y)*Ox (Kg)) is an isomorphism. This implies that the image ¢z of ¢ under the map
H"(X,0x(Ky))— H"(Z,B*0x(Ky)) is nonzero.

On the other hand, by Hodge symmetry with coefficients in local systems, there
are natural isomorphisms

H'(Z,B*0x(Ky)) = H°(Z,Q, ® *Ox(—Kg))  and

H'(T.(noy)*0x(Ky)) = H(T, Q%4 ® (noy)*Ox(—Kg)).

It follows that az :=c¢z € HO(Z,SZ’Z ® B*0x(—Kyg)) is a twisted r-form that
restricts to a nonzero twisted r-form ar € H(T, Qp ® (noy)*Ox(—Kg)). Let
ae HO(X, Q[};] ® Ox(—Kg)) be the twisted reflexive r-form on X induced by oz,
and let o € HO(F, Qg] ® n*0x(—Ky)) be the nonzero twisted reflexive r-form
on F induced by a7. By construction, n(«) is a regular function that restricts to the
nonzero regular function nr (o) on F. It follows that 7(«) is constant. The contrac-
tion with o then gives a morphism (A" ~14)** — Q[;] ® Ox(—Kg) such that the
composed map (A" 71Z)** — Q[)}] ® Ox(—Kg) —> 9* ® Ox(—Kg) is an isomor-
phism. This shows that there is a decomposition Ty = ¢ @ &. Note that & is given
by the twisted r-form o which extends to the twisted r-form «z on Z with values in
the flat line bundle 8* 0y (— K« ), which is automatically closed. This implies that &
is involutive. Finally, ¢ is weakly regular by Lemma 5.8, completing the proof of the
proposition. O

COROLLARY 5.22

Let X be a normal complex projective variety with kit singularities, and let 4 be a
foliation on X . Suppose that K¢ is Cartier and that K = 0. Let L C X be a proper
subvariety disjoint from the singular locus of ¢ and not contained in the singular
locus of X. Suppose that L N X, is a leaf of 9x,,,. Suppose furthermore that the
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normalization F of L has rational singularities. Then & is weakly regular, and there
is a decomposition Ty =9 @ & of Tx into involutive subsheaves.

Proof

Denote by n: F — X the natural morphism, and let 5 : QE,?] —n*0x(Kg) be the
map given by Lemma 5.19. By Lemma 5.19 and Section 2.6, we have a commutative
diagram

n*Qlrl " n*Ox (K
X - X( %)

drennt \L

Q[IZ] n*ﬁx(Kg)

On the other hand, the map n*7 is surjective by assumption. This immediately implies
that nF is an isomorphism, so that Proposition 5.21 applies. U

COROLLARY 5.23

Let X be a normal complex projective variety with kit singularities, and let 4 be an
algebraically integrable foliation on X with canonical singularities. Suppose that K4
is Cartier and that K¢ = 0. Then & is weakly regular, and there is a decomposition
Tx =9 & & of Tx into involutive subsheaves.

Proof

Let : Z — Y be the family of leaves, and let §: Z — X be the natural morphism
(see Section 3.6). Let also F be a general fiber of {. Note that L := B(F) is the
closure of a leaf of ¢. By Lemma 4.13, F has canonical singularities and Kg-14 ~q
B* K. In particular, F is the normalization of L, and it has rational singularities by
[35, Théoréme 1]. Moreover, Kr ~g n* Ox (Kg) by Example 3.3 and the adjunction
formula, where n: F — X denotes the restriction of § to F. It follows that the map
nF: Qg] ~ Or(Kp) > n*0x(Kg) given by Lemma 5.19 is an isomorphism, where
r denotes the rank of ¢. The conclusion then follows from Proposition 5.21. O

Example 5.24 shows that Corollary 5.23 above is wrong if one drops the assump-
tion that K¢ = 0.

Example 5.24
Let B and C be smooth projective curves, and let X be the blowup of B x C at some
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point. Let also ¢ be the foliation on X induced by the natural morphism X — B.
Then ¢ has canonical singularities, but it is not regular.

The proof of Proposition 5.26 below makes use of the following result, which
might be of independent interest.

LEMMA 5.25

Let X be a normal complex projective variety, and let G be a foliation of rank r on X
with Ko Cartier and K¢ = 0. Let H be a very ample Cartier divisor on X, and let
QY% — Ox(Kg) be the map induced by the Pfaff field associatedto§. Let B: Z — X
be a resolution of singularities. Suppose that the image ¢ of ¢;(H)" € H" (X, Q%)
under the composed map

H'(X,Q%) — H" (X, 0x(Ky)) > H"(Z, B*Ox (Kg))

is nonzero. Then &4 is weakly regular, and there exists a decomposition Ty =9 & &
of Tx into involutive subsheaves.

Proof
The proof is similar to that of [27, Proposition 2.7.1].

Set n := dim X. The linear system |H| embeds X into PV for some positive
integer N . Denote by y: Z — P¥ the natural map. Let (U;);<; be a finite covering of
PN by open sets such that ﬁX(Kg)m =~ O%;, where X; := U; N X. Denote by v; €
H(X;, AV1Ty,) an r-field defining %y, , and let u; € H%(U;, A" Ty,) be such that
uix, = vi € HO(X;, ATy,) € HO(Xi, A" Ty, x.). Let wes be the Fubini-Study
form on PV, and denote by w; its restriction to U;. The pullback n; on y~1(U;)
of the contraction u; .w] of w; by u; is a 9-closed (0, r)-form. Moreover, the 7;
glue to give a d-closed (0, r)-form 7 with coefficients in the unitary flat line bundle
B*Ox(K«). By construction, 1 represents ¢ if H"(Z, 8*Ox (K)) is identified with
the corresponding Dolbeault cohomology group.

By Hodge symmetry with coefficients in local systems, there exists a holomor-
phic r-form « with values in 8*0x (—Ky) such that {o} =c € H"(Z, 8*Ox (Ky)).
In particular, there exists a (0,7 — 1)-form & with values in f*0x(Ky) such that
@ = 1 + 0£. Note that o is harmonic with respect to any Kihler form. In particular, o
is closed.

Set X°:= X \ B(Excf), and let v° € H*(X°, A" Txo ® Oxo(Ky ,.)) be a
twisted r-field defining % xo. Let also a® € H(X°, Q%o ® Oxo(—Kg,)) be the
twisted 7-form induced by o on X°. Notice that the contraction «°(v°) is a regular
function, and hence constant since X ° has complement of codimension at least 2 in X .
To prove the statement, it suffices to show that «°(v°) is nonzero (see Lemma 5.8).
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Let w be the smooth closed semipositive (1, 1)-form on Z induced by wgs. Since
o and w are closed, we have

d@ANEAD" ) =(=1)TTaAdEAD"™ = (=1)" Ta AdEAT,

and hence

/aAEAw”"z/aAn/\a)”_’
z z

by Stokes’s theorem. By the Hodge—Riemann bilinear relations, there exists a com-
plex number C; # 0 such that the smooth (n, n)-form

Cia /\&/\w”_r“g-](XO) = Cl()to /\(F/\C(){:’S_r

is semipositive and not identically zero since @ # 0 by assumption. It follows that
/. 7« AN A" #0. On the other hand, a straightforward computation shows that

/ aANA"T = / a® A (v°Lwrs|xo) A wrs|xe = Caa®(v°),
Z o

for some complex number C, # 0. This immediately implies that «°(v°) is nonzero.
Arguing as in the proof of Proposition 5.21, one shows that there is a decomposition
Tx =% & & of Ty into involutive subsheaves and that ¢ is weakly regular. This
finishes the proof of the lemma. O

PROPOSITION 5.26

Let X be a normal complex Q-Gorenstein projective variety, and let 4 be a codi-
mension 1 foliation on X with K¢ Cartier and K4 = 0. Suppose that X is smooth in
codimension 2 with rational singularities and that Ky - H™X =1 = 0 for some ample
Cartier divisor H on X. Suppose furthermore that there exists an open set X° C Xrep
with complement of codimension at least 3 such that 9 xo is defined by closed holo-
morphic 1-forms with zero set of codimension at least 2 locally for the analytic topol-
0gy. Then ¢ is weakly regular, and there exists a decomposition Ty =9 @& & of Tx
into involutive subsheaves.

Proof

Set n := dim X, and let 7: Q’)’(_l — Ox(Ky) be the map induced by the Pfaff
field associated to ¢. Let B: Z — X be a resolution of singularities. The nat-
ural map H" (X, O0x(Kg)) — H" Y (Z,B*COx(Kg)) is an isomorphism since
X has rational singularities. Thus, by Lemma 5.25, it suffices to show that the
image of ¢ (H)" ' € H" (X, Q% ") under the map H" " 1(n): H" (X, Q% ') —
H" (X, 0x(Ky)) is nonzero.
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Set .Z := 4. By Lemma 5.27 below, the cohomology class c¢(Zjx°) €
H'(X°, Q%) lies in the image of the natural map H'(X°, Zxo) — H'(X°,Q2}.).
Recall that rational singularities are Cohen—Macaulay. It follows that Ox(Kx)
and Ox(Ky — Kg) = ¢ are Cohen—Macaulay sheaves. Then the restriction map
H'(X,.¢) - H'(X°, 4xo) is an isomorphism by [77, Theorem 1.14]. Apply-
ing [77, Theorem 1.14] again together with [50, Proposition 1.6], we see that the
restriction map H'(X, Q[;]) — H'(X°,Q%o) is injective. It follows that the image
of ¢1(£) € H'(X,QY) under the natural map H'(X, QL) — H(X, QW) is the
image of a class ¢ € H'(X, .%).

The same argument used in the proof of Lemma 5.20 shows that ¢ (H)" ! ®
¢1(%) maps to a nonzero class ¢;(H)" ! Uc; (&) e H*(X, Q[)?]) under the com-
posed map

eUe
HY(X, QY@ HI(X,QY) —— H"(X,Q%) —— H"(X,Ql)

using the assumptions that Ky - H9mX~1 £ 0 and K¢ = 0. On the other hand, one
checks that ¢y (H)"~! U ¢ (%) is the image of ¢; (H)"~! ® ¢ under the composed
map

H" ! 1d
H™ (X, Q%) ® H'(X.2) s

H"_I(Xﬁx(Kg))®H1(X,$)j

eUe
L H"(X,0x(Kg) ® %)= H"(X,Q%)

This immediately implies that H"~1(n)(c1 (H)"~!) # 0, completing the proof of the
proposition. U

The following result generalizes [12, Corollary 3.4].

LEMMA 5.27

Let X be a complex manifold, let ¢ C Tx be a codimension 1 foliation, and set
& 1= Ny . Suppose that 4 is defined by closed holomorphic 1-forms with zero set of
codimension at least 2 locally for the analytic topology. Then the cohomology class
c1(Z) € H'(X. QL) lies in the image of the natural map H' (X, ) — H'(X,Q}).

Proof

Note that .Z is a line bundle by [50, Proposition 1.9]. Let (U;);er be a covering of
X by analytically open sets such that 4y, is defined by a closed 1-form w; with
zero set of codimension at least 2. Then we can write w; = g;;w; on U;; := U; N
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U;, where g;; is a nowhere vanishing holomorphic function on U;;. The cocycle
[(gij)] € H (X, O%) then satisfies [(g;;)] = [.Z] since both classes agree away from
the singular set of ¢ which has codimension at least 2 in X. Now, since w; and ;
are closed, we must have 0 = dg;; A w; on Uj;. It follows that

dgij € H°(Uy;, Au,;) € H(Uy, Q)

since .Z is saturated in 2 §( by [4, Lemma 9.7]. This implies that the cohomol-
ogy class ¢1 (%) = [(d log gij)] € H'(X.Q}) lies in the image of the natural map
H'(X, %)~ H'(X,QY%), proving the lemma. O

5.4. Local structure in codimension 2 of weakly regular rank 1 foliations
In the present section, we exemplify the notion of weakly regular foliation by describ-
ing weakly regular rank 1 foliations on surfaces with kit singularities. The results are
not used elsewhere so that this section can be safely skipped.

We first show that a weakly regular foliation given by a derivation with zero set
of codimension at least 2 is strongly regular in codimension 2.

PROPOSITION 5.28

Let X be a normal complex variety with kit singularities, and let ¢ C Tx be a weakly
regular foliation of rank 1. Suppose in addition that K is Cartier. Then there exists
a closed subset Z C X with codim Z > 3 such that 9\ x\ z is strongly regular.

Proof

Set n := dim X . Recall from [42, Proposition 9.3] that kit spaces have quotient sin-
gularities in codimension 2. Thus, we may assume without loss of generality that X
has quotient singularities. Given x € X, we have (X, x) = (C"/G, 0) for some finite
subgroup G of GL(n, C) that does not contain any quasireflections. In particular, the
quotient map 7 : C" — C" /G is étale outside of the singular set. The statement is
local on X, hence we may shrink X and assume that there exists d € H%(X, Tx)
such that 4 = O'x d. By Proposition 5.13, d induces a nowhere vanishing vector field
dy € H°(U, Ty) on some open G-stable neighborhood U of 0 € C". Since ¥ is
weakly regular, there exists a G-invariant holomorphic 1-form ay on U such that
ay (dy) = 1. Let o) be the Oth jet of ay at 0. Then &) is G-invariant as well, and
af (3y)(0) = 1. In particular, we have af; # 0. On the other hand, &), = df for some
holomorphic function f at 0 such that f(0) = 0. Observe that f must be G -invariant,
so that there exists a holomorphic function ¢ on some open analytic neighborhood of
x in X such that d(¢)(x) # 0. By a result of Zariski [83, Lemma 4], this implies
that R = R;[[t]], where R is the formal completion of the local ring (Ox x, my)
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and R; C R is a Noetherian normal ring with dim R; = dim R — 1. Moreover, the
extension of %8 to R coincides with d;. The proposition then follows from [15,
Lemma 1.3.2] (see Remark 5.2). O

The following is an immediate consequence of Proposition 5.28.

COROLLARY 5.29

Let X be a normal surface, and let 4 C Tx be a weakly regular foliation of
rank 1. Suppose that X has kit singularities and that K« is Cartier. Then X is
smooth.

We finally describe the structure of weakly regular foliations on klt surfaces.

PROPOSITION 5.30

Let (X, x) be a germ of normal surface with kit singularities, and let ¢ C Tx be a
foliation of rank 1. Then & is weakly regular if and only if there exists a positive inte-
ger m, as well as nonnegative integers a and b with (a,m) = 1 and (b,m) = 1 such
that (X,x) = (C?/G,0) and 7~'9Y = 020y, where (y1,y2) are coordinates on
C?, G = (¢) is a cyclic group of order m acting on C? by £ - (y1.y2) = (£%y1.8Py,),
and 1 : C* — C?/G denotes the quotient map.

Proof
Suppose first that ¢ is weakly regular. Recall that X is Q-factorial by [63, Proposi-
tion 4.11]. Let m be the smallest positive integer such that m K« is Cartier at x, and
let 7: Y — X be the associated local cyclic cover, which is a quasi-étale cover of
degree m (see [63, Definition 5.19]). By Proposition 5.13, 7719 is a weakly regular
foliation on Y with K 1 Cartier. It follows from Corollary 5.29 that ¥ is smooth.
The same argument used in the proof of [67, Corollary 1.2.2] then shows our claim.
Conversely, let m be a positive integer, let a and b be nonnegative integers such
that (a,m) =1 and (b,m) = 1, and let G = () be a cyclic group of order m acting
on C2 with coordinates (y1, y2) by & - (1, y2) = (%y1,¢2y,). Set X := C2/G, and
denote by 7: C?> — C2/G the natural morphism. Let .Z be the line bundle &>
equipped with the G-linearization given by the character { — (¢ of G. Note that
there exists a reflexive rank 1 sheaf .# on X such that . = 7!*].#. Then d,, (resp.,
dyy) is a global G-invariant section of 7> ® . (resp., 2 éz ® £*), and thus yields
a global section t (resp., &) of Tx X .# (resp., Qg}] X .#*). Since dyi(dy,) =1,
we must have «(t) = 1. This shows that the foliation induced by 7 on X is weakly
regular, completing the proof of the proposition. O
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6. Weakly regular foliations with algebraic leaves

It is well known that an algebraically integrable regular foliation on a complex pro-
jective manifold is induced by a morphism onto a normal projective variety (see [53,
Proposition 2.5]). In the present section, we extend this result to weakly regular foli-
ations with canonical singularities on mildly singular varieties.

THEOREM 6.1

Let X be a normal complex projective variety with Q-factorial kit singularities, and
let 4 be a weakly regular algebraically integrable foliation on X . Suppose in addition
that 4 has canonical singularities. Then ¢ is induced by a surjective equidimensional
morphism . X — Y onto a normal projective variety Y. Moreover, there exists an
open subset Y ° with complement of codimension at least 2 in Y such that y~1(y) is
irreducible for any y € Y °.

Before we give the proof of Theorem 6.1, we need the following auxiliary lemma.

LEMMA 6.2

Let X be a normal complex projective variety with kit singularities, and let 4 be a
weakly regular algebraically integrable foliation on X. Let v : Z — Y be the family
of leaves, and let B: Z — X be the natural morphism (see Section 3.6). Suppose in
addition that ¢ has canonical singularities. Then there exists an open subset Y ° with
complement of codimension at least 2 in Y such that ¥~ (y) is irreducible for any
yeYe.

Proof

By [29, Lemma 4.2], there exists a finite surjective morphism g: Y1 — Y with ¥
normal and connected such that the following holds. If Z; denotes the normaliza-
tion of Y7 Xy Z, then the induced morphism V;: Z; — Y; has reduced fibers over
codimension 1 points in ¥;. We obtain a commutative diagram

S B

Z, —= 7Z —— X

Y

YIHY
4

Let Y° C Y., be an open subset with complement of codimension at least 2 in ¥
such that Y;° := g~!(¥°) is smooth and R(wIIZf) =0, where Z5 := ¢y (¥,) and
Ry Zi’) denotes the ramification divisor of the restriction ¥y z° of ¥y to Z7. Set
Z° := ¢ ~1(Y°), and denote by R(z-) the ramification divisor of the restriction
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Yzo of ¥ to Z°. By [29, Lemma 5.4], the pair (Z°, —R(y/z-)) has canonical singu-
larities. On the other hand, we have

Kzopve = Kzoyve — R(Y11z0) ~z (fiz)™ (Kzoyve — R(Yz°))

by Lemma 3.4. Applying [61, Proposition 3.16], we see that Z7 has canonical singu-
larities.

To prove the statement, it suffices to show that ¥ !(y) is irreducible for any
y € Y; away from a codimension 2 closed subset. We argue by contradiction and
assume that there exists a prime divisor D C Y; such that ;! (y) is reducible for a
general point y € D.

Let S € ¢! (D) be a subvariety of codimension 2 in Z; such that for a general
point z € S there are at least two irreducible components of ¥ !(y1(z)) passing
through z. Let z € S be a general point. Recall from [42, Proposition 9.3] that z has
an analytic neighborhood U that is biholomorphic lytic neighborhood of the origin in
a variety of the form CY™X /G, where G is a finite subgroup of GL(dim X, C) that
does not contain any quasireflections. In particular, if W denotes the inverse image
of U in the affine space C%™¥ | then the quotient map 7: W — W/G = U is étale
outside of the singular set.

From Lemma 5.18 together with Proposition 5.13, we see that ¢ induces a regular
foliation on W. Let Fy and F, be irreducible components of ¥ (1(z)) passing
through z with F; # F,. Note that 7='(Fy NU) N~ (F, N U) # @. By general
choice of z, F; and F, are not contained in the singular locus of f~!8~'%, and
hence both 7 =1 (F; N U) and 7~ (F, N U) are a disjoint union of leaves. But then
any leaf passing through some point of 7 =1 (Fy NU) N w1 (F, N U) is a connected
component of both 7 =1 (Fy NU) and 7~ (F, NU). This in turn implies that F; = F,,
yielding a contradiction. This finishes the proof of the lemma. O

Proof of Theorem 6.1
Set r :=rank¥. Let ¢v: Z — Y be the family of leaves, and let §: Z — X be the
natural morphism (see Section 3.6). Set also ¥z := 7194 To prove Theorem 6.1, we
have to show that the B-exceptional set Exc 8 is empty. We argue by contradiction
and assume that Exc B # @. Let E be an irreducible component of Exc 8. Note that £
has codimension 1 since X is (Q-factorial by assumption. By Lemma 4.13, we have
Ky, ~q B*Ky. Applying Proposition 4.17, we see that ¢ (£) C Y. On the other
hand, there exists an open subset Y ° with complement of codimension at least 2 in
Y such that ¥ ~1(y) is irreducible for any y € ¥° by Lemma 6.2. This implies that
E =y~ Y (Y (E)). In particular, E is invariant under 4.

Let m be a positive integer, and let X° C X be a dense open subset such that
Oxo(mKyg|xo) = Oxo. Suppose in addition that B(E) N X° # @.Let f°: X7 — X°
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be the associated cyclic cover, which is quasi-étale (see [63, Definition 2.52]), and
let Z$ be the normalization of the product Z° x xo X7, where Z°:= 71(X°). Let
also B7: Z7 — X7 and g°: Z7 — Z° denote the natural morphisms. Recall from the
proof of Lemma 5.18 that the foliations ¥ye and ¢zo induced by ¢ on X7 and Z7,
respectively, are weakly regular foliations, and that Kcyzi, ~z (B ;)*KgXi, .Let E; be
a prime divisor on Z7 such that g°(E7) = £ N Z° =: E°. Notice that E7 is invariant
under ng since E is ¥z-invariant. Moreover, E7 is B7-exceptional. Let F;” denote
the normalization of £7, and let o] : F; — B7 be the Stein factorization of the map
Fy — X7. Shrinking X °, if necessary, we may assume without loss of generality that
B is smooth. We obtain a commutative diagram

@y
Fy By jo
"
i7 B
EY© A X7
gO i fO
ﬁO
E° ¢ Z° X°
oo r
EC¢ Z X
w i
Y

CLAIM 6.3
The foliation on FY induced by ng is projectable under the map of : I — B7.

Proof

Letnze: Q[Z']O — Oz2(Ky,,) be the Pfaff field associated to %Z?. Since E7 is invari-
1 1

ant under ng’ the composed map of sheaves Q27 ?|E{’ — Q[Zr]ﬁE;’ — ﬁzf(ngi,)wf

factors through the natural morphism €27 ° 15 — Q7. and gives a map Q7. —
L|E? 1 1

ﬁzf (ngo)wi» (see [4, Lemma 2.7]). By [9, Proposition 4.5], the latter extends to
1
a morphism

Nrp: S2pe = (’lT)*(ﬁzf(ng?)wf)-
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By construction, 7 F? is the Pfaff field associated to the foliation induced by ng on
Fy on a dense open set.
Notice that

(n9)* (ﬁz;’(K%ZTNE;’) = ()" ()" Oxo (Kayo )

since Oze (ng?) = (,B‘l’)*ﬁ’x? (Kgxf) by construction. Therefore, there exists a

morphism of sheaves
Nyt e = (1) Oxp(Kaye)

whose pullback under «7 is the composition

da® ngo
(@) 2o S Qo S (’1?)*(ﬁzf(K%Zf)lEf) = (“f)*((Jf)*ﬁxf(K%Xf))-

Now, to show that the foliation on F;” induced by %Zf is projectable under the
map «y: F{ — By, it suffices to prove that 7 pe is nonzero.

Let nyo: Q[);]f —» ﬁxf(Kng) be the Pfaff field associated to %X?. Let E5 C
E7 denote a smooth dense open set contained in the smooth locus of Z7, and let
F; C F} be its inverse image in F}’. Notice that ES = F}. Set iy := iflEﬁ’: ES —
Z7 and a3 1= a‘lezo : F7 — B{. By [60, Proposition 6.1] (see also Section 2.6), the
composition

Gy, I o Lo o
VX ES ZV\Es T T ZNES E3
agrees with
o [r]
(B Q) s
((a?)*dreﬂjlo)|pg dal

r

= (@) (UD* Q) ps ——— (@D Qpe) o —> Qe

On the other hand, recall from the proof of Lemma 5.15 that there is a commutative
diagram

dreﬂﬂf
° [r] [r]
(ﬁl)*QXf sz
(ﬁf)*nx? $ $ nz‘f

(B9 Oxp(Kayo) —— Oz;(Ka)
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One then checks that the diagram

o [r] dreﬂjlo ;
(11) QXf QB‘I’

(.ff)*nxf £
GP)*Oxg(Kay)
J1 X7 ng)

is commutative as well. This immediately implies that n BY is nonzero, completing the
proof of the claim. O

Since the foliation induced by ¥z¢ on FY is projectable under o and dim E7 >
dim By, there are infinitely many leaves of ¢zo contained in E7 that map to the same
leaf of the foliation induced by 7o on B ©. On the other hand, recall that ¥~ () is
irreducible for any point y € ¥ (E) NY °. Hence, there exists a positive integer m such
that the cycle-theoretic fiber ¥ [=1(y) is m[y ()] for a general point y in ¥ (E).
It follows that the restriction of the map ¥ — Chow(X) (see Section 3.6) to ¥ (E)
has positive-dimensional fibers, yielding a contradiction. This finishes the proof of
the theorem. O

Remark 6.4

In the setup of Theorem 6.1, let ¢ : Z — Y be the family of leaves, andlet §: Z — X
be the natural morphism (see Section 3.6). If X is only assumed to have klt singulari-
ties, then the same argument used in the proof of the theorem shows that § is a small
birational map.

COROLLARY 6.5

Let X be a normal complex projective surface with kit singularities, and let 4 be
an algebraically integrable foliation by curves on X with canonical singularities. If
9 is weakly regular, then it is induced by a surjective equidimensional morphism
Y X — Y onto a smooth complete curve Y .

Proof
This is an immediate consequence of Theorem 6.1 since X is automatically Q-
factorial by [63, Proposition 4.11]. O

The following is an easy consequence of Theorem 6.1 above together with
Lemma 5.9.
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COROLLARY 6.6

Let X be a normal complex projective variety with Q-factorial kit singularities, and
let 9 be a weakly regular algebraically integrable foliation on X. Suppose in addition
that Ko is Cartier. Then 9 is induced by a surjective equidimensional morphism
Y X — Y onto a normal projective variety Y . Moreover; there exists an open subset
Y ° with complement of codimension at least 2 in Y such that ¥~'(y) is irreducible
forany y € Y°

7. Quasi-étale trivializable reflexive sheaves
In this section, we provide another technical tool for the proof of the main results.

PROPOSITION 7.1

Let X be a normal complex projective variety, and let 4 be a coherent reflexive sheaf
of rank r. Suppose that there exists a finite cover f: Y — X such that {4 ~ ﬁ’;‘? "
Then there exists a quasi-étale cover g: Z — X such that g4 ~ ﬁ?r.

7.1. The holonomy group of a stable reflexive sheaf
We briefly recall the definition of algebraic holonomy groups following Balaji and
Kollar [11].

Let X be a normal complex projective variety, and let ¢ be a coherent reflexive
sheaf on X . Suppose that ¢ is stable with respect to an ample Cartier divisor H and
that g (%) = 0. For a sufficiently large positive integer m, let C C X be a general
complete intersection curve of elements in |mH |, and let x € C. By the restriction
theorem of Mehta and Ramanathan, the locally free sheaf %c is stable with deg %jc =
0, and hence it corresponds to a unique unitary representation p: 71 (C,x) — U(%)
by a result of Narasimhan and Seshadri [71, Theorem 2].

Definition 7.2
The holonomy group Hol, (%) of ¢ is the Zariski closure of p(71(C, x)) in GL(%x).

Remark 7.3
The holonomy group Hol, (%) does not depend on C > x provided that m is large
enough (see [11]).

7.2. Strong stability
The following notion is used in the formulation of Lemmas 7.5 and 7.6.

Definition 7.4
Let X be a normal projective variety, let H be a nef and big Cartier divisor on X, and
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let ¢ be a coherent reflexive sheaf. We say that ¢ is strongly stable with respect to H
if, for any normal projective variety ¥ and any generically finite surjective morphism
f:Y — X, the reflexive pullback sheaf f*1% is f* H-stable.

LEMMA 7.5 ([30, Lemma 6.3])

Let X be a normal complex projective variety, let x € X be a general point, and let G
be a coherent reflexive sheaf. Suppose that 9 is stable with respect to an ample divisor
H and that uwg (9) = 0. Suppose furthermore that the holonomy group Holx(9) is
connected. Then 9 is strongly stable with respect to H .

The following observation is needed for the main result of this section.

LEMMA 7.6

Let X be a normal complex projective variety, and let 4 be a coherent reflexive sheaf.
Suppose that 9 is polystable with respect to an ample divisor H and that ug (¢) = 0.
Then there exists a quasi-étale cover g: Z — X as well as coherent reflexive sheaves
(94)iecr on Z such that the following hold.

(1) There is a decomposition g9 ~ @, .; %:.

2) The sheaves ¥; are strongly stable with respect to g* H with pLg=p (4;) = 0.

Proof

Suppose that there exists a quasi-étale cover g1: Z; — X such that the reflexive
pullback gg*]g is not stable with respect to g7 H. Applying [52, Lemma 3.2.3], we
see that gE*]g is polystable, and hence, there exist nonzero reflexive sheaves (% )ier,
g1 H -stable with slopes Mg H (@) = Mg H (gg*]%) = 0 such that

gy = P9
iel

Suppose in addition that the number of direct summands is maximal. Then, for
any quasi-étale cover g,: Z, — Z1, the reflexive pullback gg*]% is stable with
respect to (g1 0 g2)*H.

By [11, Lemma 40] (see also [31, Lemma 6.19]), there exists a quasi-étale cover
gi: Z; — Z; such that Hol;, ((g; o gi)[*]%—) is connected, where z; is a general
point on Z;. Let Z be the normalization of Z; in the compositum of the function
fields C(Z;). Observe that the natural morphism g: Z — Z; is a quasi-étale cover,
and factors through each Z; — Z;. The proposition then follows from Lemma 7.5
above. O

Remark 7.7
In the setup of Lemma 7.6, suppose furthermore that ¢ is polystable with respect to
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any polarization H on X and that ug (%) = 0. Let H; be any ample divisor on X.
Then the sheaves %; are strongly stable with respect to g* Hy and ug+ g, (%) = 0.

Proof of Proposition 7.1

Let H be an ample Cartier divisor on X. Applying [52, Lemma 3.2.3], we see that
¢ is polystable with respect to H with ug(¥¢) = 0. By Lemma 7.6, there exists a
quasi-étale cover g1: Z; — X as well as coherent reflexive sheaves (¥;)je; on Z;
such that the following hold.

(1)  There is a decomposition gE*]% =P, %.

2) The sheaves %; are strongly stable with respect to g7 H with p g g(%)=0.
Let Y; be the normalization of the product ¥ xy Z;, with natural morphism
fi: Yy — Z,. By construction, we have (g o f1)*¥ ~ 6’;‘?1' . It follows that
(g10 fl)[*]% = Oy, foralli € I, and hence %[N] >~ 0z, where N :=degg; o fi.
Replacing Z by a further quasi-étale cover, we may assume that &; = 0z, , proving
the proposition. O

Remark 7.8

In the setup of Proposition 7.1, suppose that X is a (smooth complete) curve. Then
there is an alternative argument. Indeed, by [52, Lemma 3.2.3], ¢ is a polystable
vector bundle. We may assume without loss of generality that ¢ is stable. By [71], ¢4
corresponds to a unique unitary representation

p: (X, x) —> U(%).
It follows that f*% corresponds to the induced representation

pomi(f): mi(Y.y) = U(¥).

where y is a point on Y such that f(y) = x. Applying [70, Proposition 4.2] to p o
71(f) and the trivial representation of 771 (Y, y) in U(¥,), we see that po 1 (/) must
be the trivial representation. The statement then follows since the image of 7y (Y, y)
has finite index in 71 (X, x).

8. A global Reeb stability theorem

8.1. Global Reeb stability theorem

Let X be a complex manifold, and let ¢ be a regular foliation on X. Let L be a
compact leaf with finite holonomy group G, and let x € L. The holomorphic version
of the local Reeb stability theorem (see [53, Theorem 2.4]) asserts that there exist
an invariant open analytic neighborhood U of L, a (local) transversal section S at x
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with a G-action, an unramified Galois cover U; — U with group G, a smooth proper
G-equivariant morphism U; — §, and a commutative diagram

unramified
1 =

proper submersion \L \L

S — §/G

such that the pullback of 4jyy to Uy is induced by the map U; — §. In this section, we
prove a global version of the Reeb stability theorem for weakly regular algebraically
integrable foliations with trivial canonical class on mildly singular spaces. The fol-
lowing is the main result of this section (see [32, Proposition 4.2] for a somewhat
related result).

THEOREM 8.1

Let X be a normal complex projective variety with kit singularities, and let 4 be a
weakly regular algebraically integrable foliation on X. Suppose that K4 ~q 0. Then
there exist complex projective varieties Y and Z with klt singularities and a quasi-
étale cover f: Y x Z — X such that f =19 is induced by the projection Y x Z — Y .

The proof of Theorem 8.1 makes use of the following result, which might be of
independent interest.

PROPOSITION 8.2

Let X be a normal complex projective variety, and let 4 be an algebraically inte-
grable foliation on X. Suppose that & is canonical and that 4 =~ ﬁ;‘?mnkg. Then
there exist an abelian variety A, a normal projective variety X1, and an étale cover
fiAx X1 — X suchthat 'Y = Taxx,/x,-

Proof
Let ¥: Z — Y be the family of leaves, and let 8: Z — X be the natural mor-
phism (see Section 3.6). Let also F' be a general fiber of y. Then Kg-14 ~z 0 by
Lemma 4.13 and Remark 4.14. Moreover, F has canonical singularities. By Exam-
ple 3.3 and the adjunction formula, we have Kr ~7z Kﬂ—lgIF ~z 0.

The same argument used in the proof of [4, Lemma 3.2] (see also [4, Remark 3.8])
shows that the dual map Q[;] — @* gives a generically surjective morphism Q[Zl]/Y —
B*%* and a commutative diagram
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dp

Py 2z Qv
o

This immediately implies that T =~ ﬁ;‘? dimF gince K F ~z 0. By Lemma 2.15, we
see that the neutral component Aut®(F) of the automorphism group Aut(F) of F is
an abelian variety.

Let Aut®(X) denote the neutral component of Aut(X), and let H C Aut®(X)
be the connected complex Lie subgroup with Lie algebra H%(X,¥) € H°(X, Ty).
Note that 8(F) is invariant under the action of H, and thus H also acts on the nor-
malization F of B(F), so that H C Aut®(F). Since both & and TF are trivial vector
bundles, the tangent map

Lie H = H*(X,%) — H°(F,Tr) = Lie Aut®(F)

is surjective, and hence H =~ Aut’(F). In particular, H is a closed (projective) alge-
braic subgroup of Aut®(X).

By the proof of [19, Theorem 1.2, p. 10], there exist a normal projective variety
X1 and an H -equivariant finite étale cover f: H x X; — X, where H acts triv-
ially on X; and diagonally on H x X;. In particular, we have f~'% = Tyxx,/x,+
completing the proof of the proposition. O

Next, we consider the special case where the foliation is induced by a morphism
equipped with a flat connection.

LEMMA 8.3

Let X be a normal complex quasiprojective variety, and let ¢ : X — Y be a projec-

tive equidimensional morphism with connected fibers onto a smooth quasiprojective

variety. Suppose that X has kit singularities over the generic point of Y, and suppose
that ¢ has reduced fibers over codimension 1 points in Y. Suppose furthermore that

Kxy is relatively numerically trivial and that there exists a foliation & on X such

that Ty = Tx;y @ &.

) Then there exist complex varieties B and G, as well as a quasi-étale cover
f:BxG— X such that Tgxg/p = f_lTx/y. Moreover, B is smooth and
quasiprojective, G is projective with canonical singularities, and Kg ~7z 0.

(2)  Let F be a general fiber of ¢. Suppose in addition that h®(F, Tr) = 0. Then
there exists a smooth quasiprojective variety Y1 as well as a finite étale cover
Y1 — Y such that Y1 xy X = Y1 X F as varieties over Y.
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Proof

Let X° C X be the open set where ¢ xo is smooth. Notice that X° has complement
of codimension at least 2 since ¢ is equidimensional with reduced fibers over codi-
mension 1 points in Y by assumption. The restriction of the tangent map

Toixo: Txo — (¢x°)* Ty

to &jxo € Txo then induces an isomorphism &jyo = (¢xo)*Ty. Since &jxo and
(¢x°)*Ty are both reflexive sheaves, we must have & = ¢*Ty. Thus, & yields a
flat connection on ¢. Now, a classical result of complex analysis says that complex
flows of vector fields on analytic spaces exist (see [56]). It follows that ¢ is a locally
trivial analytic fibration for the analytic topology.

Now, the same argument used in the proof of [30, Lemma 6.4] shows that the
conclusion of Lemma 8.3 holds. O

Remark 8.4

In the setup of Lemma 8.3 above, suppose in addition that X is projective with klt sin-
gularities and that Ky is Cartier. Then the existence of & follows from the assumption
Kx ;v =0 by Corollary 5.22 together with Proposition 5.6.

The proof of Theorem 8.1 relies in part on the following descent result for folia-
tions.

LEMMA 8.5

Let X be a normal complex variety, and let 4 be a foliation on X. Let also Y be
a normal variety, let A be an abelian variety, and let B be a projective variety with
canonical singularities, Kg ~7 0, and ¢(B) = 0. Suppose that there is a finite cover
f:Y x Ax B — X such that f~'9 = Tyxaxp/y- Suppose in addition that any
codimension 1 irreducible component of the branch locus of f is G-invariant. Then
there exist foliations 9 € 9 and 9, € 94 such that 1% = TyxaxB/y=xB and
S 1% = Ty xaxB/vxA-

Proof

Set Z:=Y x Ax B.Let X° C X be the open set such that fj r—1(xoy: F(X°) =:
Z° — X° is étale. By a result of Serre (see [68, Lemma 2.10]), there exists a finite
étale cover g°: Z7 — Z° such that the induced cover Z7 — X° is Galois. Let Z;
be the normalization of X in the function field of Z7, and let f;: Z; — X be the
natural morphism. Note that there exists a finite morphism g: Z; — Z such that
f1 = f og. By construction, g is étale away from the branch locus of f, so that any
codimension 1 irreducible component of the branch locus of f; is ¢-invariant as well.
By Lemma 3.4, we must have f;7'% =~ f[*g.
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Set &1 := g ' Tyxaxp/yxp and & := g ' Ty« axp/y x4, and let y be any auto-
morphism of the covering f;: Z; — X. In order to prove the statement, it suffices to
show that &; C Tz, is y-invariant (see [25, Lemme 2.13]).

Notice that & & &, = fl_lg ~ fl[*]% is y-invariant by construction. Moreover,
the natural maps

& =8 "Tyxaxpyxs — 8 Ty xax/yxs and
& =g " Tywaxs/yxa = 8Ty x axB/yxa
are isomorphisms since we observed that the induced map
79 =6 @ & — (M) = My

is an isomorphism. In particular, & = /0”2‘“"“1. Let F =~ A x B be a general fiber of
the projection Y x A x B — Y. By general choice of F, any irreducible component
G of g7 (F) is normal (see [47, Théoréme 12.2.4]) with Tg = &6 D &6 In par-
ticular, we must have Kg ~z 0. Applying Theorem 2.14, one checks that there exist
an abelian variety A1, a projective variety By with canonical singularities, K, ~7
0, and ¢(B;) = 0, and quasi-étale covers A; — A and B; — B such that G =~
Aj x By and such that the restriction of g to G identifies with G =~ A; x B} —
A X B = F.Moreover, &1|G = Ta,xB,/B, and é2|G = T4,xB,/4,- By Remark 2.16,
we have h°(B1,Tp,) = 0 and hl(Bl,QE;}) = 0. This immediately implies that any
map y*& — & or y*& — & vanishes identically, completing the proof of the
lemma. O

Before we give the proof of Theorem 8.1, we need the following auxiliary state-
ments.

LEMMA 8.6

Let X be a normal complex projective variety, and let . X — Y be a surjective
equidimensional morphism with connected fibers onto a normal projective variety.
Suppose that X is Q-factorial. Let F denote a general fiber of W, and assume that
q(F)=0.If y 1 (Y°) = Y° x F for some open set Y° C Y, with complement of
codimension at least 2, then X =Y x F.

Proof

Set X°:= ¢~ 1(Y°). Let H be an ample divisor on X. We have Pic(Y° x F) =~
Pic(Y°) x Pic(F) since g(F) = 0 by assumption. Thus, there exist Cartier divisors
Hyo and Hp on Y° and F, respectively, such that Oxo(H|xo) = Oyo(Hyo) X
Or(HF). Let Hy be the Weil divisor on Y that restricts to Hye on Y°. By
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Lemma 2.6, Hy is Q-Cartier. Notice that mo(H — y*Hy) is relatively ample
over Y for any positive integer mo such that mo(H — ¢* Hy) is Cartier. It follows
that

X = Projy €D ¥« Ox (mmo(H — y* Hy)).

m=>0

On the other hand, by [50, Corollary 1.7], the coherent sheaves . Ox (mmo(H —
Y¥* Hy)) are reflexive, and restrict to H*(F, Op (mmoHF)) ® Oyo by assumption.
Therefore, there is an isomorphism of sheaves of graded Oy -algebras

B v-Ox (mmo(H —y* Hy)) = (P HO(F.Op mmo Hp)) ) © Oy

m>0 m>0

This implies that X = Y x F, finishing the proof of the lemma. O

LEMMA 8.7 ([31, Lemma 4.6])

Let X1, X5, and Y be complex normal projective varieties. Suppose that there exists
a surjective morphism with connected fibers B: X1 X X, — Y. Suppose furthermore
that ¢(X1) = 0. Then Y decomposes as a product Y = Y| x Y, of normal projective
varieties, and there exist surjective morphisms with connected fibers f1: X1 — Y1
and By : Xo — Yo such that f = B1 x Ba.

We are now in position to prove Theorem 8.1.

Proof of Theorem 8.1
We maintain the notation and assumptions of Theorem 8.1. For the reader’s conve-
nience, the proof is subdivided into a number of steps.

Step 1. Reduction to the case where Ko ~7 0. By [63, Lemma 2.53] and Fact 2.10,
there exists a quasi-étale cover f: X; — X with X klt such that f* K¢ ~7 0. More-
over, K s-14 ~z f* Ky and f ~1¢ is weakly regular by Proposition 5.13. To prove
Theorem 8.1, we can therefore assume without loss of generality that the following
holds.

Assumption 8.8
The canonical class K¢ is trivial, K¢ ~7 0.

This implies that ¢ is canonical by Lemma 5.9.

Step 2. Reduction to the case where &4 is given by a morphism. Suppose that the
conclusion of Theorem 8.1 holds under the additional assumption that the foliation is
given by an equidimensional morphism. Then we show that it holds in general.
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Let B: X; — X be a Q-factorialization (see Section 2.2), and set %, := 714,
By Lemma 5.16 and Remark 5.17, ¢ is a weakly regular foliation with K¢, ~7 0.
By Lemma 5.9 again, we see that ¢; is canonical. It then follows from Theorem 6.1
that ¢ is induced by a surjective equidimensional morphism onto a normal projective
variety. By assumption, there exist complex projective varieties Y; and Z; with kit
singularities and a quasi-étale cover f1: Y7 x Z; — X such that fl_lé’?l is induced
by the projection Y1 X Z; — Y;. In particular, we have Kz, ~z 0. By Theorem 2.14,
replacing Z; by a further quasi-étale cover, if necessary, we may assume without loss
of generality that Z; = A, x B, where A; is an abelian variety and B; is normal
projective variety with g(B;) = 0. Let X, be the normalization of X in the function
field of Y} x Z,. We have a commutative diagram

B>, small and birational

Y1 xZ; X3
f1, quasi-étale l \L f, quasi-étale
X1 X

B, small and birational

Note that Ty, xa,xB, = Ty, B T4, @ Tp,. The direct summand T4, of Ty, x4,xB,
induces an algebraically integrable foliation & C f~'% with & =~ ﬁ;?zdimAl. By
Lemma 5.8, & is a weakly regular foliation, and it has canonical singularities by
Lemma 5.9. Applying Proposition 8.2 to &>, we see that there exist an abelian variety
Az, a normal projective variety Z3, and a finite étale cover f>: X3 := A3z X Z3 —
X, such that the foliation &3 := f, !4 is induced by the projection A3 x Z3 —
Z3. Observe that the direct summand 7B, of Ty,x4,xB, induces an algebraically
integrable foliation &- on X3 such that & @ & = f, 1 f~'9. One then checks
that there exists an algebraically integrable foliation &3 on Z3 such that é"3J' is the
pullback of ¢; under the projection Az x Z3 — Z3. Note that ¢ is weakly regular
with K¢, ~7 0 by Lemma 5.16. By replacing X by Z3 and ¢ by ¢3, and repeating the
process finitely many times, we may therefore assume that dim A; = 0. But then the
conclusion of Theorem 8.1 follows from Lemma 8.7 since ¢(B;) = 0 by construction.
To prove Theorem 8.1, we can therefore assume without loss of generality that the
following holds.

Assumption 8.9
The foliation ¢ is induced by a surjective equidimensional morphism with connected
fibers ¥ : X — Y onto a normal projective variety Y .
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Step 3. Let F be a general fiber of 1. Note that F has klt singularities by [61, Corol-
lary 4.9]. Applying Corollary 5.22, we see that there is a decomposition Ty =4 @ &
of T'x into involutive subsheaves.

CLAIM 8.10

There exist an open subset Y ° C Yo with complement of codimension at least 2 in
Y, and a finite Galois cover g°: Y — Y ° such that the following holds. Let X7 be
the normalization of Y* xye X, and denote by W7 : X{ — Y| the natural morphism.
Then r} is a locally trivial analytic fibration for the analytic topology. In particular,
V7 has integral fibers. Moreover, there exists a decomposition TXf = Tx? /e ® éY
of TXf into involutive subsheaves.

Proof

By [29, Lemma 4.2], there exists a finite surjective morphism g: Y7 — Y with 1}
normal and connected such that the following holds. If X; denotes the normalization
of Y1 xy X, then the induced morphism v : X1 — Y7 has reduced fibers over codi-
mension 1 points in Y;. By replacing Y; with a further finite cover, if necessary, we
may assume without loss of generality that the finite cover Y; — Y is Galois. We
have a commutative diagram

f, finite

g, finite

Next, we show that the tangent sheaf Ty, decomposes as a direct sum Ty, =
ST @ f716 and that K 14y ~7 0. Set ¢ := rank %, and let w € HO(X, Q¥)) be
a reflexive ¢-form defining &. The reflexive pullback w; € H%(X|, Q[)?}) of w then
defines & on a nonempty open set. In particular, ; induces an Oy, -linear map
(AN1Tx,)** — Oy, such that the composed morphism of reflexive sheaves of rank 1

T: det 719 — (A1Tx,)™ — Ox,

is generically nonzero. On the other hand, by Lemma 3.4, we have det f !9 =~
f*Ox(—Kg) = Ox, and hence v must be an isomorphism. This easily implies that
Tx, =9 f16.

Let ¥, be the smooth locus of Yi, and set X := y; 1(Y?). Let Z7 C X7 be
the open set where ¥ x? is smooth. Notice that Z{ has complement of codimension
at least 2 in X{ since ¥ has reduced fibers over codimension 1 points in Y. The
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restriction of the tangent map
Tyixp: Txe = (Yryxe) Typ

to fT'&ze C Tzo then induces an isomorphism f~'&ze = (¥1)23)* Typ. Since
714 xo and (Y X{’)*TYf are both reflexive sheaves, we finally obtain an isomor-
phism

7 xe = (W x0) Ty

Now, a classical result of complex analysis says that complex flows of vector
fields on analytic spaces exist (see [56]). It follows that ¥y Xx? is a locally triv-
ial analytic fibration for the analytic topology. Set Y° := Yoo \ g(¥1 \ ¥7’). Then
gle—1 ()" g 1(Y°) — Y° satisfies the conclusions of Claim 8.10. O

Step 4. Reduction to the case where q(F) = 0. We maintain the notation of
Claim 8.10. Set f°:= f|Xf Xy = X =y N(YO).

By Lemma 8.3(1) and Theorem 2.14, there exist a quasiprojective variety Y.,
an abelian variety A and a projective variety B with canonical singularities, Kg ~z
0 and g(B) = 0, and a quasi-étale cover f,>: X5 := Y, x A x B — X7 such that
(Ot (9x?) is the foliation given by the projection Yy x Ax B — Y;. Notice that
any codimension 1 irreducible component of the branch locus of f° o f}° is invariant
under ¢ so that Lemma 8.5 applies. There exist algebraically integrable foliations
% C ¥ and % C ¢ with torsion canonical class such that (f° o f1°)_1(%| xo) =
Tysxaxn/ygxs and (f°o0 )7 (%)x0) = Typxaxp/vsxa- Note that & and %, are
weakly regular foliations by Lemma 5.8 since ¢; & ¢ @ & = Tx by construction.

Let X, be the normalization of X in the function field of X3 . Applying Proposi-
tion 7.1 to the cover X, — X and to ¢;, we see that, replacing X by a further quasi-
étale cover, if necessary, we may assume without loss of generality that ¢ =~ ﬁgfimA.
By Proposition 8.2 together with Lemma 5.9, there exist an abelian variety A;, a nor-
mal projective variety X, and an étale cover f: A; x X; — X such that {719, =
Ta,xx,/x,- Then f~'% C T4 «x,/4, and it is induced by a weakly regular alge-
braically integrable foliation 7 on X; with K 4 ~z 0 (see Lemma 5.16). More-
over, by the rigidity lemma, .57 is given by a surjective equidimensional morphism
Y¥1: X1 — Y7 onto a normal variety Y; whose general fiber F; satisfies g(F1) = 0
since irregularity increases in covers by [65, Lemma 4.1.14]. To prove Theorem 8.1,
we can therefore assume without loss of generality that the following holds.

Assumption 8.11
The augmented irregularity of a general fiber F of ¥ is zero, G(F) = 0.
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Step 5. Next, we show the following.

CLAIM 8.12

There exist a finite cover g: Y1 — Y and an open subset Y° C Yo with comple-
ment of codimension at least 2 in Y such that the following holds. Let X, be the
normalization of Y1 xy X, and denote by f: X1 — X and Y1 : X1 — Y1 the natural
morphisms. Then f is a quasi-étale cover, and Y1 ' (Y") = Y,* x F as varieties over
Y?, where Y := g 1 (Y°).

Proof

We maintain the notation of Claim 8.10. Notice that h°(F, Tr) = 0 since §(F) =0
(see Remark 2.16), so that Lemma 8.3(2) applies. Replacing Y; by a quasi-étale cover,
if necessary, we may assume that ¥ 1 (Y,") =: X7 = ¥ x F as varieties over Y. We
obtain a commutative diagram

£, finite
Xo = Yo xF ¢ X, X
l Y1 l l ¥
Yo« Yy Y
g, finite

By replacing Y; with a further finite cover, if necessary, we may assume with-
out loss of generality that the finite cover Y3 — Y is Galois. In particular, there
is a finite group G acting on Y; with quotient Y. The group G also acts on X
since X identifies with the normalization of ¥; xy X. Moreover, X{ = Y x F
is G-invariant. Since hO(F ,Tr) =0, G acts on F and its action on Y x F is
the diagonal action. Let G; denote the kernel of the induced morphism of groups
G — Aut(F). Note that X7/G = (Yy/G1) x F. By replacing Y; by Y1/G1, X
by X1/G1, and G by G/Gq, if necessary, we may assume that G € Aut(F). Set
X°:= ¢y~ 1(¥Y°). We may obviously assume that dimY > 1 and dim F > 1. Then
the quotient map Y x F — (Y x F)/G = X7 is automatically étale in codimen-
sion 1, and hence quasi-étale by the Nagata—Zariski purity theorem. This immediately
implies that f: X1 — X is a quasi-étale cover as well. O

Step 6. End of proof. We maintain the notation of Claim 8.12. Let 81: X, — X3
be a Q-factorialization (see Section 2.2), and set %, := B! f~'%. By Lemma 5.16
and Remark 5.17, %, is a weakly regular foliation and K¢, ~z 0. It follows that ¥4,
is induced by a surjective equidimensional morphism ¥, : X, — Y, onto a normal
projective variety by Theorem 6.1 again.
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Since B is a small birational morphism, we may assume without loss of gener-
ality that ¥y o B has integral fibers over Y. In particular, the restriction of ¥1 o f;
to X3 1= (Y10 ,31)_1(Y1°) is equidimensional. It follows that X7 — Y7’ is the fam-
ily of leaves of 43 X3 and hence there exist an open set Y; € Y5 and an isomor-
phism Y, = Y7 such that X5 = v, (Y5). Notice that we have a decomposition
Tx, =% @& B7' f71& of Ty, into involutive subsheaves. Set F, := B (F), and
observe that h®(F, Tr,) = h®(F,TF) = 0 since B1|F, is a small birational mor-
phism. By Lemma 8.3(2), replacing Y; and Y, by further quasi-étale covers, if neces-
sary, we may assume that X5 = Y’ x F, as varieties over Y. By Remark 2.16, we
also have g(F>) = 0. On the other hand, Y’ has complement of codimension at least
2in Y, since X; has complement of codimension at least 2 in X5 and v, is equidi-
mensional. So Lemma 8.6 applies, and we show that X, = F, x Y,. From Lemma 8.7
again, we conclude that X; = F; x Y. This finishes the proof of Theorem 8.1. |

Proof of Theorem 1.5

We maintain the notation and assumptions of Theorem 1.5. By Proposition 4.24,
Ky is torsion. By [63, Lemma 2.53] and Fact 2.10, there exists a quasi-étale cover
f: X1 — X with X kit such that f*K¢ ~z 0. Moreover, f~'¢ is canonical by
Lemma 4.3 and K s-14 ~7 0. Applying Corollary 5.23, we see that f 19 is weakly
regular. Theorem 1.5 now follows from Theorem 8.1. O

8.2. Application
The purpose of this subsection is to prove the following decomposition result (see
[29, Proposition 6.1] for a somewhat related result).

PROPOSITION 8§.13

Let X be a normal complex projective variety with kit singularities, and let 4 be a foli-
ation on X with canonical singularities and K4 = 0. There exist normal projective
varieties Y and Z with kit singularities, as well as a quasi-étale cover f: Y X Z — X
such that the following holds. The foliation f~'% is the pullback via the projection
Y X Z — Y of afoliation 7€ on'Y with no positive-dimensional algebraic subvariety
tangent to J passing through a general point of Y. In addition, Kz ~7z 0, 7 has
canonical singularities, and K 5 = 0.

We will need the following minor generalization of [66, Corollary 3.9].

LEMMA 8.14
Let X be a normal complex projective variety, and let 4 be a foliation on X with
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canonical singularities and K4 = 0. Then ¥ is semistable with respect to any polar-
ization H on X.

Proof

Let B: Z — X be a resolution of singularities. Suppose that ¢ is not semistable
with respect to H. Then B~'%¢ is not semistable with respect to f* H. Applying
[22, Theorem 4.7] to the maximally destabilizing subsheaf of ~'% with respect
to B*(HY™X-1), we see that ¢ is uniruled. But this contradicts Proposition 4.22,
proving the lemma. U

Proof of Proposition 8.13

Recall from [66, Section 2.3] that there exist a normal projective variety Y, a dominant

rational map ¢ : X --» Y, and a foliation .7 on Y such that the following hold.

(a) There is no positive-dimensional algebraic subvariety tangent to .7#” passing
through a general point of Y.

(b) ¥ is the pullback of 77 via ¢.

Let & be the foliation on X induced by ¢. We may assume without loss of generality

that Y is the space of leaves of &. Let ¢: Z — Y be the family of leaves, and let

B: Z — X be the natural morphism (see Section 3.6).

CLAIM 8.15
The canonical class K g of & is torsion. In particular, K ¢ is Q-Cartier.

Proof
Replacing X by a Q-factorialization (see Section 2.2), we may assume in addition
that X is Q-factorial by Lemma 4.2.

Since 714 = 1.7, there is an exact sequence

0—>p ' 6=Tzy—p'9— Yo,
Therefore, there exists an effective Weil divisor B on Z
K14~z Kg—16 +y*K» + B.
It follows that
Ky —Kg~z9"Kn +C,

where C := B« B is effective. Notice that the pullback ¢* K 5 is well defined since ¢
is well defined and equidimensional on some open set with complement of codimen-
sion at least 2 (see Section 2.7). Applying [22, Corollary 4.8] to the foliation induced
by ¢ on a resolution of Y, we see that K, is pseudoeffective (see Remark 2.7
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for this notion). This immediately implies that ¢* K » + C is pseudoeffective as
well. Let H be an ample Cartier divisor on X. Then we have ug(Ky) > uu(Keg).
On the other hand, by Lemma 8.14, we also have uy(Ky) < uy(Ke), and hence
wH(Kg) = i (Kg) = 0. This implies that Ks = 0. By Proposition 4.22, & has
canonical singularities since ¢ does. Proposition 4.24 then implies that K ¢ is torsion,
proving the claim. O

By Theorem 1.5 applied to & and [4, Lemma 6.7], there exist normal projec-
tive varieties Y, and Z;, as well as a foliation .74} on Y; and a quasi-étale cover
f:Y1xZy — X such that =& = Ty, xz,/y, and such that f~'¢ is the pull-
back of 7] via the projection 7: Y} x Z; — Y;. Moreover, there is no positive-
dimensional algebraic subvariety tangent to .77 passing through a general point of
Y1. We also have n* Ky = Ky-1gy — Ky-1, = 0. In particular, 7* K is Q-
Cartier. This in turn implies that K is Q-Cartier by Lemma 2.6. Moreover, we
have K s = 0. By Lemma 4.5, 7] is canonical. This finishes the proof of Proposi-
tion 8.13. O

9. Algebraic integrability, I
In this section, we prove algebraicity criteria for leaves of algebraic foliations on
uniruled varieties (see Proposition 9.3 and Theorem 9.4).

Example 9.1
Let n > 2 be an integer. Let A = C"~1/A be a complex abelian variety, and let
p: m1(A) — PGL(2,C) be a representation of the fundamental group m;(A4) =
A of A. Then the group m;(A4) acts diagonally on C*~! x P! by y - (z,p) =
(y(2), p(y)(p)). Set X := (C"! x P)/m(A), and denote by ¥: X — A =
C"!/m(A) the projection morphism, which is a P!-bundle. The foliation on
C"! x P! induced by the projection C"~! x P! — P! is invariant under the action
of 71(A) and yields a flat Ehresmann connection ¢ on 1. Note that p is the rep-
resentation induced by ¢. In particular, ¢-invariant sections of i correspond to
71 (A)-invariant points on P,

Let H € PGL(2,C) be the Zariski closure of the image of p. Observe that H is
abelian, and that ¢ is algebraically integrable if and only if H is finite.

Suppose that dim H > 0. Let p: SL(2,C) — PSL(2,C) = PGL(2,C) denote
the projection morphism, and set

T;:{(“ 91),ae<c*}csL(z,<C) and
0 a

({1 b
U.—{(O 1),be(C}CSL(2,C).
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Using [55, Theorem 4.12] (or [26, Lemma 6.2]), one checks that H is conjugate to
p(T) or p(U). In either case, there is a representation

0. m1(A) - SL(2,C) suchthat p=70 p.

Thus, there is a flat rank 2 vector bundle (&, V) on A such that X = P4(&) over A.
Moreover, if %y denotes the linear Ehresmann connection on the total space E of &*
induced by V, then ¢ is the projection of %y |gx under the natural map 7 : E* — X,
where E* := E \ Oy.

Suppose that H = p(T). Then we may assume that & = .# @ .#~"' as flat
vector bundles for some .# € Pic’(A). Since dim H > 0 by assumption, .# is not
torsion. The ¥-invariant sections D and D, of i are the two sections given by
the quotients .# ® .#~' — .# and & = M4 © .M~ — .# 1. The structure of an
algebraic group on C" x G, induces a structure of a commutative algebraic group G
on X°:= X \ (D U D») fitting into an exact sequence

1 -G, —>G—>A—1.

Moreover, X ° is a principal G,,-bundle over A, and the action of G on X ° extends to
an action on X . Finally, ¢ yo yields a flat G, -equivariant connection on X° — A.

Suppose that H = p(U). Then there is a nontrivial exact sequence 0 — 04 —
& — 04 — 0. The only ¢-invariant section D of i corresponds to the quotient & —»
0 4. In this case, there is a structure of a commutative algebraic group G on X° :=
X \ D fitting into an exact sequence

1-G,—G—>A4—>1,

and X is an equivariant compactification of G. Moreover, X ° is a principal G,-bundle
over A, and ¥ xo yields a flat G,-equivariant connection on X° — A.

The proof of Proposition 9.3 below relies on an algebraicity criterion for leaves
of algebraic foliations proved in [16, Theorem 2.9], which we recall now.

Let X be an algebraic variety over some field k of positive characteristic p, and
let 4 C Ty be a subsheaf. We will denote by F: X — X the absolute Frobenius
morphism of X.

The sheaf of derivations Der (0x) = Ty is endowed with the pth power oper-
ation, which maps any local k-derivation D of Oy to its pth iterate DI?]. When
¢ is involutive, the map F}, & — Tx /% which sends D to the class in Tx /¥ of
DIPl is Ox-linear. The sheaf & is said to be closed under pth powers if the map
F, & — Tx /¥ vanishes.

Let R C C be a finitely generated Z-algebra, with field of fractions K, and set
S := Spec R. For any closed point s € S with maximal ideal m, we let k(s) be the



CODIMENSION 1 FOLIATIONS WITH NUMERICALLY TRIVIAL CANONICAL CLASS 163

finite field R/m. We denote by 5: Speck(5) — S a geometric point of S lying over
s with k(s) an algebraic closure of k(s). Given a scheme X over S, we let X¢ :=
X ®C, and X5 := X ® k(5). Given a sheaf 4 on X, we let 4 =¥ ® C, and
Y =9 @ k(5).

Let X be a normal complex projective variety, and let ¢ be a foliation on X . Let
R C C be a finitely generated Z-algebra, with field of fractions K, and let X be a
projective model of X over S := Spec R. Let also & be a saturated subsheaf of the
relative tangent sheaf 7Tx/g such that ¥ ¢ coincides with &. We say that 4 is closed
under pth powers for almost all primes p if there exists an open dense subset U of
S such that for any closed point s in U, the subsheaf ¢5 of Tx is closed under pth
powers, where p denotes the characteristic of k(§). This condition is independent of
the choices of S and X.

THEOREM 9.2 ([16, Theorem 2.9])

Let G be an algebraic group over a number field K, whose neutral component is
solvable. Let P be a principal G-bundle over a smooth connected variety B over K,
and let 4 be a flat G-equivariant connection on P — B. Suppose that 4 is closed
under pth powers for almost all primes p. Then 9 is algebraically integrable.

PROPOSITION 9.3

Let A be a complex abelian variety, and let : X — A be a P'-bundle. Suppose that
there exists a flat holomorphic connection 9 C Tx on , and that 9 is closed under
pth powers for almost all primes p. Then & is algebraically integrable.

Proof
Set n := dim X . Since ¥ admits a flat holomorphic connection, there is a representa-
tion

p: m1(A) —PGL(2,C)

of 71 (A) such that X = (C"~! x P')/m;(A), where the group 7 (A) acts diagonally
on C"~! x P!, Moreover, ¢ is induced by the projection C*~! x P! — P!,

Let H € PGL(2,C) be the Zariski closure of the image of p. Note that ¢ is
algebraically integrable if and only if H is finite.

We argue by contradiction and assume that dim A > 0. We use the notation intro-
duced in Example 9.1.

There is a dense open set X ° C X that is a principal bundle over A with structure
group K = G, or K = G, and ¥ xo yields a flat invariant connection on ¥° :=
Yixo: X° — A, which is closed under pth powers for almost all primes p.

In addition, there is a flat rank 2 vector bundle (&, V) on A such that X = P4(&)
over A. Moreover, if %y denotes the linear Ehresmann connection on the total space
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E of &* induced by V, then ¢ is the projection of %y gx under the natural map
w: EX — X, where E* := E \ Ox (see Example 9.1 above). Let L C X be a leaf
of 4. Since %y g~ is invariant under the natural C*-action on £, we have 7! (L) =
L x C* and the restriction of %y to 7 ~!(L) is given by the projection L x C* — C*.
It follows that ¢ is algebraically integrable if and only if so is %y .

To show Proposition 9.3, let R be a subring of C, finitely generated over QQ, and
let A (resp., K, X, and X°) be a smooth projective model of 4 (resp., K, X, and X°)
over T := Spec R. We may assume that there exist a rank 2 vector bundle & on X
and a relative flat connection V: & — Q{,, ® & on & such that (¢, Ve) = (£, V)
and such that X =[P4 (&). Let ¢ be the subbundle of Tx,y induced by V, so that ¥ ¢
coincides with ¢. Shrinking T, if necessary, we may assume without loss of generality
that for any closed point ¢ € T, ¥ is closed under pth powers for almost all primes p.
We may finally also assume that X2 is a principal bundle over A; with structure group
K;, and that the restriction of ¥; to X? is Kj-equivariant.

Now, when ¢ € T is a closed point, its residue field is a number field, and hence
¥ is algebraically integrable by Theorem 9.2 above. Let 9y denote the linear Ehres-
mann connection on the total space E of &* induced by V. By construction, ¥ is
the projection of ¢y g~ under the map E* — X, where E* := E \ Ox. Moreover,
if 1 €T is a closed point, then (¥v); is algebraically integrable since ¥; is. In
other words, the flat connection (&7, V;) has finite monodromy representation. By
[2, Théoreme 7.2.2], we conclude that (&£, V) has finite monodromy representation
as well, so that dim A = 0. This yields a contradiction, completing the proof of the
proposition. U

The following is the main result of this section.

THEOREM 9.4

Let X be a normal complex projective variety with terminal singularities, and let
4 be a codimension 1 foliation on X. Suppose that &4 is canonical and that it is
closed under pth powers for almost all primes p. Suppose furthermore that Kx is
not pseudoeffective, and that K¢ = 0. Then ¢ is algebraically integrable.

Before proving Theorem 9.4 below, we note the following corollary.

COROLLARY 9.5

Let X be a normal complex projective variety with canonical singularities, and let 4
be a codimension 1 foliation on X. Suppose that 4 is canonical with K¢ Cartier and
Ky =0 and that 9 is closed under pth powers for almost all primes p. Suppose in
addition that Kx is not pseudoeffective. Then ¢ is algebraically integrable.
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Proof

Let B: Z — X be a Q-factorial terminalization of X. By Proposition 4.10, ~1¢
is canonical with Kg-14 ~z B* K«. Moreover, 8 ~14 is obviously closed under pth
powers for almost all primes p. Finally, Kz is not pseudoeffective since B+ Kz ~z
Ky and Ky is not pseudoeffective by assumption. The statement now follows from
Theorem 9.4 applied to B~1¥. O

Proof of Theorem 9.4
For the reader’s convenience, the proof is subdivided into a number of relatively inde-
pendent steps.

Step 1. Let B: Z — X be a Q-factorialization of X. By Lemma 4.2, 3719 is canon-
ical with Kg—14 ~q B* K«. Moreover, B~'% is closed under pth powers for almost
all primes p. Finally, Kz is not pseudoeffective since 8+ Kz ~7 Kx and Ky is not
pseudoeffective by assumption. Thus, replacing X by Z, if necessary, we may assume
without loss of generality that the following holds.

Assumption 9.6
The variety X has Q-factorial terminal singularities.

Step 2. Since Ky is not pseudoeffective by assumption, we may run a minimal model
program for X and end with a Mori fiber space (see [14, Corollary 1.3.3]). Therefore,
there exists a sequence of maps

(2] (21 Pi—1 Pi Yi+1 ©Om—1
X=Xo ——>X1 ——> - ——>X; ——> Xjqy1 ——> - ——> Xy,
\Lw?ﬂ
Y

where the ¢;’s are either divisorial contractions or flips, and ¥, is a Mori fiber space.
The spaces X; are normal, Q-factorial, and X; has terminal singularities for all 0 <
i <m.Let % be the foliation on X; induced by ¢. Now, we show that Ky = 0 and
that &; is canonical by induction on 0 <i < m.

For i = 0, the claim is true by assumption. Let 1 <i <m.

Suppose first that ¢;—; is a divisorial contraction. By [59, Lemma 3.2.5(2)],
there exists a Q-Cartier divisor K; on X; such that Ky, | ~q ¢ K;. Note that we
must have K; ~g Kg;. This in turn implies that ¢; has canonical singularities by
Lemma 4.2(2). Moreover, Ky, = 0 by the projection formula.

Suppose now that ¢;_; is the flip of a small extremal contraction ¢;_;: X;—; —
Yi_1,andletc;: X; — Y;—; be the natural morphism. By [59, Lemma 3.2.5(2)] again,
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there exists a Q-Cartier divisor K;_; on Y;_; such that Ky, ~q ¢ K;_;. Note
that we must have Ky, ~¢ c;“ K;_1. As before, we see that &; is canonical using
Lemma 4.2(2) and that K¢, = 0.

Finally, one readily checks that ¢, is closed under pth powers for almost all
primes p. Hence, we may assume without loss of generality that the following holds.

Assumption 9.7
There exists a Mori fiber space ¢ : X — Y.

Step 3. First, we show that dim X —dimY = 1. We argue by contradiction and assume
that dimX —dimY > 2. Let F be a general fiber of i/. Note that F' has terminal
singularities, and that Kr ~z Kx|r by the adjunction formula. Moreover, F is a
Fano variety by construction. Note also that F' is smooth in codimension 2 since it has
terminal singularities. Let .7 be the foliation on F induced by ¥. Since ¢;(A%) =
—Kx is relatively ample, we see that .57 has codimension 1. By Proposition 3.6,
we have K » ~7 Ky |r — B for some effective Weil divisor B on F. Suppose that
B #£ 0. Applying [22, Theorem 4.7] to the pullback of .7 on a resolution of F, we
see that #7 is uniruled. This implies that ¢ is uniruled as well since F is general. But
this contradicts Proposition 4.22, and shows that B = 0. By Proposition 4.22 applied
to 7, we see that J# is canonical. Finally, one checks that .77 is closed under pth
powers for almost all primes p.

Let S C F be a 2-dimensional complete intersection of general elements of a
very ample linear system |H | on F. We may assume without loss of generality that
S is smooth and contained in Fr,. Let .2 be the foliation by curves on S induced
by 2. By Proposition 3.6, we have A = A4 5. In particular, we have

c1(Ny)? =K% -HmF~2 50, 9.1)
On the other hand, by the Baum-Bott formula (see [20, Theorem 3.1]), we have

c1(Mz)* =) BB(Z,x), 9.2)

where x runs through all singular points of ., and BB(.Z, x) denotes the Baum—Bott
index of .Z at x (we refer to [20, Chapter 3] for this notion).

Let x be a singular point of .Z. If J¢ is regular at x, then there is a holomor-
phic function f defined in a neighborhood of x such that df vanishes at finitely
many points and such that df defines £ (see Proposition 3.6). It follows that
BB(.Z, x) = 0. Suppose now that x is a singular point of .7#. By general choice of
S, we may assume that [66, Corollary 7.8] applies. The foliation .77 is defined at
x by the local 1-form w = pz>dz; + qz1 dza, where p and g are positive integers



CODIMENSION 1 FOLIATIONS WITH NUMERICALLY TRIVIAL CANONICAL CLASS 167

and (z1,...,zs) are analytic coordinates on F centered at x. By general choice
of S, we may also assume without loss of generality that S intersects the singu-
lar locus of 7 transversely. It follows that . is defined at x by the local 1-form
w = pvdu + qudv, where (u,v) are analytic coordinates on S centered at x, and
hence BB(.Z, x) = —% < 0. In either case, we have BB(.Z, x) < 0, and hence
c1(N%)? < 0 by equation (9.2). But this contradicts inequality (9.1) above, and
shows that dim X —dimY = 1.
Next, we show the following.

CLAIM 9.8

There exists an open subset Y° C Yoo with complement of codimension at least 2
such that ¥° := Yxo is a P'-bundle and such that G xo yields a flat Ehresmann
connection on °, where X° := y~1(Y°).

Proof
Recall that X is smooth in codimension 2 since it has terminal singularities. Since
dim X —dimY = 1, there exists an open subset Y ° C Y., with complement of codi-
mension at least 2 such that X° := ¢~ 1(Y°) C Xyeg. From [3, Theorem 4.1], we
conclude that ¥° := V| xo is a conic bundle.

Suppose that there is a codimension 2 irreducible component of the singular set
of ¢4 which is mapped onto a divisor D by .

Suppose first that 1° is smooth over the generic point of D.Let B C Y be a germ
of analytic curve passing through a general point y of D and transverse to D at y,
set S := (¥°)~1(B) C X, and let .Z be the foliation by curves on S induced by 4.
Denote by 77: S — B the restriction of ¥° to S, and set C := 7~ !(y) = P!. We have
¢1(Ag)-C =2 and either C is tangentto ¢, or C is transverse to ¢. In the latter case,
% must be regular along C, yielding a contradiction. This shows that C is tangent
to ¢. We may assume without loss of generality that ¢ intersects S transversely at
a general point of C (see Proposition 3.6). This implies in particular that C is .Z-
invariant. Let x € C be a singular point of .Z. If ¢ is regular at x, then there is a
holomorphic function f defined in a neighborhood of x in S such that df vanishes
at finitely many points and such that df defines ¢ (see Proposition 3.6). Suppose
that C is given at x by the equation r = 0, and that f(x) = 0. Then f = tg for some
local holomorphic function g on S at x, and —CS(.Z, C, x) is equal to the vanishing
order of g|c at x, where CS(.Z, C, x) denotes the Camacho-Sad index (we refer to
[20, Chapter 3] for this notion). In particular, CS(.Z, C, x) < 0. Suppose now that ¢
is singular at x. By [66, Corollary 7.8], ¢ is defined at x by the local 1-form w =
pz2dzy 4+ qz1 dzp, where p and ¢ are positive integers and (z1,...,z,) are analytic
coordinates on X centered at x. This implies in particular that the singular locus of
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¢ is smooth in a neighborhood of x. By general choice of B, we may also assume
without loss of generality that S intersects the singular locus of ¢ transversely. It
follows that .Z is defined at x by the local 1-form w = pvdu + qu dv, where (u, v)
are local coordinates on S centered at x. Since C is .Z-invariant, we may also assume
that C is given at x by equation ¥ = 0. But then CS(.Z, C, x) = —g < 0. On the other
hand, by the Camacho—-Sad formula, we have

Cc?= ZCS(g,C.x),
P

where x runs through all singular points of .. This yields a contradiction since
C?2=0.

Suppose now that D is an irreducible component of the critical set of ¥°, and
let y € D be a general point. Let also C = C; U C; be the corresponding fiber of
Y°. Note that C; # C», and that C; is tangent to ¢ since ¢ (A%) - C; = 1. We argue
as in the previous case. Consider a general germ of analytic curve passing through
y, set S := (¥°)"1(B) C X, and let .Z be the foliation by curves on S induced
by ¢. Denote also by w: S — B the restriction of ¥° to S. Note that S is smooth
by general choice of B. As above, we may assume without loss of generality that ¢4
intersects S transversely at general points of C; and C,. This again implies that C; is
Z-invariant. Let x € C be a singular point of .Z. If x is a regular point of ¢, then we
have CS(.%, C,x) <0 as before. If ¢ is singular at x, then CS(.Z,C,x) = —g <0

_w-9?
r4q
otherwise. Together with the Camacho—Sad formula and using C2 = 0, this shows

that ¢ is regular at any point in C \ C; N C, and that ¢ is defined at the intersection
point x of C; and C, by the local 1-form z, dz; + zy dz,, where (z1,...,2,) are
analytic coordinates on X centered at x. Lemma 5.27 then yields a contradiction
since c1(Aw) - C; = 1.

This proves that the singular set of ¢ is mapped in codimension at least 2 in Y.

Let C = P! be an irreducible component of a fiber of ¥°, and suppose that ¢
is regular along C. Recall that ¢(A%) - C € {1,2} and that C is tangent to ¢ if
¢1(Ay) - C = 1. By [30, Lemma 3.2], we see that C is not tangent to ¢, and hence
¢1(Ay) - C = 2. This immediately implies that ¢ is transverse to ¥° at any point of
C, finishing the proof of Claim 9.8. O

for some positive integers p and ¢ if x # C; N C,, and CS(Z,C,x) =

Step 4. By [37, Corollary 4.5] and [59, Lemma 5.1.5], Y has Q-factorial klt singu-
larities. Since codimY \ Y° > 2 and K¢ = 0, we must have Ky = 0. Applying [69,
Corollary V 4.9], we conclude that Ky is torsion. Let Y7 — Y be the index 1 canoni-
cal cover, which is quasi-étale (see [63, Definition 2.52]). By construction, Ky, ~z 0.
In particular, ¥; has canonical singularities. By Theorem 2.14 applied to Y7, we see
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that there exists an abelian variety A as well as a projective variety Z with Kz ~7 0
and ¢(Z) = 0, and a quasi-étale cover f: AxZ — Y.

Recall that f branches only on the singular set of Y, so that (Y °) is smooth.
On the other hand, since f~!(Y°) has complement of codimension at least 2 in 4 x
Zreg, we have m1 (A X Zeg) = w1 (f ~1(Y°)). Now, consider the representation

p: w1 (A X Zeg) =1 (f1(Y°)) = 71(Y°) - PGL(2,C)
induced by ¥ x-. By [40, Theorem I], the induced representation
ust (Zreg) — 1 (A) X 3 (Zreg) = 71 (A X Zyeg) = PGL(2, ©)

has finite image. Thus, replacing Z with a quasi-étale cover, if necessary, we may
assume without loss of generality that p factors through the projection m;(A x
Zyeg) = 71 (A). Let P be the corresponding P'-bundle over A. The natural pro-
jection P — A comes with a flat connection ¥p C Tp. By the GAGA (géométrie
algébrique et géométrie analytique) theorem, P is a projective variety. By assump-
tion, its pullback to 4 x Z,e, agrees with f 1 (Y °) xyo X° over /(¥ °). Moreover,
the pullbacks on A x Z, of the foliations 4 and ¥p agree as well, wherever this
makes sense. In particular, ¢ is algebraically integrable if and only if so is ¥p. Now,
one checks that ¢p is closed under pth powers for almost all primes p. Theorem 9.4
then follows from Proposition 9.3. O

10. Algebraic integrability, IT

In this section, we address codimension 1 foliations with numerically trivial canonical
class on mildly singular varieties X with pseudoeffective canonical divisor. An ana-
logue of the Bogomolov vanishing theorem then says that X has numerical dimension
v(X) <1 (see Lemma 12.5). We first describe codimension 1 foliations with numer-
ically trivial canonical class on varieties with v(X) = 0 (see Lemma 10.1 and Propo-
sition 10.2). We then give two algebraicity criteria for leaves of algebraic foliations
on varieties with v(X) = 1 (see Theorems 10.4 and 10.5).

LEMMA 10.1

Let X be a normal complex projective variety with kit singularities, and let 4 be
a codimension 1 foliation on X with K4 = 0. Suppose in addition that Kx = 0.
There exist an abelian variety A, a normal projective variety Z with Kz ~z 0 and
G(Z) =0, and a quasi-étale cover f: A x Z — X such that f~'9 is the pullback
of a codimension 1 linear foliation on A via the projection A x Z — A.

Proof
By [69, Corollary V 4.9], Ky is torsion. Let f: X; — X be the associated cyclic
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cover, which is quasi-étale (see [63, Definition 2.52]). Recall from Fact 2.10 that
X1 is klt. Notice that K p-14 ~z f*Kg. In particular, K -1y is Q-Cartier, and
K folg = 0. To prove the statement, we can therefore assume without loss of general-
ity that Ky ~z 0. Then X has canonical singularities, so that Theorem 2.14 applies.
Replacing X by a further quasi-étale cover, if necessary, we may therefore assume
that there exist an abelian variety A, a normal projective variety Z with Kz ~7 0,
andg(Z) =0Osuchthat X = Ax Z.

Let B: Z1 — Z be a resolution of singularities, and let m be a positive integer
such that £ := m}ml is a line bundle. Note that c;(Z’) = 0 by assumption. Since
G(Z) =0, we have h°(Z, Qg]) = 0 by Hodge symmetry for kit spaces (see [43,
Proposition 6.9]), and hence 1°(Z1,} ) = 0. It follows that f*(Z{z) is torsion,
and hence, .Z|z,, is torsion as well. Replacing Z by a further quasi-étale cover, if
necessary, we may therefore assume that .4z = 0z. In particular, we see that A
is a line bundle. Moreover, since h°(Z, Q[ZI] ® Nig1z) = h°(Z, Q[ZI]) = 0, the fibers
of the projection A x Z — A are tangent to ¢. Therefore, ¢ is the pullback of a
codimension 1 foliation 57 on A. Since K4 = 0 and Kz ~7 0, we must have K ,» =
0, and hence .7 is a linear foliation on A. This finishes the proof of the lemma. [

We will use Lemma 10.1 together with Proposition 10.2 below.

PROPOSITION 10.2
Let X be a normal complex projective variety with kit singularities, and let 4 be a
codimension 1 foliation on X with canonical singularities and K4 = 0. If v(X) = 0,
then Kx is torsion.

Remark 10.3
We will prove that Ky = 0. Then [69, Corollary V.4.9] implies that Kx is torsion.

Proof of Proposition 10.2

Applying Proposition 8.13, we may assume without loss of generality that there is
no positive-dimensional algebraic subvariety tangent to ¢ passing through a general
point of X.

We argue by contradiction and assume that Kx is not torsion. By [69, Corollary V
4.9], we have k(X ) = 0. Replacing X by a Q-factorialization (see Section 2.2), we
may assume that X is Q-factorial by Lemma 4.2. By [28, Théoréme 1.2], we may
run a minimal model program for X and end with a minimal model. Therefore, there
exists a sequence of maps

(2] o1 Pi—1 Pi Yi+1 Pm—1
X=Xo ——>X1 ——> - ——>X; ——> Xjqy1 ——> - ——> Xy,
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where the ¢;’s are either divisorial contractions or flips, and Ky,, is torsion. The
spaces X; are normal, (Q-factorial, and X; has kit singularities for all 0 <i < m.
Let ¢; be the foliation on X; induced by ¢. Arguing as in Step 2 of the proof of
Theorem 9.4, we see that K¢, = 0 and that ¢; has canonical singularities. Note that
since Ky is not torsion, there is some i such that ¢; is a divisorial contraction. Let
iop be the largest integer i such that 1; is a divisorial contraction. By replacing X by
Xi,, if necessary, we may assume that there exists a divisorial extremal contraction
¢: X — Y and that Ky is torsion.

Let & denote the foliation on Y induced by 4. By Lemma 10.1 and using the
fact that there is no positive-dimensional algebraic subvariety tangent to ¢ passing
through a general point of X, there exist an abelian variety A and a quasi-étale cover
f: A— Y such that f~'& is a codimension 1 linear foliation on A. Let X, be the
normalization of the fiber product X xy A, and denote by ¢1: X; —> Aand f1: X; —
X the natural morphisms. Let E be the exceptional locus of ¢.

Suppose first that E is invariant under ¢. Applying Lemma 3.4, we see that
Kf 1y = 0. Then the map f19 — oF(f71&) induced by the tangent map
Tgol Tx, — ¢iT4 is an 1s0m0rph1sm This yields a contradiction since every
irreducible component of f,;"!(E) is ¢;-exceptional.

Suppose now that E is not invariant under ¢, and let € H%(4, Qh) defining
f1&. Observe that irreducible components of f;"!(E) are not invariant under ¢.
This implies that d¢; (w) does not vanish in codimension 1 by [24, Proposition III.1.1,
Premiére partie], and hence .4 frly = O, . This in turn implies that ¢ (A4%) ~g 0
using Lemma 3.4. It follows that Kx ~qg Kg —c1(Hg) =0, yielding a contradiction
again, since —Kx is ¢-ample by construction.

This shows that Ky is torsion, completing the proof of the proposition. U

Next, we address weakly regular codimension 1 foliations with trivial canonical
class on varieties X with v(X) = 1.

THEOREM 10.4

Let X be a normal complex projective variety with kit singularities, and let 4 be
a weakly regular codimension 1 foliation on X. Suppose that 4 is canonical with
K4 = 0. Suppose in addition that X is smooth in codimension 2 and that v(X) = 1.
Then 9 is algebraically integrable.

Proof
For the reader’s convenience, the proof is subdivided into a number of relatively inde-
pendent steps.
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Step 1. Applying Proposition 8.13 together with Corollary 5.14 and Lemma 5.16, we
may assume without loss of generality that there is no positive-dimensional algebraic
subvariety tangent to ¢ passing through a general point of X.

Step 2. Let B: Z — X be a resolution of singularities with exceptional set E, and
suppose that E is a divisor with simple normal crossings. Suppose in addition that the
restriction of B to B71(X, reg) 1s an isomorphism. Let £ be the reduced divisor on Z
whose support is the union of all irreducible components of E that are invariant under
B~14. Note that —c; (.#4) = K x by assumption. By Proposition 4.9 and Remark 4.8,
there exists a rational number O < & < 1 such that

v(—c1(Np-1g) + €E1) = v(—c1 (M) = 1.

By [81, Theorem 6] applied to B~!%, we may assume that there exists an arithmetic
irreducible lattice I of PSL(2,R)" for some integer N > 2, as well as a morphism
¢: Z — $:=DN /T of quasiprojective varieties, such that 4 = ¢~'.#, where .#
is a weakly regular codimension 1 foliation on §) induced by one of the tautological
foliations on the polydisk D¥ . Note that ¢ is generically finite by Step 1.

By aresult of Selberg, there exists a torsion-free subgroup I'y of I' of finite index.
Set 91 1= Dy /T'1, and denote by 7 : $; — 9 the natural finite morphism. Recall
that $) has isolated quotient singularities. It follows that 7 is a quasi-étale cover since
N >2.

Let F C Z be a prime divisor, and assume that F is not B-exceptional. Set
G := B(F). We show that dim ¢ (F) > 1. We argue by contradiction, and assume that
dim ¢(F) = 0. One checks that there is only one germ of s -invariant hypersurface
through any (singular) point of §. This implies that F must be invariant under =¥
since otherwise, ¢(Z) would be contained in a leaf of .7, which is impossible since
the foliation ¢ ~!.7# has codimension 1 by construction. Set X° := Xiee. By assump-
tion, 4 xo is regular, and hence G° := G N X° is a smooth hypersurface with normal
bundle AGe xo = Ay |Go. Let § € X be a 2-dimensional complete intersection of
general elements of a very ample linear system |H | on X. We may assume without
loss of generality that S is smooth and contained in X °, so that ¢ o 87! is regular in
a neighborhood of S. Set C := S N G. Then G - C < 0 since C is contracted by the
generically finite morphism ¢ o B! |s- On the other hand, we must have G - C =0
by [30, Lemma 3.2], yielding a contradiction. This proves that dimp(F) > 1.

Step 3. By Step 2, the natural map Z xg $, — Z is a quasi-étale cover away from
the exceptional locus of B. In particular, it induces a quasi-étale cover f1: X; — X.
Let Z1 — Z Xg $, be aresolution of singularities. We obtain a diagram
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B1, birational @1, generically finite
X Zy 1
f1, quasi-étale l \L g1 \L 7, quasi-étale
X z 9
B, birational @, generically finite

Let &; be the codimension 1 regular foliations on §); induced by the tautological foli-
ations on D¥ so that Q}Dl =@,<i<ny A2 - Setn :=dim X. We may assume without
loss of generality that the natural map B, <i<n (pf,/VéZ; — lel is generically injec-
tive. Now observe that the line bundle /i{g’f is Hermitian semipositive, so that ¢} 4/5 is
nef. On the other hand, we have ¢1 (g7 A7) X -+ x c1 (1A ) > 0. This immediately
implies that x(Z;) = v(Z;) = dim Z;. It follows that «(X;) = v(X;) = dim X3
since B is a birational morphism. Applying [69, Proposition V.2.7], we see that
v(X) =v(X;) =dimX; =dim X since Kx, ~q f;*Kx. It follows that dim X = 1
since v(X) = 1 by assumption. This finishes the proof of the theorem. O

The following is the main result of this section.

THEOREM 10.5

Let X be a normal complex projective variety with terminal singularities, and let 4
be a codimension 1 foliation on X. Suppose that 4 is canonical with K4 = 0 and
that v(X) = 1. Suppose in addition that 94 is closed under pth powers for almost all
primes p. Then 9 is algebraically integrable.

Before proving Theorem 10.5 below, we note the following corollary.

COROLLARY 10.6

Let X be a normal complex projective variety with canonical singularities, and let 4
be a codimension 1 foliation on X. Suppose that 4 is canonical with K¢ Cartier and
Ky =0, and that 9 is closed under pth powers for almost all primes p. Suppose in
addition that v(X) = 1. Then & is algebraically integrable.

Proof

Let B: Z — X be a Q-factorial terminalization of X. By Proposition 4.10, B~'¢
is canonical with Kg—14 ~7 B* Ke. Moreover, B4 is closed under pth powers
for almost all primes p. Finally, v(Z) = 1 since Kz ~g f*Kx and v(X) =1 by
assumption (see [69, Proposition V.2.7]). The statement now follows from Theo-
rem 10.5 applied to B~'9. O
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Proof of Theorem 10.5
For the reader’s convenience, the proof is subdivided into a number of relatively inde-
pendent steps. Set n = dim X.

Step 1. Let B: Z — X be a Q-factorialization of X. By Lemma 4.2, 87!¢ is canon-
ical with Kg—14 ~q B* K. Moreover, B9 is closed under pth powers for almost
all primes p. Finally, v(Z) = 1 since Kz ~g f*Kx and v(X) = 1 by assumption
(see [69, Proposition V.2.7]). Thus, replacing X by Z, if necessary, we may assume
that X is Q-factorial.

Step 2. By [28, Théoreme 3.3], we may run a minimal model program for X and end
with a minimal model in codimension 1. Therefore, there exists a sequence of maps

@0 o1 Pi—1 i Yi+1 Om—1
X=Xg ——>= Xy ——> o+ ——>=X; ——>= Xjqy1 ——> «++ ——>= Xy,

where the @;’s are either divisorial contractions or flips, and Ky, is movable. The
spaces X; are normal, Q-factorial, X; has terminal singularities for all 0 <i < m,
and v(X;) = 1. Let & be the foliation on X; induced by ¢. Arguing as in Step 2 of
the proof of Theorem 9.4, we see that K¢, = 0 and that ¢; has canonical singularities.
Replacing X by X,,, we may therefore assume without loss of generality that X is
Q-factorial and Ky is movable.

Step 3. Let S € X be a 2-dimensional complete intersection of general elements of a
very ample linear system |H | on X. We may assume without loss of generality that
S is smooth and contained in X.,. Let £ be the foliation by curves on S induced
by ¢. By Proposition 3.6, we have .4y = .44 g. In particular, we have

ci(Ng)? =Kz -H"2>0 (10.1)

since Ky is movable by Step 2.
On the other hand, by the Baum—Bott formula (see [20, Theorem 3.1]), we have

c1(Nz)? =) BB(Z.), (10.2)

where x runs through all singular points of .Z, and BB(.Z, x) denotes the Baum—Bott
index of .Z at x.

Let x be a singular point of .Z. Next, we compute the Baum-Bott index
BB(Z, x) as in Step 3 of the proof of Theorem 9.4.

If ¢ is regular at x, then BB(.Z, x) = 0. Suppose now that x is a singular point
of 4. Then ¢ is defined at x by the local 1-form w = pz,dzy + qz; dz,, where p
and ¢ are positive integers and (zy,...,z,) are analytic coordinates on X centered at
x,and BB(.Z,x) = —% < 0. In either case, we have BB(.Z, x) < 0. Equations
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(10.1) and (10.2) above then show that BB(.%, x) = 0 for any singular point x of .Z.
It follows that there exists an open set X° C X with complement of codimension
at least 3 such that ¢ xo is defined by closed holomorphic 1-forms with zero set of
codimension at least 2 locally for the analytic topology.

Step 4. Suppose first that g(X') = 0. Then the Picard group of X is discrete, and thus
K4 is torsion. Replacing X by the associated cyclic cover, which is quasi-étale (see
[63, Definition 2.52]), and using Lemma 4.3 and Remark 2.9, we may assume without
loss of generality that Ko ~7 0. By Proposition 5.26, we see that ¢ is weakly regular.
Theorem 10.4 above then says that ¢ is algebraically integrable.

Step 5. To prove the statement, we argue by induction on dim X .

If dim X = 1, then ¢ is obviously algebraically integrable.

Suppose from now on that dim X > 2. By Step 4, we may assume without loss of
generality that g (X) # 0. Let

axy: X > A

be the Albanese morphism, that is, the universal morphism to an abelian variety (see
[76]). Since X has rational singularities (see [59, Theorem 1.3.6]), we have dim A =
¢(X) > 0by [58, Lemma 8.1]. Let F be a very general fiber of the Stein factorization
of X - ay(X), and let 57 be the foliation on F induced by ¥.

Suppose first that dim F > 0. Then F has terminal singularities, and Kz ~7
Kx | F by the adjunction formula. In particular, K r is movable. If 57 = TF, then 57
is algebraically integrable. Suppose that .77 has codimension 1. By Proposition 3.6,
we have K » ~7z Ky — B for some effective Weil divisor B on F. Suppose that
B #£ 0. Applying [22, Theorem 4.7] to the pullback of .77 on a resolution of F, we
see that  is uniruled. This implies that ¢ is uniruled as well since F is general.
But this contradicts Proposition 4.22, and shows that B = 0. From Lemma 12.5, we
conclude that v(F) € {0, 1}. By Proposition 4.22 applied to .7, we see that 7 is
canonical. Notice that ¢ is closed under pth powers for almost all primes p. If
v(F) =0, then 47 is algebraically integrable by Lemma 10.1 and Proposition 10.7
below. If v(F) = 1, then 57 is algebraically integrable by induction.

This shows that if dim F > 2, then there is a positive-dimensional algebraic sub-
variety tangent to ¢ passing through a general point of X. By Proposition 8.13,
replacing X by a quasi-étale cover, if necessary, we may assume that there exist
normal projective varieties ¥ and Z with dimY < dim X such that X =Y x Z,
as well as a foliation & on Y such that ¢ is the pullback of & via the projection
Y x Z — Y. Moreover, Kz ~7z 0, & has canonical singularities, and Ks = 0. The
induction hypothesis applied to & then says that & is algebraically integrable, so that
¢ is algebraically integrable as well.
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Suppose from now on that dim F < 1 and that J¢ is the foliation by points. Then
the tangent map to ay yields an inclusion map & C a% Tx. On the other hand, by
Lemma 8.14, ¢ is semistable with respect to any polarization on X. This immedi-
ately implies that 4 =~ ﬁ}’(_l since ¢ is reflexive and K¢ = 0. Moreover, ¢ is a sheaf
of abelian Lie algebras. Let Aut®(X) denote the neutral component of the automor-
phism group Aut(X) of X, and let H C Aut®(X) be the connected commutative Lie
subgroup with Lie algebra H°(X,¥) € H%(X, Tx). Finally, let G € Aut®(X) be its
Zariski closure. Note that ¢ is induced by H by construction. Moreover, G is a com-
mutative algebraic group. If H = G, then ¥ is algebraically integrable. Suppose from
now on that dim G > dim X . Arguing as in the proof of [66, Lemma 9.3], one shows
that dim G = dim X and that X is an equivariant compactification of G. Since Ky
is pseudoeffective and X has terminal singularities, X is not uniruled. It follows that
G = X is an abelian variety by Chevalley’s structure theorem on algebraic groups.
But this contradicts the assumption that v(X) = 1, completing the proof of the theo-
rem. O

PROPOSITION 10.7

Let A be a complex abelian variety, and let 4 be a linear foliation on A. Suppose
that 9 is closed under pth powers for almost all primes p. Then ¢ is algebraically
integrable.

Proof
By [34, Proposition 3.6], we may assume without loss of generality that X and ¢ are
defined over a number field. The statement then follows from [16, Theorem 2.3]. [

11. Foliations defined by closed rational 1-forms

In this section, we address codimension 1 foliations with numerically trivial canonical
class defined by closed rational 1-forms with values in flat line bundles and whose
zero sets have codimension at least 2. Recall that a flar vector bundle on a normal
complex variety X is a vector bundle of rank r induced by a representation 71 (X) —
GL(r, C). The following is the main result of the present section.

THEOREM 11.1

Let X be a normal complex projective variety with canonical singularities, and let 4
be a codimension 1 foliation on X. Suppose that 4 is canonical with K¢ Cartier and
Ky = 0. Suppose in addition that 4 is given by a closed rational 1-form @ with values
in a flat line bundle £, whose zero set has codimension at least 2. Then there exist a
normal projective equivariant compactification Z of a commutative algebraic group
G of dimension at least 2, as well as a codimension 1 foliation 77 = ﬁ%imz “lonZz
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induced by a codimension 1 Lie subgroup of G, a normal projective variety Y with
Ky ~7 0, and a quasi-étale cover f:Y x Z — X such that {19 is the pullback
of J via the projection Y x Z — Z. Moreover, there is no positive-dimensional
algebraic subvariety tangent to ¢ passing through a general point of Z.

Example 11.2
The setup and notation are as in Example 9.1. Suppose in addition that dim H > 0.

Suppose that H = p(T'). Let z be a coordinate on C C P! such that the inverse
images of D; and D, on the universal covering space C"~! x P! of X are given
by equations z = 0 and z = oo, respectively. Then dz—z induces a closed logarithmic
1-form with poles along D; and D, and empty zero set defining ¢. The 1-form
‘Zi—j induces a closed rational 1-form on X with values in the flat line bundle . =
Y* #®2 whose divisor of zeros and poles is —2D.

Suppose that H = p(U). Let z be a coordinate on C C P! such that the inverse
image of D on the universal covering space C"~! x P! of X is given by equation
z = 0. Then the 1-form j—; induces a closed rational 1-form on X defining ¢ with
divisor of zeros and poles —2D.

The proof of Theorem 11.1 makes use of the following result, which might be of
independent interest.

THEOREM 11.3

Let X be a normal complex projective variety with kit singularities. Let @ be a closed

rational 1-form, and let 4 be the foliation on X defined by w. Suppose that 4 has

canonical singularities and that K4 = 0. Then one of the following holds.

(1) There exist a complete smooth curve C, a complex projective variety Y with
canonical singularities and Ky ~z 0, as well as a quasi-étale cover f: Y x
C — X such that =14 is induced by the projection Y x C — C.

2) There exist a normal projective equivariant compactification Z of a commu-
tative algebraic group G of dimension at least 2, as well as a codimension
1 foliation 7 = ﬁ%imz_l on Z induced by a codimension 1 Lie subgroup
of G, a normal projective variety Y with Ky ~7z 0, and a quasi-étale cover
f1Y xZ— X such that =9 is the pullback of ¢ via the projection
Y x Z — Z. Moreover, there is no positive-dimensional algebraic subvariety
tangent to ¢ passing through a general point of Z.

To prove Theorem 11.3 above, we will need the following auxiliary result.
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LEMMA 11.4

Let X be a normal complex projective variety. Let w be a closed rational 1-form, and
let G be the foliation on X defined by w. Then there is a finite-dimensional complex
abelian Lie algebra V and a morphism of sheaves of Lie algebras 9 —V ® Oy
whose kernel & is an algebraically integrable foliation on X .

Proof

Let 8: Z — X be a resolution of singularities, and let D be the divisor on Z of
codimension 1 poles of df(w). We may assume without loss of generality that D
has simple normal crossings. Set Z° := Z \ Supp D, and let zo € Z°. Consider the
multivalued holomorphic function h(z) := [ , @ on Z°, where y is a path connecting
zo and z contained in Z°. Then h yields local first integrals for 8719, Let

p: m1(Z°) — Gq

be the representation of 771 (Z°) induced by analytic continuation of the multivalued
holomorphic function % along loops with basepoint z¢. Now, let

qage: Z° —G(Z°):= H(Z, QL (log D))" /H\(Z°,Z)

be the quasi-Albanese morphism, that is, the universal morphism to a semiabelian
variety (see [54]). Let also F'° be a general fiber of qaz.. The kernel of the natu-
ral morphism 71(Z°) — 71(G(Z°)) is generated by [71(Z°), 71(Z°)] together with
finitely many torsion elements. It follows that the representation ; (F°) — G, given
by the restriction of p to 71 (F°) is trivial. This in turn implies that the foliation
induced by ¢ on F° has algebraic leaves by [24, Théoreme I11.2.1, Premiere partie].

Let &z C B~'% be the foliation on Z such that &7|z0 is the kernel of the mor-
phism

BTG 20 — (@ago) Toze) = H*(Z.Q25(log D))" ® Oze,

and let & be the induced foliation on X. We have shown that & is algebraically inte-
grable. On the other hand, any irreducible component of D is invariant under =¥
by [24, Proposition III.1.1, Premiére partie]. This implies that the map

p'9 — H(Z2,QL(log D))" ® O

induced by the contraction morphism 7z X QIZ — Oz is well defined. Therefore, we
must have exact sequences

0— &7 — B9~ H°(Z,Q40og D))" ® Oz

and
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0 1 *
0>6—>9—>HZ,Q,(logD)) ® 0.

This finishes the proof of the lemma. O

Proof of Theorem 11.3

We maintain the notation and assumptions of Theorem 11.3. By Proposition 8.13,
there exist normal projective varieties Y and Z, a foliation ¢ on Z such that there is
no positive-dimensional algebraic subvariety tangent to .7 passing through a general
point of Z, and a quasi-étale cover f: Y x Z — X such that f~'% is the pullback
of J¢ via the projection Y x Z — Z. Moreover, .7 has canonical singularities and
K,;gﬂ =0.

If dim Z = 1, then we are in case (1) of Theorem 11.3.

Suppose from now on that dim Z > 2. Let F = Z be a general fiber of the pro-
jection Y x Z — Y. Then (f~'9)r N TF = 5, and hence the restriction of df (»)
to F is a closed rational 1-form defining .7#. Applying Lemma 11.4 above to .77, we
see that there is a finite-dimensional complex abelian Lie algebra V' and an injective
morphism of sheaves of Lie algebras 57 — V ® 0'z. This immediately implies that
H = ﬁ%imz ~Lsince . is reflexive and K ,» = 0. Moreover, .77 is a sheaf of abelian
Lie algebras. Let Aut®(Z) denote the neutral component of the automorphism group
Aut(Z) of Z, and let H C Aut®(Z) be the connected commutative Lie subgroup with
Lie algebra H%(Z, %) Cc H%(Z,Tz). Finally, let G C Aut®(Z) be its Zariski clo-
sure. Note that 7# is induced by H by construction, and that dim G > dim Z since ¢
is not algebraically integrable. Moreover, G is a commutative algebraic group. Argu-
ing as in the proof of [66, Lemma 9.3], one shows that dim G = dim Z and that Z is
an equivariant compactification of G. Thus, we are in case (2) of Theorem 11.3. [

In the setting of Theorem 11.1, the twisted rational 1-form w is not determined
by ¢ (see Example 11.2). The following result addresses this issue.

LEMMA 11.5

Let X be a normal complex projective variety, and let a and B be closed rational
1-forms with values in flat line bundles & and # . Suppose that the divisors of zeros
and poles of o and B coincide. Suppose in addition that « A = 0. Then either
£ = M as flat line bundles and o = cf for some ¢ € C*, or there is a nonzero
y € HO(X, QU such that a Ay = 0.

Proof

Let D be the divisor of zeros and poles of &, and set X° := X reg- There exist a cov-
ering (U;)ier of X° by analytically open sets and closed meromorphic 1-forms ¢;
(resp., Bi) on U; with divisor of zeros and poles Dy, satisfying a; = a;;ja; (resp.,
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Bi = bijBj)over U; NU; with a;; € C* (resp., b;; € C*) and such that («;);es (resp.,
(Bi)ier) represents ajxo (resp., Bxe).

Since a; A B; = 0 by assumption, there exists a meromorphic function f; on U;
such that o; = f; B;. Note that we must have df; A B; = 0 since do; = df; = 0.
Now, observe that f; is a nowhere vanishing holomorphic function since the divisors
of zeros and poles of «; and B; coincide by assumption. On the other hand, we have
fi= Z% Jfj over U; N U;. If the functions f; are constant, then .2 = .# as flat line
bundles, and we can suppose without loss of generality that a;; = b;; for all indices
i and j. Then o = ¢f with ¢ = f; = f;. Suppose that some f; is not a constant
function. Since % = % there exists a nonzero holomorphic 1-form y° on X° that
restricts to % over U;. By construction, we have a|xo A y° = 0. The claim now
follows from ihe GAGA theorem. O

To prove Theorem 11.1 in the case where X is uniruled, we will reduce to foli-
ations defined by a closed rational 1-form using Proposition 11.9 below. We first
consider the special case where X has terminal singularities.

PROPOSITION 11.6

Let X be a normal complex projective variety with terminal singularities, and let
9 C Tx be a codimension 1 foliation with canonical singularities. Suppose that 4 is
given by a closed rational 1-form w with values in a flat line bundle £ whose zero
set has codimension at least 2. Suppose furthermore that Kx is not pseudoeffective
and that Ky = 0. Then there exists a quasi-étale cover f: X1 — X such that f~'9
is given by a closed rational 1-form with zero set of codimension at least 2.

Proof
For the reader’s convenience, the proof is subdivided into a number of steps.

Step 1. By Proposition 8.13, there exist normal projective varieties Y and Z, a folia-
tion 7 on Y such that there is no positive-dimensional algebraic subvariety tangent
to J€ passing through a general point of Y, and a quasi-étale cover f: Y x Z — X
such that £ !¢ is the pullback of .7 via the projection Y x Z — Y. Moreover, J#
has canonical singularities and K ;» = 0. Let F' = Y be a general fiber of the projec-
tion Y x Z — Z. Then (f_lg)”? N Tg =~ 5, and hence the restriction of df (w) to
F is a closed rational 1-form with values in .4 r defining ¢ whose zero set has codi-
mension at least 2. Moreover, its pullback to Y x Z is a closed rational 1-form with
values in the pullback of .Zjr whose zero set has codimension at least 2 defining ¢.
Finally, Ky is not pseudoeffective, and one checks that ¥ has terminal singularities
using Fact 2.10. Therefore, replacing ¢ by .77, if necessary, we may assume that
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there is no positive-dimensional algebraic subvariety tangent to ¢ passing through a
general point of X .

Step 2. Let B: Z — X be a Q-factorialization of X . By Lemma 4.2, 87'¢ is canoni-
cal with Kg—14 ~q B* K. Moreover, B~'9 is given by a closed rational 1-form with
values in the flat line bundle 8*.% whose zero set has codimension at least 2. Finally,
Kz is not pseudoeffective since S« Kz ~z Kx and Kx is not pseudoeffective by
assumption.

Suppose now that there exists a quasi-étale cover g: Z; — Z such that (g o
B)~'% is given by a closed rational 1-form w with zero set of codimension at least
2,and let f: X; — X be the normalization of X in the function field of Z;. Denote
by y: Z; — X, the induced birational map. Then f; is quasi-étale and dy(w) is a
closed rational 1-form with zero set of codimension at least 2 defining f~'%. Thus,
replacing X by Z, if necessary, we may assume without loss of generality that X has
Q-factorial terminal singularities.

Step 3. Since Kx is not pseudoeffective by assumption, we may run a minimal model
program for X and end with a Mori fiber space (see [14, Corollary 1.3.3]). Therefore,
there exists a sequence of maps

%0 ?1 Di—1 Pi Pi+1 Pm—1
Xi=Xo =X ——= = X = Xigg — = = Xy,
\LWm
Y

where the ;s are either divisorial contractions or flips, and ¥, is a Mori fiber space.
The spaces X; are normal, QQ-factorial, and X; has terminal singularities for all 0 <
i <m.Let%¥; be the foliation on X; induced by ¢. Arguing as in Step 2 of the proof of
Theorem 9.4, we see that K¢ = 0 and that ¢; has canonical singularities. Moreover,
 induces a closed rational 1-form w,, on X,, with values in a flat line bundle .%,,
whose zero set has codimension at least 2. By construction, ¥, is given by w,,, and
if %, is a torsion flat line bundle, then so is .Z.

We will show in Steps 4-7 that either .4, is torsion, or X,, is smooth, the polar
locus of w,, is a smooth hypersurface D,, and ¥, can be defined by a (closed) loga-
rithmic 1-form with poles along D, U D,, for some smooth hypersurface D,,. Taking
this for granted, we now show that the conclusion of Proposition 11.6 holds for X .

It %, is torsion, then so is .Z. Therefore, there exists a quasi-étale cover
/1 X1 — X such that /*% =~ Oy, as flat line bundles. Then, /!¢ is given by the
closed rational 1-form df (w) whose zero set has codimension at least 2.

Suppose now that X,,, is smooth, that the polar locus of w,, is a smooth hyper-
surface D,,, and that ¢, can be defined by a closed rational 1-form o, with a pole
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along Dy, U D,,. Let Z be a resolution of the indeterminacy locus of the rational
map X --» X, and let p: Z — X and ¢: Z — X,,, be the natural maps. By con-
struction, we have p*.% =~ ¢*.%,,. By assumption, there exists an effective divisor D
on X such that A4 =~ Ox (D) ® £. Moreover, we have Ny, = Ox, (D) @ L.
Since K¢ = 0 and Ky, =0, we have p*(Kxy + D) = ¢*(Kx,, + Dm). By [63,
Lemma 3.38], there exists an effective g-exceptional Q-divisor £ on Z such that
p*Kx =q*Kx,, + E. Moreover, Supp E contains the strict transforms of the divi-
sors contracted by the rational map X --+ X,,. Thus, we obtain

q¢*Dy=p*D+ E.

On the other hand, D, is the pushforward of D on X,,. This implies that ¢* D, —
p* D is g-exceptional. By the negativity lemma, we must have

q*Dm=p*D+ E.

It follows that ¢(Supp E) C Supp D,,. In particular, the 1-form dg(w,,) has poles
along Supp E. Since Supp E contains the strict transforms of the divisors contracted
by the rational map X --+ X;,, we conclude that the closed rational 1-form on X
induced by «a,, has zero set of codimension at least 2. So, in either case, the conclusion
of Proposition 11.6 holds for X .

For simplicity of notation, we will assume in the following that X = X,,,, writing

Y= Ym.

Step 4. By assumption, there exist prime divisors (D;)1<i<; on X and positive
integers (m;)i<i<r such that Ay = Ox (3", _;.,miD;) ® L. Let [ C{1,...,r}
be the set of indices i € {1,...,r} such that_w_(D,-) =Y. Note that I # @ since
Y 1<i<rMiDi = —Kx is relatively ample.

_Sappose that there exists i € I such that the residue of w at a general point of D;
is nonzero. Then arguing as in [66, Section 8.2.1], one shows that .Z is torsion.

Suppose from now on that the residue of w at a general point of D; is zero for
anyi e€l.

Step 5. Let F be a general fiber of 1. Note that F' has terminal singularities and that
KF ~7 Kx | by the adjunction formula. Moreover, F' is a Fano variety by construc-
tion. Let 7Z be the foliation on F induced by ¢. Note that .7 has codimension 1
by Step 1. By Proposition 3.6, we have K » ~z K« r — B for some effective Weil
divisor B on F. Suppose that B # 0. Applying [22, Theorem 4.7] to the pullback of
¢ on aresolution of F, we see that 77 is uniruled. This implies that ¢ is uniruled as
well since F is general. But this contradicts Proposition 4.22, and shows that B = 0.
By Proposition 4.22 applied to ¢, we see that J# is canonical. Since F is simply
connected by [48, Corollary 1.14], 7 is given by a closed rational 1-form (possibly
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with codimension 1 zeros) with zero residues at general points of its codimension 1
poles. Lemma 11.7 then implies that F = P,

Now, we have } ,_;, m; D; - F = 2. Suppose that Dy - F = D, - F =1 or that
D1-F =2 Lety € Yy be a general point, and let U C Y, be an analytically open
neighborhood of y such that ¥~} (U) = U x P!. We may assume that there exists a
coordinate z on C C P! such that the poles of w|y—1 () are given by equations z =
and z = oo. Then

dz 1
@Uxc =a— + ;(a +zB + z%y),

where a is a holomorphic function on U, and «, §, and y are holomorphic 1-forms
on U. Observe that a(y) # 0 since ¢ is generically transverse to F'. This implies that
 has nonzero residue along D; for any i € I, yielding a contradiction. Therefore, we
must have f{/ = 1 and renumbering the D;, if necessary, we may assume that m; = 2,
and D, - F =1.

Recall that X is smooth in codimension 2 since it has terminal singularities. Since
dim X —dimY = 1, there exists an open subset ¥ ° C Yeg with complement of codi-
mension at least 2 such that X° := ¢~ 1(Y°) C Xreg. From [3, Theorem 4.1], we
conclude that ¥° := v xo is a conic bundle. It follows that 1/° is smooth since v is
an elementary Mori contraction and D - F = 1.

Finally, we show that r = 1. We argue by contradiction and assume that r > 2.
Set C; :=¥(D;) fori €{2,...,r}. Note that C; is a divisor on Y by construction.
Moreover, D; is invariant under ¢ by [24, Proposition III.1.1, Premiére partie]. By
[37, Corollary 4.5] and [59, Lemma 5.1.5], Y has Q-factorial klt singularities. One
readily checks that there exist positive rational numbers A; for i € {2,...,r} and
an effective Q-divisor C on Y such that Ky + sziﬁr AiC; + C = 0 using the
fact that codimY \ Y° > 2 and the assumption K¢ = 0. It follows that Ky is not
pseudoeffective. In particular, Y is uniruled by [17] applied to a resolution of Y.

Let Y --» R be the maximal rationally chain connected fibration. Recall that it
is an almost proper map and that its general fibers are rationally chain connected. We
show that the canonical divisor of a general fiber is not pseudoeftective. We argue by
contradiction. Consider a commutative diagram

B, birational
Y, —

l

Ry

¥, birational

X< <

where Y7 and R; are projective manifolds. Let I" and E be effective -exceptional
divisors on Y7 such that (¥;,I") is klt and Ky, + I' = $*Ky + E. We may assume
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without loss of generality that I' + E has simple normal crossing support. Notice
that general fibers of Y; — R; are rationally chain connected by [48, Theorem 1.2].
Applying [39], we see that R is not uniruled. This in turn implies that Kg, is pseu-
doeffective by [17] again. Using [21, Theorem 4.13], we conclude that Ky, + I' is
pseudoeffective, yielding a contradiction since Ky is not pseudoeffective in our case.

Letnow G be a very general fiber of the composed map X — Y --» R. Note that
G is projective with terminal singularities. Moreover, it is rationally chain connected
and dim G > 2 by construction. Arguing as in the first paragraph of this step and using
Lemma 11.8, we see that we must have G = P!, yielding a contradiction. This proves
that r = 1.

Step 6. We now show that, shrinking Y ° further, if necessary, 4jxo yields a flat Ehres-
mann connection on °. Let C = P! be any fiber of 1°. We have ¢;(A4%) - C =2
and either C is tangent to ¢, or C is everywhere transverse to ¢. Thus, we have to
show that C is not tangent to ¢.

Set y := ¥ (C) € Y °. By assumption, there is an analytically open neighborhood
U of y in Y ° such that ¢ is defined over v ~!(U) by a closed rational 1-form wy with
poles along D1 Ny~ 1(U). Shrinking U, if necessary, we may assume that  ~1(U) =
U x P! and that there exists a coordinate z on C C P! such that the pole of wy is
given by equation z = co. Then

wuuxc =adz +a+ zf + 2%y,

where a is a holomorphic function on U, and «, 8, and y are holomorphic 1-forms
on U. Since dwy = 0 by assumption, we must have doe =0, § = da, and y = 0.
Shrinking U further, we may assume that « = db for some holomorphic function b
on U, so that wy|yxp1 = d(az + b). Set u := % Then ¢ is given by d(§; + b) in
a neighborhood of z = co. If a(y) = 0, then ¢ is not canonical in a neighborhood
of C N {u = 0} (see [67, Observation 1.2.6] and [33, Proposition 2.10]), yielding
a contradiction. This shows that a(y) # 0, and hence C is not tangent to ¢. This
proves that ¢|xo defines a flat Ehresmann connection on ¥°.

Step 7. Recall that Y has QQ-factorial kit singularities (see Step 5). Since codim Y \
Y°>2 and Ky = 0, we must have Ky = 0. Applying [69, Corollary V.4.9], we
conclude that Ky is torsion. Let Y; — Y be the index 1 canonical cover, which is
quasi-étale (see [63, Definition 2.52]). By construction, Ky, ~z 0. In particular, Y;
has canonical singularities. By Theorem 2.14 applied to Y;, we see that there exist
an abelian variety, a projective variety Z with Kz ~7 0 and §(Z) = 0, and a quasi-
étale cover f: A x Z — Y. Recall that f branches only on the singular set of Y,
so that f~1(Y°) is smooth. On the other hand, since f~!(Y°) has complement of
codimension at least 2 in A X Ze,, we have 1(A X Zgwg) = m1(f1(Y°)). Now,
consider the representation
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p: (A X Zyeg) = 71 (f (Y °)) — m1(Y°) — PGL(2,C)
induced by ¥ y-. By [40, Theorem I], the induced representation
1 (Zreg) — m1(A) X W1 (Zreg) = 71(A X Zieg) — PGL(2,C)

has finite image. Thus, replacing Z with a quasi-étale cover, if necessary, we may
assume without loss of generality that p factors through the projection 71(A x
Zeg) — m1(A). Let P be the corresponding P!-bundle over A. The natural projec-
tion 7: P — A comes with a flat Ehresmann connection 4p C Tp. By the GAGA
theorem, P is a projective variety. By assumption, its pullback to A x Z., agrees
with f~1(Y°) xyo X° over f~!(Y°). Moreover, the pullbacks on A X Z, of the
foliations ¢ and ¥p agree as well, wherever this makes sense. Since there is no
positive-dimensional algebraic subvariety tangent to ¢ passing through a general
point of X by assumption, we must have dim Z = 0.

Set A°:= f1(Y°), P°:=n"'(A°), and Ypo := ¥p po. Let g°: P° — X°
denote the natural morphism, which is an étale cover. Set D% := (g°)~1(D; N X°).
Then %p- is given by the closed rational 1-form wpe := dg°(w|xe) with values in the
flat line bundle Zpo := (g°)* (Zjx~). Moreover, the zero set of wpo has codimension
at least 2. Since P is smooth and P \ P° has codimension at least 2, Zpo is the
restriction to P° of a flat line bundle £ on P, and w}, extends to a closed rational
1-form wp with values in .Zp whose zero set has codimension at least 2. Note that
the divisor of zeros and poles of wp is —2D p, where D p denotes the Zariski closure
of D}. By [24, Proposition III.1.1, Premiere partie], Dp is a leaf of ¥p. It follows
that D p is a section of 7.

Let H € PGL(2, C) be the Zariski closure of the image of p. We use the notation
introduced in Examples 9.1 and 11.2. Recall from Step 1 that there is no positive-
dimensional algebraic subvariety tangent to ¥p passing through a general point of P.
Therefore, H is conjugate to p(T) or p(U). Observe that ¥p is not given by a
(closed) holomorphic form since it is transverse to 7 by Step 6.

It H=p(U), then £p =~ Op as flat line bundles by Lemma 11.5 together with
Example 11.2. This in turn implies that .# is torsion since the image of 71 (P°) in
71 (X°) has finite index.

Suppose from now on that H = p(T). Let

ay: Y - A(Y)

be the Albanese morphism. Since X is a projective variety with rational singulari-
ties, Pic®(Y) is an abelian variety, and A(Y) = (Pic®°(Y))". Moreover, the Albanese
morphism is induced by the universal line bundle (see [58, Lemma 8.1]). In par-
ticular, there is a flat line bundle Z5y) on A(Y) and a positive integer m such
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that £®™ ~ w*(ay*.i”f(;ﬁ’)). This in turn implies that there exists a degree m étale
cover Y1 — Y such that the pullbacks of .2 and Z(y) on Y; agree. Set Pa(y) :=
Pay)(Oar) ® La(r)) and Ay := A xy Yq. Lemma 11.5 together with Example 11.2
then implies that Ay x 4 P = Ay Xa(y) Pa(y) and that the pullback of ¥p on Ay x4 P
is also the pullback of a foliation on Py(y). We conclude that ay : ¥ — A(Y) is
generically finite since there is no positive-dimensional algebraic subvariety tangent
to ¥p passing through a general point of P. Recall from [69, Corollary V.4.9] that
k(Y) = 0. Applying [57, Theorem 13] to the Stein factorization of ay : ¥ — A(Y),
we see that ay is an isomorphism. In particular, we can choose A = Y above. Then
the restriction of the tangent map Ty : Tx — ¥*T4 to & gives an isomorphism
4 =~ *Ty, so that ¢4 induces a flat connection on /. Now, a classical result of com-
plex analysis says that complex flows of vector fields on analytic spaces exist (see
[56]). It follows that v is a locally trivial analytic fibration for the analytic topology.
This shows that X =~ P and that ¢ identifies with &p. In particular, ¢ is defined by a
closed logarithmic 1-form, completing the proof of the proposition. O

LEMMA 11.7

Let X be a normal complex projective variety with kit singularities. Let @ be a closed
rational 1-form on X, and let G be the foliation defined by w. Suppose that 4 has
canonical singularities and K¢ = 0. Suppose in addition that the residues of w at
general points of its codimension 1 poles are zero. If X is Fano, then X = P!,

Proof

By Theorem 11.3 and using the assumption that X is Fano, we may assume that
there exist a normal projective equivariant compactification Z of a commutative linear
algebraic group G and a quasi-étale cover f: Z — X such that f~1¢ is induced by
a codimension 1 Lie subgroup H of G. Moreover, there is no positive-dimensional
algebraic subvariety tangent to ¢ passing through a general point of X .

Recall that G = (G,,)" % (G,)® for some nonnegative integers r and s. If s > 2,
then dim Lie H N Lie(G,)® > 1, and hence ¢ is uniruled. But this contradicts Propo-
sition 4.22, and shows that s < 1. By [10, Theorem 2], X is a toric variety. It follows
that X, has finite fundamental group by [72, Proposition 1.9].

Since w is closed and since the residues of @ at general points of its codimension
1 poles are zero, we conclude that there is a meromorphic function f on X, such that
o = df using [24, Théoreme I11.2.1, Premiére partie]. By the Levi extension theorem,
[ extends to a meromorphic function on X, and thus, f is a rational function. This in
turn implies that ¢ is algebraically integrable. It follows that dim X = 1, since there is
no positive-dimensional algebraic subvariety tangent to ¢ passing through a general
point of X. This completes the proof of the lemma. O
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LEMMA 11.8

Let X be a normal complex projective variety with kit singularities. Suppose that
there exists a surjective morphism ¢: X — B onto a normal rationally chain con-
nected projective variety B with kit singularities whose fibers over an open set with
complement of codimension at least 2 in Y are isomorphic to P'. Suppose further-
more that Kp £ 0. Let @ be a closed rational 1-form on X, and let 4 be the foliation
defined by w. Suppose that 4 has canonical singularities and Ko = 0. Suppose in
addition that the residues of @ at general points of its codimension 1 poles are zero
and that there is no positive-dimensional algebraic subvariety tangent to 4 passing
through a general point of X. Then X ~P'.

Proof

By Theorem 11.3, we may assume that there exists a normal projective equivariant
compactification Z of a commutative algebraic group G, as well as a quasi-étale
cover f: Z — X, such that £ !¢ is induced by a codimension 1 Lie subgroup H of
G . Notice that there is no positive-dimensional algebraic subvariety tangent to f 1%
passing through a general point of Z. By Chevalley’s structure theorem on algebraic
groups, there is an exact sequence of algebraic groups

1 >G> G—>A—1,

where A is an abelian variety and G, is a connected affine algebraic group. Using
[48, Theorem 1.2] together with the rigidity lemma, we see that the morphism G — A
extends to a morphism ¥ : Z — A.

Let F be a general fiber of 1. Note that F' has terminal singularities. Let ¢ be
the codimension 1 foliation on F induced by f~'%. By Proposition 3.6, we have
K v = —B for some effective Weil divisor B on F. Suppose that B # 0. Applying
[22, Theorem 4.7] to the pullback of .7# on a resolution of F, we see that .77 is
uniruled. This implies that f~'% is uniruled as well since F is general. But this
contradicts Proposition 4.22, and shows that B = 0. By Proposition 4.22 applied to
J€, we see that 7 is canonical. Arguing as in the proof of Lemma 11.7 above and
using the fact that there is no positive-dimensional algebraic subvariety tangent to
/4 passing through a general point of Z, we conclude that dim F = 1 and that
J is the foliation by points. Now, we may assume without loss of generality that
[l ~ ﬁ’eZBdimZ ~! (see Theorem 11.3). This immediately implies that f 1% yields
a flat Ehresmann connection . In particular, v is a P!-bundle.

Let Z A B £ B be the Stein factorization of the composed map Z — X —
B. Observe that a general fiber F; of ¢ is contained in the smooth locus of X so that
f is étale in a neighborhood of it. It follows that f~!(Fy) is the union of rational
curves and hence it is contracted by 1. Using the rigidity lemma, we then see there
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exists an isomorphism g;: A — Bj such that g o ¥ = v/. On the other hand, since
@ o f has reduced fibers over an open set with complement of codimension at least
2 in Y by assumption, we conclude that g is quasi-étale. In particular, we must have
Kp ~q 0. This yields a contradiction since Kp # 0 by assumption, completing the
proof of the lemma. 0

PROPOSITION 11.9

Let X be a normal complex projective variety with canonical singularities, and let 4
be a codimension 1 foliation on X. Suppose that 4 is canonical with K¢ Cartier and
Ky = 0 and that K x is not pseudoeffective. Suppose in addition that 4 is given by a
closed rational 1-form w with values in a flat line bundle £ and whose zero set has
codimension at least 2. Then there exists a quasi-étale cover f: X1 — X such that
f714 is given by a closed rational 1-form with zero set of codimension at least 2.

Proof

By Proposition 8.13, there exist normal projective varieties ¥ and Z, a foliation .7
on Y such that there is no positive-dimensional algebraic subvariety tangent to J7
passing through a general point of Y, and a quasi-étale cover f: Y x Z — X such
that £ !¢ is the pullback of J# via the projection Y x Z — Y. Moreover, Kz ~7 0,
¢ has canonical singularities and K ,» = 0. Note that Ky is not pseudoeffective.

If dimY =1, then Y = P!, and ¢ is given by a (closed) logarithmic 1-form.
Suppose from now on that dimY > 2.

Let F = Y be a general fiber of the projection ¥ x Z — Z. Then (f~'9)r N
Tr =~ 2, and hence K, is Cartier and the restriction of df(w) to F is a closed
rational 1-form with values in #jr defining # whose zero set has codimension at
least 2. Its pullback to ¥ x Z is a closed rational 1-form with values in the pullback
of A defining ¢4 whose zero set has codimension at least 2. Finally, one checks
that ¥ has canonical singularities using Fact 2.10. Therefore, replacing ¢ by .77, if
necessary, we may assume that there is no positive-dimensional algebraic subvariety
tangent to ¢ passing through a general point of X, and that dim X > 2.

Let B: Z — X be a Q-factorial terminalization of X . By Proposition 4.10, =¥
is canonical with Kg—14 ~7 B* K¢ . Suppose first that ¢ is closed under pth powers
for almost all primes p. Then ¥ is algebraically integrable by Corollary 9.5, yielding
a contradiction. Thus, by Proposition 12.3 and Lemma 8.14, B7'¢ is given by a
closed rational 1-form o« with values in a flat line bundle .# whose zero set has
codimension at least 2. Finally, Kz is not pseudoeffective since 8+ Kz ~7z Kx and
Kx is not pseudoeffective by assumption. By Proposition 11.6, we may therefore
assume without loss of generality that .# is torsion. Applying [79], we see that the
natural map of topological fundamental groups 71(Z) — 71(X) is an isomorphism.
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Now, since .# is flat, it is induced by a representation w1 (Z) — C*. The latter then
yields a (torsion) flat bundle .# on X such that ./Z =~ *.%. Moreover, « induces a
closed rational 1-form @ on X with values in .Z whose zero set has codimension at
least 2. By construction, w defines ¢. This completes the proof of the proposition. [

Before proving Theorem 1.1 below, we address foliations defined by closed
rational 1-forms with values in flat line bundles on projective varieties with pseudo-
effective canonical class.

PROPOSITION 11.10

Let X be a normal complex projective variety with kit singularities, and let G be a
codimension 1 foliation on X with canonical singularities and K4 = 0. Suppose that
Kx is pseudoeffective, and that 4 is given by a closed rational 1-form @ with values
in a flat line bundle & whose zero set has codimension at least 2. Then there exist an
abelian variety A, a normal projective variety Z with Kz ~7 0 and ¢(Z) =0, and a
quasi-étale cover f: A x Z — X such that f~'9 is the pullback of a codimension
1 linear foliation on A via the projection A x Z — A.

Proof

There exists an effective divisor D on X such that 44 = Ox (D) ® .£. On the other
hand, c¢;(A4%) = —Kx since K4 = 0, and hence —Ky = D. It follows that Ky =
0 since Ky is pseudoeffective by assumption. Proposition 11.10 then follows from
Lemma 10.1. U

Proof of Theorem 11.1

We maintain the notation and assumptions of Theorem 11.1. By Proposition 8.13, we
may assume without loss of generality that there is no positive-dimensional algebraic
subvariety tangent to ¢ passing through a general point of X (see Step 1 of the proof
of Proposition 11.6).

If Ky is pseudoeffective, then the statement follows easily from Proposi-
tion 11.10.

Suppose that Ky is not pseudoeffective. By Proposition 11.9, there exists a
quasi-étale cover f: X; — X such that f~!¢ is given by a closed rational 1-form.
Note that X; is canonical by Fact 2.10. By Lemma 4.3, f —1¢ is canonical, and
we obviously have K s~ ~z f *Kg = 0. Theorem 11.1 then follows from Theo-
rem 11.3. O

Finally, we prove abundance in the setting of Proposition 11.6.
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PROPOSITION 11.11

Let X be a normal complex projective variety with terminal singularities, and let
9 C Tx be a codimension 1 foliation with canonical singularities. Suppose that 4 is
given by a closed rational 1-form @ with values in a flat line bundle £ whose zero
set has codimension at least 2. Suppose furthermore that Kx is not pseudoeffective
and that K4 = 0. Then K is torsion.

Proof

By Proposition 11.6, there exists a quasi-étale cover f: X; — X such that f~'¥
is given by a closed rational 1-form. Note that X; is terminal by Fact 2.10. By
Lemma 4.3, f~'¢ is canonical, and we obviously have K ;14 ~7 f*Ky = 0.
Proposition 11.11 then follows from Theorem 11.3. O

12. Proofs of Theorems 1.1 and 1.3 and proof of Corollary 1.4

The present section is devoted to the proofs of Theorems 1.1 and 1.3 and to the proof
of Corollary 1.4. Lemma 12.1 and Proposition 12.3 below extend [66, Theorem 7.5]
to the singular setting.

LEMMA 12.1

Let X be a normal projective variety over some algebraically closed field k of positive

characteristic p with dim X > 2, and let ¢ C Tx be a codimension 1 foliation on X .

Let w be a rational 1-form w defining &, and let B denote the reduced effective

divisor whose support is the union of codimension 1 zeros and poles of . If 4 is not

closed under pth powers, then the following hold.

1) There exist a reduced effective Weil divisor D on X that does not contain any
irreducible component of B in its support, and « € H°(X, QE,;] (log(B+ D)))
with da = 0 such that dw = o A w. If C is any irreducible component of
Supp(B + D), then the residue of o at a general point of C is a constant
Sfunction with values in the prime field F, C k.

(2)  Suppose that X is smooth, and let A be a nef divisor such that Tx (A) is
generated by global sections. Suppose furthermore that 4 is semistable with
respect to a nef and big divisor H on X and that g (4) > 0. Then we have

D - HdimX—l < C](JV{?) . HdimX—l + (dlmX —Z)A . HdimX—l =M.
Let C be an irreducible component of Supp(B + D) such that C - H dim X—1 £

0, and let m € Z be the vanishing order of w along C. Then we have resc o €
{m,....m+ M} CF,.

Proof
Let X° denote an open set of X with complement of codimension at least 2, contained
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in the regular loci of X and ¢. Let (U;); < be a finite covering of X ° by open affine
subsets, and let w; be a regular 1-form on U; with zero set of codimension at least
2 such that w, A w = 0. Write w; = g;w for some rational function g; on X, and
set gij := g— We have w; = g;jw;j, and hence g;; is a nowhere vanishing regular
function on U; N U;.

Set ¢° := ¥ xo, and consider the nonzero map F}, 4° — Txo /9° = Ny xo =:
NG induced by the pth power operation. Note that JV 2 is a line bundle. Shrinking
X °, if necessary, we may assume that there is an effective divisor D° on X ° such that
the above map induces a surjective morphism

Fon® = N (=D°).
We may also assume without loss of generality that there exists a regular vector field
d; on U; such that f; := w;(97) is a defining equation of D° on U;. By [66, Propo-
sition 7. 3] w, is a closed rational 1-form, and hence dw; = de" A ;. On the other
hand, by [66 Corollary 7.4], we must have l
dfi df; _ dgy

i fi dgij’
and hence

dfi _dsi _dfj _dg;

i & fi g

This immediately implies that there exists o« € H°(X, Q[l] (log(B 4+ D)req) withdo =
0 such that « restricts to — ‘fgg’ + ‘iff’ on U;, where D denotes the Weil divisor on X
such that D|xo = D°. A straightforward computation then shows that

do =0 ANw.

This proves (1).
To prove (2), observe that we must have

fimnin(Fyps@) < r (Ng(—=D)) = g (Ng) — uu (Ox (D))
< wa(ANg) — ki (Ox (Drea)).
On the other hand, by the proof of [64, Corollary 2.5]), we have
Umax (B2 4) — pomin(Fh %) < (rank ¥ — 1) A - HAmX 1

Now, we must have pmax(F}, &) > 0 since ug(¢) > 0 by assumption. The claim
then follows easily. O
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Remark 12.2

The notation is as in the proof of Lemma 12.1. By [66, Corollary 7.4], there is a
rational function /;; on X such that f; = g;; f; h;-”j. Note that A;; is regular on U; N
U; since both f; and f; are local equations of D° on U; N U;, and that the h;;
automatically satisfy the cocycle condition. Therefore, there exists a rank 1 reflexive
sheaf . on X as well as an effective Weil divisor such that ¢ = Ox (D) X .27,

PROPOSITION 12.3

Let X be a normal complex projective variety, and let 4 be a codimension 1 foliation
on X. Let B: Z — X be a resolution of singularities. Suppose that 4 is semistable
with respect to some ample divisor H on X with g () > 0. Then either 4 is closed
under pth powers for almost all primes p, or B~'9 is given by a closed rational
L-form with values in a flat line bundle whose codimension 1 zeros are 3-exceptional.

Remark 12.4

In the setup of Proposition 12.3, suppose in addition that X has klt singularities.
Suppose that 714 is given by a closed rational 1-form wz with values in a flat line
bundle .z whose zero set has codimension at least 2. Applying [79], we see that
there exists a flat line bundle %y on X such that %z =~ 8*.%x. Then wz induces a
closed rational 1-form wy on X with values in £y defining . Moreover, its zero set
has codimension at least 2.

Proof of Proposition 12.3
Proposition 12.3 follows from Lemma 12.1 using the spreading out technique, which
we recall now. Assume that dim X > 2.

Let @ be a rational 1-form defining 871%. Let E be an effective B-exceptional
divisor such that A := myf*H — E is ample for some positive integer mg, and let
B be a reduced effective divisor that contains codimension 1 zeros and poles of @
and all B-exceptional divisors in its support. Replacing H by moH, we may assume
that my = 1. Let m be a positive integer such that Tz (mA) is generated by global
sections, and set

M :=ci(Ng-1g) - (B*H)™ ' 4 m(dim X —2)4- (B*H)"™ X1

Let R C C be a finitely generated Z-algebra, and let X (resp., Z) be a projective
(resp., smooth projective) model of X (resp., Z) over S := Spec R. Let §: Z — X be
a projective birational morphism such that B coincides with 8. Let ¢ (resp., B '¥)
be a saturated subsheaf of the relative tangent sheaf Tx/g (resp., Ty/s), flat over S,
such that @¢ (resp., B~ '¥¢) coincides with & (resp., B~'%). We may assume that
for any closed point s € S, X5 is normal, and that ¥5 (resp., ﬂ_lfé’ 5) is a foliation
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on Xy (resp., Zz). Let H (resp., A) be an ample Cartier divisor on X (resp., Z) such
that Hc ~z H (resp., Ac ~z A). Suppose that A = B* H — E for some effective B-
exceptional relative divisor E over S, and that E5 is f8;-exceptional for any geometric
point s € S. Finally, let B be a reduced effective relative divisor on Z over S, and let @
be rational section of Q% /T such that Bc = B and w¢ = w. Shrinking S, if necessary,
we may assume that w; defines B~ '¢; for any geometric point s € S, and that B;
contains the codimension 1 zeros and poles of @3. We can also choose B so that B
contains all B-exceptional prime divisors in its support.

Since semistability with respect to an ample divisor is an open condition in flat
families of sheaves (see the proof of [52, Proposition 2.3.1]), we may assume that the
sheaves %; are semistable with respect to Hy, with slopes un; (%) = pua(4) > 0. It
follows that ﬂglg 5 is semistable with respect to B3 Hs with slope u BH; (B'9;) =
0.

By [45, Lemme 2.4] and [44, Proposition 4.1], there exists a quasiprojective S-
scheme Div%% parameterizing effective relative Cartier divisors on Z over S with
A-degree at most M. Using [47, Théoreme 12.2.1], we see that there is an open set
T C Divf/jg parameterizing geometrically reduced divisors that do not contain any
irreducible component of some Bj; in their supports. Replacing T by Ti.q, if nec-
essary, we may assume that T is reduced. By generic flatness, we can suppose that
T is flat over S. Let D C T xg Z be the universal effective relative Cartier divisor,
and denote by w: T xs Z — Z and v: T xg Z — T the projections. Set C := 7 *B.
Observe that C is a reduced relative effective Cartier divisor on T xg Z over T.
Write Q’[I‘1>]<SZ /T(log(C + D)) for the reflexive sheaf on T xg Z whose restriction

to the open set Zj where C + D has relative simple normal crossings over T is
QQO/T(IOg(qu + Dyz0)), and set
T T T

Ui=v.Q4 , . (log(C +D)).

By generic flatness and the base change theorem, we see that, replacing T with a finite
disjoint union of locally closed subsets, we may assume without loss of generality that
U is flat over T, and that the formation of ”*Q[Tlisz /T(log(C + D)) commutes with
arbitrary base change. We will also assume that, for any geometric point 7 € T, the
restriction of Qg})](sz /T (log(C + D)) to the fiber of the projection T xg Z — T over ¢
is reflexive, so that
Qtzr(l0g(C+ D)), = Q3] (log(Bs + D7),

where 5 € S is the image of 7 in S. By [47, Corollaire 9.7.9], there exist a finite set
I C N and a decomposition
T=| |T;

i€l
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of T into locally closed subsets such that any geometric fiber of D; :=D xt T; — T;
has i irreducible components, and such that any geometric fiber of C; := C x¢ T; —
T; has n(i) irreducible components. Let D7 (resp., C7) denote the open set where
D, — T; (resp., C; — T;) is smooth. We can choose T; so that there exist sections
ai1,....a;,; (esp.,bi1,....bini)) of DY = T; (resp C? — T;) witha; ; (1) € D;’l J
(resp., b j(t) € C° ) where the D? . “.l (resp., C” L Cz ; n(l)) are the
irreducible components of the correspondmg fiber of DY — T; (resp., C° —T)).

Let 7 € T be a geometric point, and denote by § the i 1mage of  in S. Let [, ;

(resp., mz ; ;) be the vanishing order of @3 along D- ) (resp i O .).
Let P C U be the closed subset defined by the COIldlthIlS
) do; =0,

2) dos;=oa; Nws,

3) respe ap(aij(t)) €{lz ... 177 + M} Ck(t) for all indices 1 < j <1,
and

@) resce at(bl J@0)elmz; ... .mz; ; + M} Ck(f) for all indices 1 < j <
n(z) such that C° 1s not B;-exceptional,

where 7 € T; and o7 € HO(ZE, Q5] (1og(Bs + D7))).

Fix a closed point s in S, and denote by p > 0 the characteristic of k(5). Suppose
that &5 is not closed under pth powers. This immediately implies that §~'¢; is not
closed under pth powers as well. Applying Lemma 12.1 to f~'¢; and B:Hs, we
conclude that there exist a reduced effective Cartier divisor D(5) on Z; that does not
contain any irreducible component of B; in its support, and

o; € H(Z5. Q) (log(Bs + D())))

with da; = 0 such that dw; = a7 A @s. Moreover, the functions respe  oj
and resce o are constant, with values in {/;; ;,....l;;; + M} C k(s) and
{m,M,.. smg; i + M} C k(3), respectively, if C° i is not f;-exceptional. We
also have D(5) - (B2H;z)%m%~1 < M. Notice that there is no B;-exceptional prime
divisor contained in Supp D(5) by construction. It follows that

D( ) Adlmzq—l D(E) . (ﬁ;Hi)dimZS—l

— Z D(5) - E; - AL - (81 Hj)dim s =2

0<i<dimZ;—2
<DG)- (BiHy) ™5~ < M,
and hence, o; yields a closed point in P over  := [D(5)] € T.

If the set of closed points § in S such that ¢ is not closed under pth powers is
Zariski-dense, then the image of P — S contains the generic point of S since it is a
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constructible set by a theorem of Chevalley (see [46, Corollaire 1.8.5]). It follows that
there exists a closed logarithmic 1-form « on Z such that dw = o A w. Let C be any
prime divisor on Z. Since the residue resc « of « at a general point of C is a constant
function, we must have resca € {m,...,m + M} C Z if C is not B-exceptional,
where m denotes the order of vanishing of @ along C'.

Let (Uj)ier be a covering of Z by analytically open sets such that a|y, =
dln f; + dg;, where f; (resp., g;) is a meromorphic (resp., holomorphic) function
on U;. Then

1
w; = ———0|y;
fiexp(gi)
is a closed rational 1-form with zero set of codimension at least 2 and w; = ¢;jw; on
U; N U; for some ¢;; € C. This completes the proof of the proposition. O

We end the preparation for the proofs of our main results with the following
observation.

LEMMA 12.5
Let X be a normal complex projective variety with kit singularities, and let 4 be a
codimension 1 foliation on X with K¢ Q-Cartier and K¢ = 0. Then v(X) < 1.

Proof

Let B: Z — X be a resolution of singularities with exceptional set E, and suppose
that E is a divisor with simple normal crossings. Let E; be the reduced divisor on Z
whose support is the union of all irreducible components of E that are invariant under
B~14. Note that —c, (.#4) = K x by assumption. By Proposition 4.9 and Remark 4.8,
there exists a rational number 0 < ¢ < 1 such that

V(X) =v(—c1(Ag)) = v(—c1(ANp-14) + €Ey).
On the other hand, by [69, Proposition V.2.7(1)], we have
V(—Cl(e/%—lg) + 8E1) < V(—Cl(e/i{g—lg) + El).

The lemma now follows from [81, Proposition 9.3]. |

Proof of Theorem 1.1
By [63, Lemma 2.53] and Fact 2.10, there exists a quasi-étale cover f: X; — X
with X canonical such that f*Ky ~7z 0. By Lemma 4.3, f~'% is canonical and
K s-14 ~7 0. Replacing X by X1, if necessary, we may assume that K¢ ~7 0.

By Proposition 12.3 and Lemma 8.14, either ¢ is closed under pth powers for
almost all primes p, or it is given by a closed rational 1-form w with values in a flat
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line bundle whose zero set has codimension at least 2 (see also Remark 12.4). In the
latter case, the statement follows from Theorem 11.1.

Suppose that ¢ is closed under pth powers for almost all primes p. By
Lemma 12.5, we have v(X) < 1. If v(X) = —oo, then Corollary 9.5 says that ¢
is algebraically integrable. If v(X) = 1, then ¢ has algebraic leaves as well by
Corollary 10.6. In either case, the statement follows from Theorem 1.5. If v(X) = 0,
then Theorem 1.1 follows from Lemma 10.1 and Proposition 10.2. O

Proof of Theorem 1.3

By Proposition 12.3 and Lemma 8.14, either ¢ is closed under pth powers for almost
all primes p, or it is given by a closed rational 1-form « with values in a flat line
bundle whose zero set has codimension at least 2 (see also Remark 12.4).

Suppose first that ¢ is closed under pth powers for almost all primes p. By
Lemma 12.5, we have v(X) < 1. If v(X) = —oo, Theorem 9.4 and Corollary 9.5 then
imply that ¢ is algebraically integrable. If v(X) = 1, then ¢ has algebraic leaves by
Theorem 10.5 and Corollary 10.6. In either case, K¢ is torsion by Proposition 4.24.
If v(X) =0, then Ky is torsion by Lemma 10.1 and Proposition 10.2.

Suppose now that ¢ is given by a closed rational 1-form @ with values in a
flat line bundle whose zero set has codimension at least 2. If v(X) > 0, then the
statement follows from Proposition 11.10. If v(X) = —o0o, then Theorem 1.3 follows
from Proposition 11.11. O

Proof of Corollary 1.4

Arguing as in the proof of Theorem 1.1, we see that we may assume without loss of
generality that K¢ is Cartier. Lemma 5.9 then implies that ¢ is canonical, so that
Theorem 1.1 applies. In particular, to prove Corollary 1.4, it suffices to consider the
case where X is an equivariant compactification of a commutative algebraic group G
of dimension at least 2 and ¢ = ﬁf};mx ~1isinduced by a codimension 1 Lie subgroup
HCG.

If X is not uniruled, then G must be an abelian variety by Chevalley’s structure
theorem on algebraic groups, and ¥ is a linear foliation on X, so that we are in case
(2) of Corollary 1.4.

Suppose from now on that X is uniruled. Let 8: Z — X be an equivariant res-
olution of X with exceptional set £, and assume that £ is a divisor with simple
normal crossings and that B induces an isomorphism over X.,. By Corollary 4.21,
there is an inclusion 8*% C Tz (—log E). In particular, we must have *¢ C B~'9.
Since ¥ is canonical, we conclude that Kg-14 ~7 * K¢ and that f*9 =~ B'9.
This implies that any irreducible component of E is invariant under 1% This also
implies that 1% is regular by Lemma 5.15. Since Z is uniruled by assumption,
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there exists a P!-bundle structure ¢: Z — Y onto a complex projective manifold ¥
with Ky ~z 0 such that 87'% induces a flat connection on ¢. This follows either
from [80] or from the proof of [30, Proposition 5.1] (see also [30, Lemma 3.8]). Sup-
pose that E # @, and let E; be an irreducible component of E. Then E; is smooth
and #f, /7 is flat since E is invariant under B~'<. But this contradicts the fact that
E; is B-exceptional. It follows that X is as in case (1) of Corollary 1.4. This finishes
the proof of the corollary. O
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