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Abstract In this paper we extend to the singular setting the theory of Fano foliations
developed in our previous paper (Araujo and Druel, Adv Math 238:70–118, 2013). A
Q-Fano foliation on a complex projective variety X is a foliation F � TX whose anti-
canonical class −KF is an ample Q-Cartier divisor. In the spirit of Kobayashi–Ochiai
Theorem, we prove that under some conditions the index iF of a Q-Fano foliation is
bounded by the rank r of F , and classify the cases in which iF = r . Next we consider
Q-Fano foliations F for which iF = r − 1. These are called del Pezzo foliations. We
classify codimension 1 del Pezzo foliations on mildly singular varieties.
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1 Introduction

The study of Fano manifolds is a classical theme in algebraic geometry. Much is known
about these varieties, as they appear naturally in several different contexts. With the
development of the Minimal Model Program in dimension � 3, it became clear that
singularities are unavoidable in the birational classification of higher dimensional
complex projective varieties. This led to the development of a powerful theory of
singularities of pairs (see Definition 2.1 for basic notions, such as klt singularities).
As a consequence of the Minimal Model Program, every smooth complex projective
variety can be build up from mildly singular projective varieties X , for which K X is
Q-Cartier and satisfies one of the following: K X < 0, K X ≡ 0 or K X > 0. This
makes imperative to extend the theory of Fano manifolds to the singular setting. A
Q-Fano variety is a normal projective variety X such that −K X is an ample Q-Cartier
divisor. Its index is the largest positive rational number iX such that −K X ∼Q iX H
for a Cartier divisor H on X . When X is an n-dimensional smooth Fano variety, a
classical result of Kobayashi and Ochiai asserts that iX � n + 1. Moreover, equality
holds if and only if X � Pn , and iX = n if and only if X is a quadric hypersurface in
Pn+1. We generalize this to the singular setting (see also [38] for related results).

Theorem 1.1 Let � be an effective Q-divisor on a normal projective variety X of
dimension n � 1. Suppose that K X +� is Q-Cartier, and −(K X +�) ∼Q ic1(L )

for an ample line bundle L on X and i ∈ Q.

1. If i > n, then n < i � n + 1, (X,L ) � (Pn,OPn (1)) and deg(�) = n + 1 − i .
2. If i = n, then either (X,L ) � (Pn,OPn (1)) and deg(�) = 1, or � = 0 and
(X,L ) � (Qn,OQn (1)), where Qn is a (possibly singular) quadric hypersurface
in Pn+1.

The Fano condition and the notion of index naturally find counterparts in the theory
of holomorphic foliations. Given a holomorphic foliation F � TX of generic rank r
on a normal complex projective variety X , we denote by det(F ) the reflexive sheaf
(∧rF )∗∗, and by −KF any Weil divisor on X such that OX (−KF ) � det(F ). We say
that F is a Q-Fano foliation if −KF is an ample Q-Cartier divisor on X . In this case,
the index of F is the largest positive rational number iF such that −KF ∼Q iF H
for a Cartier divisor H on X .

In our previous paper [1], inspired by the theory of Fano manifolds and the Mini-
mal Model Program, we initiated the study of Fano foliations on complex projective
manifolds. By [2, Theorem 1.1], the index iF of a Fano foliation F � TX of rank r
on a complex projective manifold X satisfies iF � r . Moreover, equality holds only
if X � Pn . This may be viewed as a version for foliations of the classical Kobayashi–
Ochiai Theorem. Fano foliations on Pn with index equal to the rank were classified
in [11, Théorème 3.8]. They are induced by linear projections Pn ��� Pn−r , and are
classically known as degree 0 foliations on Pn . In [1], we defined del Pezzo foliations

123

Author's personal copy



On codimension 1 del Pezzo foliations 771

on complex projective manifolds X as Fano foliations F � TX of rank r � 2 and
index iF = r − 1. Del Pezzo foliations F on Pn (classically known as degree 1
foliations on Pn) were classified in [37, Theorem 6.2]:

1. Either F is induced by a dominant rational map Pn ��� P(1n−r , 2), defined by
n − r linear forms and one quadratic form, or

2. F is the linear pullback of a foliation on Pn−r+1 induced by a global holomorphic
vector field.

The generic del Pezzo foliation of type (2) above does not have algebraic leaves. On the
other hand, we showed in [1, Theorem 1.1] that if X �� Pn , then del Pezzo foliations
on X have algebraic and rationally connected general leaves. We then worked toward
the classification of del Pezzo foliations.

In this paper we address Q-Fano foliations on possibly singular varieties. Our main
goal is to extend the theory developed in [1] to the singular setting. There is at least
one strong reason for studying this more general case. The birational classification
of rank 1 foliations on smooth surfaces obtained in [9] was very much modeled after
the birational classification of smooth surfaces. If one hopes to apply ideas from
the Minimal Model Program to approach the problem of birational classification of
holomorphic foliations in higher dimensions, then one may be led to study foliations
on mildly singular varieties as well.

We first prove a version for foliations on midly singular varieties of the Kobayashi–
Ochiai Theorem. See Definition 4.1 for the notion of normal generalized cone, and
[2,5,15,30,40] and for related results.

Theorem 1.2 Let X be an n-dimensional Q-factorial klt projective variety with n � 2,
and F � TX a Q-Fano foliation of rank r . Suppose that either X has Picard number
ρ(X) = 1, or F has rank r = n − 1. Then

1. iF � r .
2. If iF = r , then X is a normal generalized cone over a polarized variety (Z ,M )

with vertex P � Pr−1, and F is induced by the natural map X ��� Z. Moreover,
Z is Q-factorial and klt, ρ(Z) = 1 and iZ = k(iX − r) > 0 for some positive
integer k.

Next we consider del Pezzo foliations, i.e., Q-Fano foliations of rank r � 2 and
index iF = r − 1. In the smooth case, del Pezzo foliations of codimension 1 on
Fano manifolds with Picard number 1 were classified in [37, Proposition 3.7]: they
are either degree 1 foliations on Pn , or come from pencils of hyperplane sections
of quadric hypersurfaces. We extend this classification to mildly singular varieties,
without restriction on the Picard number.

Theorem 1.3 Let F � TX be a codimension 1 del Pezzo foliation on a factorial klt
projective variety X of dimension n � 3.

1. Suppose that ρ(X) = 1. Then X is a Q-Fano variety and one of the following
holds.
(a) F is a degree 1 foliation on X � Pn.
(b) X is isomorphic to a (possibly singular) quadric hypersurface Qn ⊂ Pn+1,

and F is a pencil of hyperplane sections of Qn.
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772 C. Araujo, S. Druel

(c) X is a normal generalized cone over a projective normal surface Z with
ρ(Z) = 1, and F is the pullback by X ��� Z of a foliation induced by a
nonzero global section of TZ . Moreover, Z is factorial with klt singularities,
iX > n − 2 and iZ = k(iX − n + 2) for some positive integer k.

2. Suppose that ρ(X) � 2. Then there is an exact sequence of vector bundles

0 → K → E → V → 0

on P1 such that X � PP1(E ), and F is the pullback via the relative linear
projection X ��� Z = PP1(K ) of a foliation on Z induced by a nonzero global
section of TZ ⊗ q∗ det(V )∗. Here q : Z → P1 denotes the natural projection.
Moreover, one of the following holds.
(a) (E ,K ) � (

OP1(2)⊕ OP1(a)⊕2,OP1(a)⊕2
)

for some positive integer a.
(b) (E ,K ) � (

OP1(1)⊕2 ⊕ OP1(a)⊕2,OP1(a)⊕2
)

for some positive integer a.
(c) (E ,K ) � (

OP1(1)⊕OP1(a)⊕OP1(b),OP1(a)⊕OP1(b)
)

for distinct positive
integers a and b.

One of the key ingredients of our proofs of Theorems 1.2 and 1.3 is the following
result, which illustrates the strong restrictions imposed by the existence of a Q-Fano
foliation on a variety X .

Theorem 1.4 Let X be a klt projective variety, and F � TX a Q-Fano foliation. Then
K X − KF is not pseudo-effective.

When ρ(X) = 1, Theorem 1.4 allows us to bound the index of X from below:
iX > iF . When ρ(X) > 1, it bounds from below the length of extremal rays of X .
When F is a codimension 1 del Pezzo foliation, these bounds are good enough for us
to recover X . This is not the case for higher codimension or smaller index iF .

The paper is organized as follows.
In Sect. 2, we review basic definitions of singularities of pairs, gather some results

about Q-Fano varieties and singular del Pezzo varieties, and prove a vanishing result
(Theorem 2.11) that has useful applications to the theory of Q-Fano foliations. In
particular, it allows us to prove Theorem 1.4.

In Sect. 3, we develop the basic theory of foliations and Pfaff fields on mildly
singular varieties, and prove Theorem 1.4.

In Sect. 4, in the spirit of the Kobayashi–Ochiai Theorem, we investigate upper
bounds for the index of Q-Fano foliations. In particular, we prove Theorem 1.2.

Section 5 is devoted to del Pezzo foliations, and contains the proof of Theorem 1.3.
In Sect. 6, we discuss singularities of Q-Fano foliations. In particular, we prove the

following result, which says that codimension 1 Q-Fano foliations on midly singular
varieties must be singular in codimension 2.

Theorem 1.5 Let F � TX be a codimension 1 foliation on a klt projective variety X.
Suppose that X and F are both regular in codimension 2. Then −KF is not ample.

Notation and conventions. We always work over the field C of complex numbers.
Varieties are always assumed to be irreducible and reduced. We denote by Sing(X)
the singular locus of a variety X .
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On codimension 1 del Pezzo foliations 773

Let X be a normal variety. Given a Weil divisor D on X , we denote by OX (D) the
rank 1 reflexive sheaf defined by: H0(U,OX (D)|U ) = {

f ∈ C(X)\{0} ∣∣ div( f ) +
D|U � 0

} ∪ {0} for any open subset U ⊂ X . Given a rank 1 reflexive sheaf F on X ,
then, by abuse of notation, we denote by c1(F ) any Weil divisor D on X such that
OX (D) � F .

Given two Q-Weil divisors D and D′ on a normal variety X , we say that D � D′
if D′ − D is effective.

Let X be a normal variety, and D a Q-Weil divisor on X . Let π : Y → X be a finite
morphism such that, for any prime divisor P ⊂ Y , X is smooth at the generic point
of π(P). Then the pullback of D to Y is well defined, and we denote it either by π∗D
or by D|Y .

If E is a locally free sheaf of OX -modules on a variety X , we denote by PX (E ) the
Grothendieck projectivization ProjX (Sym(E )).

Given a sheaf F of OX -modules on a variety X , we denote by F ∗ the sheaf
HomOX (F ,OX ). If r is the generic rank of F , then we denote by det(F ) the sheaf
(∧rF )∗∗. For m ∈ N, we denote by F [m] the sheaf (F⊗m)∗∗. If G is another sheaf
of OX -modules on X , then we denote by F [⊗]G the sheaf (F ⊗G )∗∗. If π : Y → X
is a morphism of varieties, then we write π [∗]F for (π∗F )∗∗.

If X is a normal variety and X → Y is any morphism, we denote by TX/Y the
sheaf (�1

X/Y )
∗. In particular, TX = (�1

X )
∗. If D is a reduced divisor on X and q ∈ N,

then we denote by �[q]
X the sheaf (�q

X )
∗∗, and by �[q]

X (log D) the sheaf of reflexive
differential q-forms with logarithmic poles along D.

2 Q-Fano varieties, del Pezzo varieties and a vanishing result

In this section we gather some results about Q-Fano varieties and singular del Pezzo
varieties. At the end of the section we prove a vanishing result that has useful appli-
cations to the theory of Q-Fano foliations. We start by recalling some definitions of
singularities of pairs, developed in the context of the Minimal Model Program.

2.1 Singularities of pairs

Definition 2.1 (See [34], section 2.3) Let X be a normal projective variety, and � =∑
ai�i an effective Q-divisor on X , i.e.,� is a nonnegative Q-linear combination of

distinct prime Weil divisors�i ’s on X . Suppose that K X +� is Q-Cartier, i.e., some
nonzero multiple of it is a Cartier divisor.

Let f : X̃ → X be a log resolution of the pair (X,�). This means that X̃ is a
smooth projective variety, f is a birational projective morphism whose exceptional
locus is the union of prime divisors Ei ’s, and the divisor

∑
Ei + �̃ has simple normal

crossing support, where �̃ denotes the strict transform of � in X . There are uniquely
defined rational numbers a(Ei , X,�)’s such that

K X̃ + �̃ = f ∗(K X +�)+
∑

Ei

a(Ei , X,�)Ei .
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774 C. Araujo, S. Druel

The a(Ei , X,�)’s do not depend on the log resolution f , but only on the valuations
associated to the Ei ’s.

We say that (X,�) is canonical if all ai � 1, and, for some log resolution f :
X̃ → X of (X,�), a(Ei , X,�) � 0 for every f -exceptional prime divisor Ei . We
say that (X,�) is log terminal (or klt) if all ai < 1, and, for some log resolution
f : X̃ → X of (X,�), a(Ei , X,�) > −1 for every f -exceptional prime divisor Ei .
If these conditions hold for some log resolution of (X,�), then they hold for every
log resolution of (X,�).

We say that X is canonical (respectively klt) if so is (X, 0). Note that if X is
Gorenstein, i.e., K X is Cartier, then X is canonical if and only if it is klt.

We will need the following observation.

Lemma 2.2 Let r be a positive integer, and � an effective Q-divisor on Pr of degree
� 1. Then (Pr ,�) is klt unless � = H, where H is a hyperplane.

Proof When r = 1, the result is clear. We assume from now on that r � 2.
Write � = ∑

1�i�k di�i , where �i ⊂ Pr is an integral hypersurface, �i �=
� j if i �= j and the di ’s are positive rational numbers. By assumption, deg(�) =∑

1�i�k di deg(�i ) � 1. Suppose that either k � 2, or k = 1 and deg(�1) � 2. Let
p ∈ Pr be a point. We shall show that (X,�) is klt at p.

Observe that

multp � =
∑

1�i�k

di multp �i �
∑

1�i�k

di deg(�i ) = deg(�) � 1.

If multp � < 1, then (Pr ,�) is klt at p by [36, Proposition 9.5.13].
If multp � = 1, then multp �i = deg(�i ) for every 1 � i � k. Thus �i is a cone

in Pr with vertex p for every 1 � i � k.
Let P ⊂ Pr be a general plane passing through p. Then Supp(�)|P is a union

of
∑

1�i�k deg(�i ) distinct lines through p. Let S → P be the blow-up of P at
p, with exceptional locus E . Then S is a log resolution of the pair (P,�|P ) and,
a(E, P,�|P ) = 1 − deg(�) � 0. Thus, (P,�|P ) is klt at p. This implies that (X,�)
is klt at p, by [36, Corollary 9.5.11]). ��

2.2 Q-Fano varieties

Definition 2.3 Let X be a normal projective variety such that K X is Q-Cartier. We say
that X is Q-Fano if −K X is ample. In this case, the index of X is the largest positive
rational number iX such that −K X ∼Q iX H for an ample Cartier divisor H on X .

The following geometric property of klt Q-Fano varieties will be fundamental in
our study of Q-Fano foliations.

Theorem 2.4 ([28, Corollaries 1.3 and 1.5]) Let (X,�) be a klt pair. If −(K X +�)

is nef and big, then X is rationally connected.
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On codimension 1 del Pezzo foliations 775

The following result is certainly well known to experts. We include a proof for lack
of adequate reference.

Lemma 2.5 Let X be klt Q-Fano variety, and L a line bundle on X. If c1(L ) ≡ 0,
then L � OX . In particular, if ρ(X) = 1, then Pic(X) � Z.

Proof Letπ : Y → X be a resolution of singularities. Recall that X has rational singu-
larities. The Leray spectral sequence implies that hi (X,OX ) = hi (Y,OY ) for all i � 0,
and hi (X,L ) = hi (Y, π∗L ) for all i � 0. By the Kawamata–Viehweg vanishing
Theorem, hi (X,OX ) = 0 and hi (X,L ) = 0 for all i � 1 (see [31, Theorem 1.2.5]).
The Grothendieck–Riemann–Roch Theorem and the fact that c1(L ) ≡ 0 imply that
χ(Y, π∗L ) = χ(Y,OY ). Thus χ(Y, π∗L ) = 1, and h0(X,L ) = h0(Y, π∗L ) = 1.
The same argument shows that h0(X,L ⊗−1) = 1 as well. The claim follows. ��

We end this subsection by proving Theorem 1.1.
Proof of Theorem 1.1 The result is clear if n = 1. So we assume that n � 2. Let
π : Y → X be a resolution of singularities, with exceptional locus E . For every t ∈ Z

we have

hn(
Y, π∗L ⊗−t) � h0(Y,OY (KY )⊗ π∗L ⊗t) by Serre duality

� h0(Y\E,OY (KY )⊗ π∗L ⊗t)

= h0(X\π(E),OX (K X )⊗ L ⊗t) for Y\E � X \ π(E)
= h0(X,OX (K X )⊗ L ⊗t) for codim(π(E)) � 2.

Notice that K X + tc1(L ) ∼Q −�+ (t − i)c1(L ).
Suppose that i > n. Then, for every t ∈ {1, . . . , n}, we have t − i < 0, and thus

hn
(
Y, π∗L ⊗−t

) = h0
(
X,OX (K X )⊗ L ⊗t

) = 0. Thus, by [22, Theorem 2.2], there
is a birational morphism ϕ : X → Pn such that L � ϕ∗OPn (1). Since L is ample,
ϕ must be an isomorphism, proving (1).

Suppose that i = n. Then, for every t ∈ {1, . . . , n − 1}, we have t − i < 0, and
thus hn

(
Y, π∗L ⊗−t

) = h0
(
X,OX (K X )⊗L ⊗t

) = 0. Moreover, hn
(
Y, π∗L ⊗−n

) =
h0

(
X,OX (K X )⊗ L ⊗n

)
and K X + nc1(L ) ∼Q −�. If hn

(
Y, π∗L ⊗−n

) = 0, then
(X,L ) � (Pn,OPn (1)) again by [22, Theorem 2.2]. Otherwise, � = 0, −K X ∼Z

nc1(L ) and hn
(
Y, π∗L ⊗−n

) = 1. By [22, Theorem 2.3], either g(X,L ) = 1, where
g(X,L ) denotes the sectional genus of (X,L ), or there is a birational morphism
ψ : X → Qn onto a (possibly singular) quadric hypersurface in Pn+1 such that L �
ψ∗OQn (1). In the latter case, ψ must be an isomorphism since L is ample. Finally
note that g(X,L ) = 1 + 1

2 (K X + (n − 1)c1(L )) · c1(L )n−1 = 1 − 1
2 c1(L )n �= 1.

This proves (2). ��

2.3 Singular del Pezzo varieties

Definition 2.6 ([24], Introduction) A del Pezzo variety is a pair (X,L ), where X is a
(not necessarily normal) projective variety and L is an ample line bundle on X , such
that:
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776 C. Araujo, S. Druel

1. X is Gorenstein,
2. ωX � L ⊗−(dim(X)−1),
3. hi (X,L ⊗t ) = 0 for all t ∈ Z and 0 < i < dim(X).

If X is a Gorenstein klt Q-Fano variety, then, by the Kawamata–Viehweg vanishing
Theorem (see [31, Theorem 1.2.5]), condition (3) above is satisfied. Therefore, X is a
(normal) del Pezzo variety if and only if condition (2) holds.

Our classification of codimension 1 del Pezzo foliations in Theorem 1.3(1) will
rely on the following results.

Proposition 2.7 Let (X,L ) be a normal del Pezzo variety of dimension n � 1 and
degree d := L n. Suppose that X is klt. Then d � 9.

Proof We may assume d � 3, in which case L is very ample by [24, Corollary 1.5].
Suppose that iX �= n − 1. Then (X,L ) � (P3,OP3(2)) by Theorem 1.1, and so

d = 8.
If X ⊂ P(H0(X,L )∗) is not a cone, then d � 9 by [17–19] and [20, 2.9] (see also

[23]).
From now on we assume that X ⊂ P(H0(X,L )∗) is a (singular) cone over a

normal projective variety W , with vertex a linear subspace P of P(H0(X,L )∗). We
may assume that W is not a cone. Notice that W is identified with a global complete
intersection of general members of |L |. Let M be the line bundle on W induced by L .
Then W is Gorenstein and klt, M dim(W ) = d, and iW = k(iX − r) = k(dim(W )−1),
where r = dim(X)− dim(W ) and k is a positive integer. If dim(W ) = 1, then W is a
smooth curve of genus one, contradicting the fact that X is klt. So dim(W ) � 2, and
W is a normal del Pezzo variety of dimension � 2. Since W is not a cone, we must
have d = M dim(W ) � 9 as above, completing the proof of the proposition. ��
Lemma 2.8 Let (X,L ) be a normal del Pezzo variety of dimension n � 2 and degree
L n � 2. Then h0(X,�[1]

X ⊗ L ) = 0.

To prove Lemma 2.8, we will use the following description of reflexive forms on
double covers.

2.9 Let X be a smooth projective variety, and D an effective reduced divisor on X
such that OX (D) � R⊗2 for some line bundle R on X. Let f : Y → X be the double
cover of X ramified over D. Then Y is normal, and f∗�[1]

Y is a reflexive sheaf by [27,

Corollary 1.7]. By [16, Lemme 1.9], f∗�[1]
Y � �1

X ⊕�
[1]
X (log D)⊗ R−1.

Proof of Lemma 2.8 Suppose that L n = 2. By [23, Corollary 6.13], the linear system
|L | induces a double coverπ : X → Pn ramified over a quartic hypersurface B ⊂ Pn .
Then π∗�[1]

X � �1
Pn ⊕�

[1]
Pn (log B)⊗ OPn (−2). By the projection formula,

h0(X,�[1]
X ⊗ L ) = h0(Pn, (π∗�[1]

X )⊗ OPn (1))
= h0(Pn,�1

Pn (1))+ h0(Pn,�
[1]
Pn (log B)⊗ OPn (−1))

= 0.
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Suppose that L n = 1. By [23, Corollary 6.13], (X,L ) admits the following
description. Set Z := PPn−1(OPn−1(2)⊕ OPn−1), write p : Z → Pn−1 for the natural
morphism, and OZ (1) for the tautological line bundle. Let B ∈ |OZ (3)| be a reduced
divisor, S � Pn−1 the section of p corresponding to the surjection OPn−1(2)⊕OPn−1 �
OPn−1 , and set D := B + S. Observe that S ∩ B = ∅, and OZ (D) � (

OZ (2) ⊗
p∗OPn−1(−1)

)⊗2. Let f : Y → Z be the double cover of Z ramified over D, and
set E = f −1(S) � Pn−1. Then, for some choice of B as above, there is a birational
morphism π : Y → X realizing Y as the blowup of X at a smooth point x ∈ X , with
exceptional divisor E . Moreover, the composite morphism ρ : Y → Z → Pn−1 is
induced by the linear system |π∗L ⊗ OY (−E)|.

By the projection formula, using that E is exceptional, we get

h0(X,�[1]
X ⊗ L ) = h0(X,�[1]

X ⊗ L ⊗ π∗OY (E))
= h0(Y, π∗�[1]

X ⊗ π∗L ⊗ OY (E)).

The short exact sequence

0 → π∗�[1]
X → �

[1]
Y → �1

E → 0

and the vanishing of H0(Y,�1
E ⊗ π∗L ⊗ OY (E)) � H0(E,�1

E ⊗ OE (E)) �
H0(Pn−1,�1

Pn−1 ⊗ OPn−1(−1)) yield

h0(Y, π∗�[1]
X ⊗ π∗L ⊗ OY (E)) = h0(Y,�[1]

Y ⊗ π∗L ⊗ OY (E)).

Notice that π∗L ⊗ OY (E) � f ∗OZ (1) ⊗ ρ∗OPn−1(−1). Thus, by the projection
formula,

h0(Y,�[1]
Y ⊗ π∗L ⊗ OY (E)) = h0(Y,�[1]

Y ⊗ f ∗OZ (1)⊗ ρ∗OPn−1(−1))
= h0(Z , f∗�[1]

Y ⊗ OZ (1)⊗ p∗OPn−1(−1)).

Since f∗�[1]
Y � �1

Z ⊕�
[1]
Z

(
log (S + B)

) ⊗ OZ (−2)⊗ p∗OPn−1(1), we conclude that

h0(X,�[1]
X ⊗ L ) = h0(Z ,�1

Z ⊗ OZ (1)⊗ p∗OPn−1(−1))
+h0(Z ,�[1]

Z (log (S + B))⊗ OZ (−1)).

By restricting to a section of p corresponding to the surjection OPn−1(2)⊕ OPn−1 �
OPn−1(2), we see that h0(Z ,�1

Z ⊗OZ (1)⊗ p∗OPn−1(−1)) = 0. To see the vanishing of

the second summand above, notice that�[1]
Z

(
log (S+ B)

)⊗OZ (−1) ⊂ �
[1]
Z (log B)⊗

OZ (S) ⊗ OZ (−1). On the other hand, OZ (S) � OZ (1) ⊗ p∗OPn−1(−2), and so the
desired vanishing follows from

h0(Z ,�[1]
Z (log B)⊗ p∗OPn−1(−2)) = 0.

This completes the proof. ��
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2.4 A vanishing result

Rationally chain connected varieties with mild singularities do not carry nonzero
reflexive forms (see [26]). We show that, under suitable conditions, the same holds for
twisted reflexive forms.

The following observation will be used throughout the paper: if G is a reflexive sheaf
of OX -modules, and i : U ↪→ X is a dense open subset such that codim(X\U ) � 2,
then G � i∗G|U . In particular, any section of G on U extends to a section of G on X .

Lemma 2.10 Let (X,�) be a klt pair. Suppose that either −(K X +�) is nef and big,
or K X +� ∼Q 0 and � is big. Let D be an integral divisor on X such that D ∼Q 0.
Then h0(X,�q

X [⊗]OX (−D)) = 0 for every positive integer q.

Proof Let r be the smallest positive integer such that r D ∼Z 0, and let τ : X ′ → X
be the corresponding cyclic cover (see [34, Definition 2.52, Lemma 2.53]). Then τ
is étale in codimension 1, and τ [∗]OX (D) � OX ′ . Set �′ := τ ∗�, and notice that
τ ∗K X = K X ′ . By [34, Proposition 5.20], (X ′,�′) is klt.

Suppose that −(K X +�) is nef and big. Then so is −(K X ′ +�′) ∼Q −τ ∗(K X +�).
By Theorem 2.4, X ′ is rationally connected, and hence h0(X ′,�[q]

X ′ ) = 0 for any
positive integer q by [26, Theorem 5.1]. On the other hand, any nonzero sec-
tion of �q

X [⊗]OX (−D) induces a nonzero section of �[q]
X ′ . So we conclude that

h0(X,�q
X [⊗]OX (−D)) = 0.

Suppose now that K X +� ∼Q 0 and� is big. Then there exist an ample Q-divisor
A and an effective Q-divisor N on X such that� ∼Q A + N , and (X, N ) is klt. Then
−(K X + N ) ∼Q A is ample, and the claim follows from the previous case. ��

We are ready to state and prove our vanishing result.

Theorem 2.11 Let (X,�) be a klt pair with � big and K X + � pseudo-effective.
Suppose that there exists an integral divisor D on X such that K X +� ∼Q D. Then
h0(X,�q

X [⊗]OX (−D)) = 0 for every positive integer q.

Proof We denote the dimension of X by n.
Consider the integral Weil divisor � = D − K X ∼Q � on X .
Since K X +� is pseudo-effective, the pair (X,�) has a minimal modelϕ : X ��� Y

([7, Corollary 1.4.2]). Set �Y := ϕ∗�, DY := ϕ∗ D and �Y := ϕ∗�, and notice that
KY = ϕ∗K X . Then (Y,�Y ) is klt, �Y is big, and KY + �Y ∼Q DY is nef. By
the base point free Theorem ([7, Corollary 3.9.2]), KY +�Y is semiample, and thus
κ := κ(OY (KY +�Y )) � 0.

Suppose first that κ = 0. Since KY +�Y is semiample, KY +�Y ∼Q 0. By Lemma
2.10, for every positive integer q, h0(Y,�q

Y [⊗]OY (−DY )) = 0. Since ϕ−1 does not
contract any divisor, we conclude that

h0(X,�q
X [⊗]OX (−D)) = 0 (2.1)

for every positive integer q.
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Suppose from now on that κ � 1, and let π : Y → W be the surjective morphism
onto a normal variety defined by the linear system |m DY | for m sufficiently large and
divisible. Denote by W0 the smooth locus of W , and note that dim(W ) = κ .

Suppose that h0(X,�q
X [⊗]OX (−D)) �= 0 for some q � 1. Let ξ : OX (D) ↪→ �

[q]
X

be the nonzero map associated to a nonzero global section of �q
X [⊗]OX (−D). Since

ϕ−1 does not contract any divisors, ξ induces a nonzero map ξY : OY (DY ) ↪→ �
[q]
Y .

By restricting ξY to the smooth locus Y0 of Y , considering the perfect pairing τ0 :
�

n−q
Y0

⊗�
q
Y0

→ �n
Y0

, and extending back to Y , we see that ξY induces a nonzero map

ηY : �[n−q]
Y → OY (−�Y ).

Claim. Over π−1(W0), the map ηY factors through the canonical map �[n−q]
Y →

�
[n−q]
Y/W .

To prove the claim, it is enough to show this factorization over π−1(W0)∩ Y0. Fix
y ∈ Y0 such that w = π(y) ∈ W0. At y, the kernel of �n−q

Y0
→ �

n−q
Y0/W is generated

by (n − q)-forms of the form β ∧π∗γ , where β is a local section of�n−q−1
Y0

at y, and

γ is a local section of�1
W at w. So we must show that (ηY )y(β ∧π∗γ ) = 0. Let ω be

a local generator of �n
Y0

at y, and e a local generator of OY (�Y ) at y. Then ω⊗ e is a
local generator of OY (DY ) at y, and

(ηY )y(β ∧ π∗γ )⊗ ω ⊗ e = (τ0)y((ξY )y(ω ⊗ e) ∧ β ∧ π∗γ ).

In order to prove the claim, we will show that

(ξY )y(ω ⊗ e) ∧ π∗γ = 0. (2.2)

Given s0 ∈ H0(Y,OY (m DY )) generating OY (m DY ) at y, we can find (h1, . . . , hκ) a
local system of coordinates atw such that si = π∗hi s0 ∈ H0(Y,OY (m DY )). In order
to prove (2.2), it is enough to show that, for every 1 � i � κ , (ξY )y(ω⊗e)∧π∗dhi = 0.
This follows from the proof of the Bogomolov–Sommese vanishing Theorem (see [39,
Theorem III]). For the convenience of the reader, we sketch the proof. Let p : T → Y
be a resolution of singularities of Y . By [26, Theorem 4.3], there exists a nonzero
map p∗�[q]

Y → �
q
T . Thus, there exists a nonzero map p[∗]OY (DY ) → �

[q]
T � �

q
T .

Replacing Y with T , and OY (DY )with p[∗]OY (DY ), we may assume that Y is smooth.
By taking successively m-th root out of the si ’s we may also assume that m = 1, and
that s0 = ω ⊗ e. For 0 � i � κ , set αi := ξY (si ) ∈ H0(Y,�1

Y ). Then dαi = 0. On
the other hand, dαi = −π∗dhi ∧ α0. This proves the claim.

Next we show that q = κ . Let w ∈ W0 be a general point, and set F := π−1(w).
Then (F,�Y |F ) is klt, and the adjunction formula gives DY |F ∼Q KF +�Y |F ∼Q 0.

Since ηY factors through the canonical map �[n−q]
Y → �

[n−q]
Y/W , it induces a nonzero

map �[n−q]
F → OF (−�Y |F ). Thus h0(F,�dim(F)−n+q

F [⊗]OF (−DY |F )) �= 0, and
Lemma 2.10 yields dim(F) = n − q. Hence q = κ .

Let C ⊂ W be a general complete intersection curve. Then C ⊂ W0, C is smooth,
and YC = π−1(C) ⊂ Y is a normal projective variety equipped with a flat morphism
πC : YC → C whose general fibers are reduced. Moreover, ηY restricts to a nonzero
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780 C. Araujo, S. Druel

map ηYC : �[n−q]
YC/C → OYC (−�Y |YC ). By [8, Theorem 2.1’], there exists a smooth

complete curve B, together with a finite morphism B → C , such that � : Z →
B has reduced fibers, where Z is the normalization of the fiber product YC ×C B,
and � : Z → B is the natural morphism. Let r : YC ×C B → YC denote the
natural morphism, and set (YC ×C B)0 := r−1(YC\Sing(X)). The map ηYC induces

a nonzero map �[n−q]
(YC ×C B)0/B → O(YC ×C B)0(−�Y |(YC ×C B)0). By [2, Proposition 4.5],

this extends to a nonzero map

ηZ : �[n−q]
Z/B → OZ (−�Y |Z ),

using the fact that (YC ×C B)\(YC ×C B)0 has codimension at least two in YC ×C B.
By [14, Lemme 4.4], �[n−q]

Z/B � OZ (K Z/B). If we denote by F a general fiber of � ,
then KF +�Y |F ∼Q 0 and �Y |Z ∼Q �Y |Z . Thus there exists an effective divisor �
on Z such that �(Supp(�)) � B and

−(K Z/B +�) = �Y |Z ∼Q �Y |Z .

Since �Y |Z is big, we can write �Y |Z ∼Q A + N , with A an ample Q-divisor and
N an effective Q-divisor. Since (Z ,�Y |Z ) is klt over the generic point of B, so is
(Z , (1 − ε)�Y |Z + εN ) for ε > 0 sufficiently small. On the other hand,

−(K Z/B +� + (1 − ε)�Y |Z + εN ) ∼Q εA

is ample, contradicting [2, Theorem 3.1]. We conclude that

h0(X,�q
X [⊗]OX (−D)) = 0.

��

3 Foliations

3.1 Foliations and Pfaff fields

Definition 3.1 Let X be a normal variety. A foliation on X is a nonzero coherent
subsheaf F � TX satisfying

1. F is closed under the Lie bracket, and
2. F is saturated in TX (i.e., TX/F is torsion free).

The rank r of F is the generic rank of F .
The canonical class KF of F is any Weil divisor on X such that OX (−KF ) �

det(F ).

3.2 (Foliations defined by q-forms) Let F be a codimension q foliation on an n-
dimensional normal variety X. The normal sheaf of F is NF := (TX/F )∗∗. The q-th
wedge product of the inclusion N∗

F ↪→ (�1
X )

∗∗ gives rise to a nonzero global section
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On codimension 1 del Pezzo foliations 781

ω ∈ H0(X,�q
X [⊗] det(NF )) whose zero locus has codimension at least 2 in X.

Such ω is locally decomposable and integrable. To say that ω is locally decomposable
means that, in a neighborhood of a general point of X, ω decomposes as the wedge
product of q local 1-forms ω = ω1 ∧ · · · ∧ ωq . To say that it is integrable means that
for this local decomposition one has dωi ∧ ω = 0 for all i ∈ {1, . . . , q}.

Conversely, let L be a reflexive sheaf of rank 1 on X, and ω ∈ H0(X,�q
X [⊗]L )

a global section whose zero locus has codimension at least 2 in X. Suppose that ω is
locally decomposable and integrable. Then we define a foliation of rank r = n − q on
X as the kernel of the morphism TX → �

q−1
X [⊗]L given by the contraction with ω.

These constructions are inverse of each other.

Definition 3.3 We say that a foliation F on a normal variety is Q-Gorenstein if its
canonical class KF is Q-Cartier. We say it is Gorenstein if KF is Cartier.

Definition 3.4 Let X be a variety, and r a positive integer. A Pfaff field of rank r on
X is a nonzero map η : �r

X → L , where L is a reflexive sheaf of rank 1 on X
such that L [m] is invertible for some integer m � 1. The singular locus S of η is
the closed subscheme of X whose ideal sheaf IS is the image of the induced map
�r

X [⊗]L ∗ → OX .
A closed subscheme Y of X is said to be invariant under η if

1. no irreducible component of Y is contained in the singular locus of η, and
2. the restriction ⊗mη|Y : ⊗m�r

X |Y → L [m]|Y factors through the natural map

⊗m�r
X |Y → ⊗m�r

Y , where m � 1 is such that L [m] is invertible. In other words,
there is a commutative diagram

⊗m�r
X |Y

⊗mη|Y ��

��

L [m]|Y ,

⊗m�r
Y

������������

where the vertical map is the natural one.

Suppose that Y is reduced and set Y0 := Y\Sing(Y ). Observe that L|Y0 is locally
free (see [27, Proposition 1.9]). Suppose that condition (1) above is satisfied. Then, Y
is invariant under η if and only if the restriction η|Y0 : �r

X |Y0
→ L|Y0 factors through

the natural map �r
X |Y0

→ �r
Y |Y0

.
Notice that a Q-Gorenstein foliation F of rank r on normal variety X naturally

gives rise to a Pfaff field of rank r on X :

η : �r
X = ∧r (�1

X ) → ∧r (T ∗
X ) → ∧r (F ∗) → det(F ∗) � OX (KF ).

Definition 3.5 Let F be a Q-Gorenstein foliation on a normal variety X . The singular
locus of F is defined to be the singular locus S of the associated Pfaff field. We say
that F is regular at a point x ∈ X if x �∈ S. We say that F is regular if S = ∅.
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782 C. Araujo, S. Druel

Example 3.6 ([1], Remark 3.12) The notion of regularity of foliations discussed above
does not say anything about the singularities of the ambient space. For instance, let Y
be a smooth variety, T any normal variety, and set X := Y ×T , with natural projection
p : X → Y . Set F := p∗TY ⊂ TX . Then F is a regular Gorenstein foliation, while
X may be very singular.

Our definition of Pfaff field is more general than the one usually found in the
literature, where L is required to be invertible. This generalization is needed in order
to treat Q-Gorenstein foliations whose canonical classes are not Cartier. Under the
more restrictive definition, it was proved in [2, Proposition 4.5] that Pfaff fields extend
uniquely to the normalization. The next lemma generalizes this to our current setting.

Lemma 3.7 Let X be a normal variety, and L a torsion free sheaf of rank 1 on X
such that L [m] is locally free for some integer m � 1. Let r be a positive integer, and
η : �r

X → L a Pfaff field. Let F ⊂ X be an invariant integral closed subscheme,
and ẽ : F̃ → X its normalization. Then the map ⊗m�r

F → L [m]|F extends uniquely
to a generically surjective map ⊗m�r

F̃
→ ẽ∗L [m].

Proof It is enough to prove the claim on some open cover of F . Thus, by replacing X
with an open subset if necessary, we may assume that L [m] � OX . Let π : Y → X be
the corresponding cyclic cover (see [34, Definition 2.52, Lemma 2.53]), with Galois
group G. Then π is étale in codimension one, and π [∗]L � OY is locally free. Thus
η induces a Pfaff field ζ : �r

Y → π [∗]L on Y , and Z := π−1(F) ⊂ Y is invariant
under ζ . Let f̃ : Z̃ → Y be the normalization of Z , and denote by π̃ : Z̃ → F̃ the
induced morphism. Then ζ induces a map �r

Z → π [∗]L |Z , which extends uniquely
to a generically surjective map�r

Z̃
→ f̃ ∗π [∗]L by [2, Proposition 4.5]. So we obtain

a nonzero map

ξ : ⊗m π̃∗�r
F̃

⊗m dπ̃−→ ⊗m�r
Z̃

→ ⊗m f̃ ∗π [∗]L � π̃∗ẽ∗L [m].

Observe that the natural action of G on Z extends to an action on Z̃ such that Z̃/G � Ỹ .
Moreover, ⊗m π̃∗�r

F̃
and π̃∗ẽ∗L are naturally G-linearized sheaves on Z̃ and ξ is

G-equivariant. Our claim follows. ��

3.2 Algebraically integrable foliations

Definition 3.8 Let X be a normal variety. A foliationF on X is said to be algebraically
integrable if the leaf of F through a general point of X is an algebraic variety. In this
situation, by abuse of notation we often use the word leaf to mean the closure in X of
a leaf of F .

The following Lemma is well known to experts. See for instance [1, Lemma 3.2].

Lemma 3.9 Let X be a normal projective variety, and F an algebraically integrable
foliation on X. There is a unique irreducible closed subvariety W of Chow(X) whose
general point parametrizes the closure of a general leaf of F (viewed as a reduced
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and irreducible cycle in X ). In other words, if U ⊂ W × X is the universal cycle, with
universal morphisms π : U → W and e : U → X, then e is birational, and, for a
general point w ∈ W , e

(
π−1(w)

) ⊂ X is the closure of a leaf of F .

Notation 3.10 We say that the subvariety W provided by Lemma 3.9 is the closure in
Chow(X) of the subvariety parametrizing general leaves of F . We call the induced
rational map X ��� W a rational first integral for F .

In [1, Definition 3.4] we introduced the notion of general log leaf for algebraically
integrable Gorenstein foliations. Next we extend this to the Q-Gorenstein case.

Definition 3.11 Let X be a normal projective variety, F a Q-Gorenstein algebraically
integrable foliation of rank r on X , and η : �r

X → OX (KF ) the corresponding
Pfaff field. Let F ⊂ X be the closure of a general leaf of F , and ẽ : F̃ → X the
normalization of F . Let m � 1 be the Cartier index of KF , i.e., the smallest positive
integer m such that mKF is Cartier. By [1, Lemma 2.7], F is invariant under η,
i.e., the restriction ⊗mη|F : ⊗m�r

X |F → OX (mKF )|F factors through the natural
map ⊗m�r

X |F → ⊗m�r
Y . By Lemma 3.7, the induced map ⊗m�r

F → OX (mKF )|F
extends uniquely to a generically surjective map η̃ : ⊗m�r

F̃
→ ẽ∗OX (mKF ). Hence

there is a canonically defined effective Weil Q-divisor �̃ on F̃ such that mKF̃ +m�̃ ∼Z

ẽ∗mKF . Namely, m�̃ is the divisor of zeroes of η̃.
We call the pair (F̃, �̃) a general log leaf of F .

Remark 3.12 Let X be a normal projective variety, and F an algebraically integrable
Q-Gorenstein foliation of rank r on X . Let W be the closure in Chow(X) of the
subvariety parametrizing general leaves of F , and U ⊂ W × X the universal cycle.
Denote by e : U → X the natural morphism. Let m be the Cartier index of KF .
Then F induces a map ⊗m�r

U → e∗OX (mKF ), which factors through the natural
morphism ⊗m�r

U � ⊗m�r
U/W (see [1, Remark 3.8 and Lemma 3.2]).

Let W̃ and Ũ be the normalizations of W and U , respectively, and denote by π̃ :
Ũ → W̃ and ẽ : Ũ → X the induced morphisms. By Lemma 3.7, the map ⊗m�r

U →
e∗OX (mKF ) extends uniquely to a nonzero map ⊗m�r

Ũ
→ ẽ∗OX (mKF ). As before,

this map factors through the natural map ⊗m�r
Ũ

� ⊗m�r
Ũ/W̃

, yielding a generically

surjective map

⊗m�r
Ũ/W̃

→ ẽ∗OX (mKF ).

Thus there is a canonically defined effective Weil Q-divisor� on Ũ such that KŨ/W̃ +
� ∼Q ẽ∗KF .

Let w be a general point of W̃ , set Ũw := π̃−1(w) and �w := �|Ũw . Then

(Ũw,�w) coincides with the general log leaf (F̃, �̃) defined above.
The same construction can be carried out for any base change V → W .

Next we define notions of singularity for Q-Gorenstein algebraically integrable
foliations according to the singularity type of their general log leaf.
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Definition 3.13 Let X be a normal projective variety, F a Q-Gorenstein algebraically
integrable foliation on X , and (F̃, �̃) its general log leaf. We say that F has log
terminal singularities along a general leaf if (F̃, �̃) is log terminal.

Proposition 3.14 Let F be an algebraically integrable Q-Gorenstein foliation on a
normal projective variety X. Suppose that F has log terminal singularities along a
general leaf. Then det(F ) is not nef and big.

Proof The proof is the same as the proof of [1, Proposition 5.8]. One only needs to
replace the use of [2, Proposition 4.5] with Lemma 3.7. ��

3.3 Q-Fano foliations

Definition 3.15 Let X be a normal projective variety, and F a rank r Q-Gorenstein
foliation on X .

We say that F is a Q-Fano foliation if −KF is ample. In this case, the index of
F is the largest positive rational number iF such that −KF ∼Q iF H for a Cartier
divisor H on X .

We say that a Q-Fano foliation F is a del Pezzo foliation if r � 2 and iF = r − 1.

Remark 3.16 Let F be Q-Fano foliation of rank r and index iF on a normal projective
variety X , and let H be an ample divisor on X such that −KF ∼Q iF H . Suppose
that KF is Cartier. In general, we do not have −KF ∼Z iF H . However, this holds
if X is a klt Q-Fano variety by Lemma 2.5.

Proof of Theorem 1.4 Let X be a klt projective variety, and F � TX a Q-Fano foliation.
We assume to the contrary that K X − KF is pseudo-effective. Set n := dim(X), and
denote by r the rank of F , 1 � r � n − 1. The r -th wedge product of the inclusion
F � TX gives rise to a nonzero map ξ : OX (K X ) ⊗ det(F ) ↪→ �

[n−r ]
X . Thus

h0(X,�n−r
X [⊗]OX (−K X + KF )) �= 0. Choose a Q-divisor � ∼Q −KF such that

the pair (X,�) is klt, and set D := K X − KF . Then D is an integral divisor on X ,
K X +� ∼Q D, and h0(X,�n−r

X [⊗]OX (−D)) �= 0. This contradicts Theorem 2.11
since n − r � 1. ��

The following is an immediate consequence of Theorem 1.4.

Corollary 3.17 Let X be a klt projective variety with Picard number ρ(X) = 1, and
F a Q-Fano foliation of index iF on X. Then X is a Q-Fano variety, and its index
satisfies iX > iF .

4 The Kobayashi–Ochiai Theorem for foliations

For Fano foliations on smooth projective varieties, the index is at most the rank, and
equality holds only for degree 0 foliations on Pn ([1, Theorem 2.10]). The goal of
this section is to extend this result to the singular case. We start by noticing that by
allowing singularities we get more examples of Q-Fano foliations with index equal to
the rank, which we describe now.
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On codimension 1 del Pezzo foliations 785

Definition 4.1 Let M be an ample line bundle on a normal projective variety Z ,
and r a positive integer. Consider the Pr -bundle Y = PZ (M ⊕ O⊕r

Z ), with natural
projection π : Y → Z . The tautological line bundle OY (1) is semiample on Y . For
m � 0, the linear system |OY (m)| induces a birational morphism e : Y → X onto a
normal projective variety. The morphism e contracts the divisor E = PZ (O

⊕r
Z ) ⊂ Y

corresponding to the projection M ⊕ O⊕r
Z � O⊕r

Z onto e(E) � Pr−1, and induces
an isomorphism Y\E � X\e(E). Following [10], we call X the normal generalized
cone over the base (Z ,M ) with vertex e(E) � Pr−1. If r = 1, then X is called a
normal cone over the base (Z ,M ).

Remark 4.2 Let the notation be as in Definition 4.1.
If ρ(Z) = 1 and Z is Q-factorial, then the same holds for X .
If X is factorial, then so is Z .
Suppose that Z is klt, and K Z ∼Q −(1 + a)c1(M ) for some a ∈ Q. Then

Y is also klt, and KY ∼Q π∗K Z − (r + 1)c1(O(1)) + π∗c1(M ) ∼Q −(r +
1)c1(OY (1))−aπ∗c1(M ). Let L be a line bundle on X such that e∗L � OY (1). Then
e∗π∗c1(M ) ∼Z c1(L ), and E ∼Z c1(OY (1))−π∗c1(M ) ∼Z e∗c1(L )−π∗c1(M ).
Thus K X = e∗KY ∼Q −(r + a + 1)c1(L ) is Q-Cartier, and KY ∼Q e∗K X + aE .
By [33, Lemma 3.10]), we conclude that X is klt if and only if a > −1.

4.3 Let the notation be as in Definition 4.1 and Remark 4.2. Let F be the foliation
of rank r on X induced by the rational map X ��� Z. Then −KF = rc1L .

We will show that, under suitable conditions, the Q-Fano foliations described in
4.3 are the only ones for which the index equals the rank (Theorem 1.2).

Proposition 4.4 Let X be a klt projective variety of dimension n. If X admits a Q-Fano
foliation F � TX of index iF � n − 1, then ρ(X) = 1.

Proof Let L be an ample line bundle on X such that −KF ∼Q iF c1(L ). By
Theorem 1.4, K X + iF c1(L ) is not nef. If ρ(X) � 2, then, by [3, Theorem 2.1],
there is a surjective morphism p : X → Y onto a smooth projective curve Y such
that (F,L|F ) � (Pn−1,OPn−1(1)) for a general fiber F of p. Let � ⊂ F � Pn−1 be a
general line. Then X is smooth in a neighborhood of � and F|� ⊂ TX |� � OP1(2)⊕
OP1(1)⊕n−2⊕OP1 . Thus, either OP1(2)⊕OP1(1)⊕n−3 ⊂ F|�, or F|� � OP1(1)⊕n−1.
So we must have F = TX/Y , which contradicts Proposition 3.14. ��
Proposition 4.5 Let X be a normal projective variety, and F � TX an algebraically
integrable Q-Fano foliation of rank r . Then

1. iF � r .
2. If iF = r , then the general log leaf of F satisfies (F̃, �̃) � (Pr , H), where H is

a hyperplane in Pr .

Proof Let L be an ample line bundle on X such that −KF ∼Q iF c1(L ).
We denote by ẽ : F̃ → X the natural morphism. Recall from Definition 3.11 that

−(KF̃ + �̃) ∼Q −ẽ∗KF ∼Q iF c1(ẽ
∗L ).
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786 C. Araujo, S. Druel

Suppose that iF > r . Then F̃ � Pr and deg(�̃) = r + 1 − i by Theorem 1.1.
In particular (F̃, �̃) is klt by Lemma 2.2. But this contradicts Proposition 3.14. So
iF � r .

Suppose iF = r . By Theorem 1.1, one of the following holds.

• Either (F̃, ẽ∗L ) � (Pr ,OPr (1)) and deg(�̃) = 1, or
• �̃ = 0 and (F̃, ẽ∗L ) � (Qr ,OQr (1)) where Qr is a possibly singular quadric

hypersurface in Pr+1.

In the first case, we conclude that �̃ = H is a hyperplane in Pr by Lemma 2.2 and
Proposition 3.14. The latter case does not occur by Proposition 3.14. ��

The next lemma is useful to prove algebraic integrability of Q-Fano foliations of
high index. First we recall the notion of slope of a torsion-free sheaf.

4.6 Let X be an n-dimensional projective variety, and L an ample line bundle on X.
The slope with respect to L of a torsion-free sheaf F of rank r on X is μL (F ) =
c1(F )·L n−1

r .

Lemma 4.7 ([1], Proposition 7.5) Let X be a normal projective variety, L an ample
line bundle on X, and F � TX a foliation on X. Suppose that μL (F ) > 0, and let
C ⊂ X be a general complete intersection curve. Then either

• F is algebraically integrable with rationally connected general leaves, or
• there exists an algebraically integrable subfoliation G � F with rationally con-

nected general leaf such that det(G ) · C � det(F ) · C.

Proposition 4.8 Let X be a normal Q-factorial projective variety, and assume that
Pic(X)/tors � Z. Let F � TX be a Q-Fano foliation of rank r and index iF > r −1.
Then F is algebraically integrable with rationally connected general leaves.

Proof Let L be an ample line bundle on X such that −KF ∼Q iF c1(L ). Then
Pic(X)/tors = Z[L ].

By Lemma 4.7, either F is algebraically integrable with rationally connected gen-
eral leaves, or there is an algebraically integrable foliation G � F of rank s � r − 1
and index iG � iF . In the latter case, iG � iF > r − 1 � s. But this contradicts
Proposition 4.5. Our claim follows. ��

The following corollary is an immediate consequence of Propositions 4.5 and 4.8.

Corollary 4.9 Let X be a normal Q-factorial projective variety such that Pic(X)/tors
� Z. Let F � TX be a Q-Fano foliation of rank r . Then

1. iF � r .
2. If iF = r , then F is algebraically integrable, and the general log leaf of F

satisfies (F̃, �̃) � (Pr , H), where H is a hyperplane in Pr .

In the situation of Corollary 4.9(2), we want to prove that X is a normal generalized
cone. The idea is to look at the family of leaves π : U → W described in Lemma 3.9.
The first step is to show that π is a Pr -bundle. For that we need the following char-
acterization of projective bundles, which extends [21, Lemma 2.12] to the singular
setting.
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Proposition 4.10 Let X be a normal variety, and p : X → Y an equidimensional
projective morphism of relative dimension k onto a normal variety. Suppose that
there exists a p-ample line bundle L on X such that, for a general point y ∈ Y ,
(X y,L|X y ) � (Pk,OPk (1)). Then (X,L ) � (PY (E ),OPY (E )(1)) as varieties over
Y , where E := p∗L is a vector bundle of rank r + 1.

Proof By [29, Proposition 3.1], all fibers of p are irreducible and generically reduced.
Moreover, the normalization of any fiber is isomorphic to Pk , and L|Pk � OPk (1).
Apply [35, Theorem 12] to conclude that p : X → Y is a Pk-bundle. ��
Proof of Theorem 1.2 Let X be an n-dimensional Q-factorial klt projective variety
with n � 2, and F � TX a Q-Fano foliation of rank r .

Suppose first ρ(X) = 1. By Corollary 3.17, X is a klt Q-Fano variety. By
Lemma 2.5, Pic(X) � Z. Corollary 4.9 then implies that iF � r .

Suppose that iF = r , and let L be an ample line bundle on X such that −KF ∼Q

rc1(L ). By Corollary 4.9, F is algebraically integrable, and the general log leaf of
F satisfies (F̃, �̃) � (Pr , H), where H is a hyperplane in Pr . Let ẽ : F̃ → X denote
the natural morphism. Then ẽ∗L � OPr (1).

Let W be the normalization of the closure in Chow(X) of the subvariety parame-
trizing general leaves of F , and U the normalization of the universal cycle over W ,
with universal family morphisms:

U
e ��

π

��

X .

W

The line bundle e∗L is π -ample and restricts to OPr (1) on a general fiber Uw � Pr

of π . By Proposition 4.10, π is a Pr -bundle. More precisely, setting E := π∗e∗L , U
is isormorphic to PW (E ) over W , and under this isomorphism e∗L corresponds to
the tautological line bundle OPW (E )(1).

We will show that the above diagram realizes X as a normal generalized cone over(
W, det(E )

)
.

By Remark 3.12, there is a canonically defined Q-Weil divisor B on U such that
KU/W + B ∼Q e∗KF . Notice that since KU/W and e∗KF are Q-Cartier divisors, so
is B. Since �̃ is integral, the support of B has a unique irreducible component B ′ that
dominates W . Moreover, B ′ appears with coefficient 1 in B. Let E be the exceptional
locus of e. Note that E has pure codimension 1 since X is Q-factorial. We shall show
that B = B ′ = E .

Let m be a positive integer such that m B is integral. Recall that OU (KU/W ) �
OPW (E )(−r − 1) ⊗ π∗ det(E ), and so m B ∈ |OU (m) ⊗ π∗ det(E )⊗−m |. Let C be
a smooth complete curve, and C → W a non-constant morphism whose image is
not contained in the image of any irreducible component of Supp(B) distinct from
B ′. Let UC be the normalization of C ×W U , with induced morphisms πC : UC →
C and eC : UC → X , and set EC := πC ∗eC

∗L . Then EC is nef, −(KUC/C +
B|UC ) ∼Q eC

∗(−KF ), and m B|UC ∈ |OUC (m) ⊗ π∗
C det(EC )

⊗−m |. Suppose that
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788 C. Araujo, S. Druel

B|UC is reducible, and write B|UC = B ′|UC
+ ∑

1�i�k ai Fi , where the Fi ’s are fibers
of πC and the ai ’s are positive rational numbers. Let t � 0 be such that t ai ∈ Z for
all 1 � i � k. Then

mt B ′|UC
∈ ∣∣OUC (mt)⊗ π∗

C det(EC )
⊗−mt ⊗ OUC (−mt

∑

1�i�k

ai Fi )
∣∣,

and thus

h0(C, SmtEC ⊗ det(EC )
⊗−mt ⊗ OC (−mt

∑

1�i�k

ai ci )) �= 0,

where ci = πC (Fi ) ∈ C . But this contradicts Lemma 4.11 below. We conclude
that B|UC is irreducible, and thus B = B ′. To show that E = B, let C̃ ⊂ UC

be a curve such that πC (C̃) = C , and suppose that eC maps C̃ to a point. Then
B · C̃ = −KUC/C · C̃ = −π∗

C det(EC ) · C̃ . Since L is ample, the later is < 0 again
by Lemma 4.11. Hence, C̃ ⊂ Supp(B). We conclude that E = B. This argument also
shows that B → W is a Pr−1-bundle.

Next we observe that W is Q-factorial with Picard number ρ(W ) = 1. Indeed,
since E is irreducible and X is Q-factorial with Picard number ρ(X) = 1, we have
dim(Pic(U )⊗Q) � dim(Cl(U )⊗Q) = 2. On the other hand, e is not finite, and thus
dim(Pic(U )⊗ Q) � 2. Our claim follows.

Set G := (π|B)∗(e∗L )|B , and notice that it is a nef vector bundle on W . The
inclusion B ⊂ U corresponds to E � G . Since B ∈ |OU (1)⊗ π∗ det(E )∗|, we have
an exact sequence

0 → det(E ) → E → G → 0,

and det(G ) � OW . We claim that G � O⊕r
W . By replacing W with a resolution of

singularities, and applying the projection formula, we may assume that W is smooth.
By Corollary 3.17, X is a Q-Fano variety, and hence rationally connected by The-

orem 2.4. Thus W is rationally connected, hence simply connected by [12, Corollary
4.18]. Our claim then follows from [13, Theorem 1.18].

Since W is a Q-Fano variety with klt singularities and Picard number ρ(W ) = 1,
det(E ) is ample, and h1(W, det(E )) = 0 (see [31, Theorem 1.2.5]). Hence E �
det(E )⊕O⊕r

W , and X is a normal generalized cone over (W,M ), where M = det(E ).
For the last statement, observe that the quotient E � M corresponds to a section

σ of π , contained in U\E � X \e(E) ⊂ X . Moreover, L|σ(W ) � M and Nσ(W )/X �
M ⊕r . Thus ωσ(W ) � ωX |σ(W ) ⊗ M ⊗r , and iW = k(iX − r) � 1 for some positive
integer k. This completes the proof.

Suppose now that F has rank r = n − 1. Then apply Proposition 4.4 and reduce
to the previous case. ��
Lemma 4.11 Let C be a smooth complete curve, and G a vector bundle of rank r � 1
on C.
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1. If G is nef and deg(G ) = 0, then h0(C,G ) � r .
2. If G is nef, then h0(C, Sm(G )⊗det(G )⊗−m ⊗M ⊗−1) = 0 for any integer m � 1,

and any line bundle M on C with deg(M ) > 0.
3. Let OP(1) denote the tautological line bundle on PC (G ). If OP(1) is nef and big,

then deg(G ) > 0.

Proof We prove (1) by induction on r . The result is clear if r = 1. So we assume
that r � 2. We may assume that there exists a nonzero section s ∈ H0(C,G ), which
induces a nonzero map OC ↪→ G . Since G is nef and deg(G ) = 0, OC is in fact a
subbundle of G . So Q = G /OC is a nef vector bundle on C , and deg(Q) = 0. By
induction, h0(C,Q) � r − 1. Our claim follows.

To prove (2), we argue by contradiction. Suppose that h0(C, Sm(G )⊗det(G )⊗−m ⊗
M ⊗−1) �= 0 for some m � 1, and some line bundle M on C with deg(M ) > 0.
Then there is a nonzero map det(G )⊗m ⊗M ↪→ Sm(G ). Sinceμ(det(G )⊗m ⊗M ) =
mrμ(G ) + μ(M ) > mμ(G ) = μ(Sm(G )), G is not semistable, and there exists a
subbundle H ⊂ G of rank k � 1 such thatμ(H ) � rμ(G )+ 1

mμ(M ). The quotient
Q := G /H is a nef vector bundle, and thus

deg(G ) = deg(H )+ deg(Q) � deg(H ) � k deg(G )+ k
m deg(M )

� deg(G )+ k
m deg(M ),

a contradiction.
Assertion (3) is an immediate consequence of (1). ��

5 Codimension 1 del Pezzo foliations on varieties with mild singularities

In this section we prove Theorem 1.3. The proof naturally splits in two parts: the case
of Picard number 1, and Picard number > 1. First we treat the case of Picard number
1. We start by proving algebraic integrability.

Proposition 5.1 Let X be a Q-factorial klt projective variety such that ρ(X) = 1,
and let F � TX be a del Pezzo foliation. Then either

1. F is algebraically integrable with rationally connected general leaves, or
2. X is a generalized cone over a projective normal variety Z with ρ(Z) = 1, and

F is the pullback by X ��� Z of a foliation induced by a nonzero global section
of TZ . Moreover, Z has Q-factorial klt singularities, and iZ = k(iX − r + 1) > 0
for some positive integer k.

Proof Let L be an ample line bundle on X such that −KF ∼Q (r − 1)c1(L ). Then
Pic(X) = Z[L ] by Lemma 2.5.

Suppose that F is not algebraically integrable with rationally connected general
leaves. By Lemma 4.7, there exists a foliation with algebraic leaves G � F of rank
s � r − 1 and index iG � r − 1. By Proposition 4.5, we must have s = iG = r − 1.
By Theorem 1.2, X is a generalized cone as described in (2). The fact that F is the
pullback by X ��� Z of a foliation induced by a nonzero global section of TZ follows
from [1, Lemma 6.7]. ��
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Theorem 5.2 Let X be a factorial klt projective variety of dimension n � 3 and
Picard number ρ(X) = 1. Suppose that X admits a codimension 1 del Pezzo foliation
F � TX . Then one of the following holds.

1. F is a degree 1 foliation on X � Pn.
2. X is isomorphic to a (possibly singular) quadric hypersurface Qn ⊂ Pn+1, and

F is a pencil of hyperplane sections of Qn.
3. X is a normal generalized cone over a projective normal surface Z with ρ(Z) = 1,

andF is the pullback by X ��� Z of a foliation induced by a nonzero global section
of TZ . Moreover, Z is factorial and klt, iX > n − 2 and iZ = k(iX − n + 2) for
some positive integer k.

The proof of Theorem 5.2 follows the line of argumentation of [37]. We will use
the following results, which follow from [loc.cit.]. We provide proofs for the reader’s
convenience.

Lemma 5.3 ([37], Lemma 3.1 or [25]) Let X be a smooth variety of dimension � 3,
and F � TX a codimension one foliation on X. Suppose that there exists a nonzero
Q-divisor D on X such that D ∼Q 0 and such that Supp(D) is invariant by F . Then
either F is defined by a logarithmic 1-form with poles exactly along Supp(D), or
there exists a codimension 2 foliation G � F with KG � KF .

Proof Let ω ∈ H0(X,�1
X ⊗ NF ) be a twisted 1-form defining F . We may assume

that D is integral, and D ∼Z 0. Let {Di }i∈I be the set of irreducible components of D,
and write D = ∑

i∈I di Di . There exist an affine open cover (Uα)α∈A of X , a nonzero
rational function f on X , and regular functions ( fiα)i∈I,α∈A such that, over Uα , fiα

is a defining equation for Di , and

∏

i∈I

f di
iα = uα f,

where uα is a unit on Uα . Thus, for α, β ∈ A,

∑

i∈I

di

(
d fiα

fiα
− d fiβ

fiβ

)
= duα

uα
− duβ

uβ

over Uαβ . For each α ∈ A, set ξα = ∑
i∈I di

d fiα
fiα

− duα
uα

. Then the ξα’s define a logarith-

mic 1-form ξ on X with poles exactly along Supp(D), and ω∧ξ ∈ H0(X,�2
X ⊗ NF )

since Supp(D) is invariant by F . If ω ∧ ξ = 0 then F is defined by the logarithmic
1-form ξ . If ω ∧ ξ �= 0, then ω ∧ ξ defines a codimension 2 foliation G � F such
that KG � KF . This completes the proof. ��
Lemma 5.4 Let X be a Q-factorial normal projective variety with Picard number
ρ(X) = 1, and F � TX an algebraically integrable codimension one foliation with
a rational first integral π : X ��� C. Then either any fiber of π is irreducible or there
exists a codimension 2 foliation G � F on X with KG � KF .
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Proof Suppose that π has a reducible fibre. Let D1 be an irreducible component of a
reducible fiber, and let D2 be a general fiber. Since X is Q-factorial with ρ(X) = 1,
D1 ∼Q d D2 for some nonzero rational number d. Set D := D1 − d D2 ∼Q 0.
By Lemma 5.3 above applied to the smooth locus of X , either F is defined by a
logarithmic 1-form with poles exactly along Supp(D), or there exists a codimension
2 foliation G � F with KG � KF .

Suppose that F is defined by a logarithmic 1-form ξ with poles exactly along
Supp(D). Since a general fiber of π is irreducible, ξ = π∗γ , where γ is a rational
1-form on C . This implies that ξ has poles along fibers, a contradiction. ��
Proof of Theorem 5.2 Let L be an ample line bundle on X such that −KF ∼Q

(n − 2)c1(L ). Then Pic(X) = Z[L ] by Lemma 2.5.
If F is not algebraically integrable, then the result follows from Proposition 5.1.
So from now on we assume that F is algebraically integrable, and consider a

rational first integral π : X ��� W . By Corollary 3.17, X is a Q-Fano variety, and
hence rationally connected by Theorem 2.4. So we must have W � P1.

By Lemma 5.4, either any fiber of π is irreducible, or there exists a codimension 2
foliation G � F on X with KG � KF . In the latter case, G has index iG � n − 2,
and so, by Theorem 1.2, we are in case (3).

From now on we assume that any fiber of π is irreducible. We denote by s � 0
the number of multiple fibers of π . When s � 1, we denote by m1 F1, . . . ,ms Fs the
non reduced fibers of π , with Fi reduced and m1 � · · · � ms � 2. For notational
convenience, we let Fs+1 and Fs+2 be general fibers of π , and set ms+1 = ms+2 = 1.
For 1 � i � s + 2, set pi := π(Fi ) ∈ P1, and let ki be the positive integer such that
OX (Fi ) � L ⊗ki . Notice that

k1m1 = · · · = ksms = ks+1ms+1 = ks+2ms+2. (5.1)

In particular, k1 � · · · � ks+1 = ks+2.
Let R(π) = ∑

1�i�s
mi −1

mi
π∗OP1(pi ) be the ramification divisor of π . By [14,

Lemma 4.4], we have

det(NF ) � π∗OP1(2)⊗ OX
( − R(π)

)

� OX
(
F1 + F2 −

∑

3�i�s

(mi − 1)Fi
)

� L ⊗
(

k1+k2−∑
3�i�s ki (mi −1)

)
.

On the other hand,

OX (K X ) � OX (KF )⊗ det(N∗
F ).

Thus the index iX of X satisfies

iX = n − 2 + k1 + k2 −
∑

3�i�s

ki (mi − 1). (5.2)
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By Corollary 3.17, we must have iX � n − 1. If iX � n + 1, then, by Theorem
1.1, i = n + 1, (X,L ) � (Pn,OPn (1)) and F is degree one foliation on Pn . So from
now on we assume that n − 1 � iX � n.

We claim that there exists a finite cover c : C → P1, unramified over
P1\{p1, . . . , ps}, and having ramification index mi at each point of c−1(pi ). If s � 2,
then iX = n, k1 = k2 = 1, and m1 = m2 by (5.2) and (5.1). In particular, either s = 0
(when m1 = m2 = 1) or s = 2 (when m1 = m2 � 2). In either case the existence of
c : P1 → P1 is clear. If s > 2, the existence of c : C → P1 follows from [32, Lemma
6.1]. Let X ′ be the normalization of X in the function field of X ×P1 C , with induced
morphism c′ : X ′ → X , and set L ′ := c′∗L . An easy calculation shows that c′ is
étale in codimension one. Hence c′ is étale over X\Sing(X) by purity of the branch
locus. In particular, X\Sing(X) is not simply connected if s > 0.

Suppose that iX = n. Then, by Theorem 1.1, (X,L ) � (Qn,OQn (1)) where Qn

is a possibly singular quadric hypersurface in Pn+1. Moreover, since X\Sing(X) is
simply connected, s = 0 and k1 = k2 = 1 by (5.2). In other words, F is a pencil of
hyperplane sections of Qn .

Suppose now that iX = n −1. In particular, (X,L ) is a (normal) del Pezzo variety.
Then, by (5.2) and (5.1), we must have s = 3 and either (k1, k2, k3,m1,m2,m3) =
(1, k, k, 2k, 2, 2) for some integer k � 1, or (k1, k2, k3,m1,m2,m3) ∈ {

(2, 2, 3, 3,
3, 2), (3, 4, 6, 4, 3, 2), (6, 10, 15, 5, 3, 2)

}
.

Note that K X ′ = c′∗K X since c′ : X ′ → X is étale in codimension one. This implies
that X ′ has Gorenstein klt singularities (see [34, Proposition 5.20]). Thus (X ′,L ′)
is a (normal) del Pezzo variety, and hence rationally connected by Theorem 2.4. So
C � P1. By Hurwitz formula, either deg(c) = 4k for some integer k � 1, or deg(c) ∈
{12, 24, 60}, respectively. Since L n � 3 by Lemma 2.8, we have L ′n = deg(c) ·
L n � 12. On the other hand, Proposition 2.7 tells us that L ′n � 9, yielding a
contradiction and completing the proof. ��

Now we consider the case of Picard number ρ(X) � 2.

Theorem 5.5 Let X be a factorial klt projective variety of dimension n � 3 and
Picard number ρ(X) � 2. Suppose that X admits a codimension 1 del Pezzo foliation
F � TX . Then there is an exact sequence of vector bundles

0 → K → E → V → 0

on P1 such that X � PP1(E ), and F is the pullback via the relative linear projection
X ��� Z = PP1(K ) of a foliation on Z induced by a nonzero global section of
TZ ⊗ q∗ det(V )∗. Here q : Z → P1 denotes the natural projection. Moreover, one of
the following holds.

1. (E ,K ) � (
OP1(2)⊕ OP1(a)⊕2,OP1(a)⊕2

)
for some positive integer a.

2. (E ,K ) � (OP1(1)⊕2 ⊕ OP1(a)⊕2,OP1(a)⊕2) for some positive integer a.
3. (E ,K ) � (OP1(1) ⊕ OP1(a) ⊕ OP1(b),OP1(a) ⊕ OP1(b)) for distinct positive

integers a and b.

Proof Note that X has Gorenstein rational singularities. Denote by n the dimension
of X , and let L be an ample line bundle on X such that −KF ∼Q (n − 2)c1(L ). By
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Theorem 1.4, K X + (n −2)c1(L ) is not nef. By [21, Theorem 3], one of the following
holds:

(A) X is the blowup of Y at a smooth point (see also [3, Theorem 3.1]).
(B) There exists a surjective morphism p : X → Y onto a normal projective variety

Y with Picard number ρ(Y ) = ρ(X)− 1, with general fiber F , satisfying one of
the following conditions.

(1) dim(Y ) = 1 and (F,L|F ) � (P2,OP2(2)).
(2) dim(Y ) = 1 and (F,L|F ) � (Qn−1,OQn−1(1)), where Qn−1 is a (possibly

singular) quadric hypersurface in Pn .
(3) dim(Y ) = 1, (F,L|F ) � (Pn−1,OPn−1(1)), and there exists an ample vector

bundle G on Y such that X � PY (G ) as varieties over Y , with tautological line
bundle OX (1) � L .

(4) dim(Y ) = 2 and (F,L|F ) � (Pn−2,OPn−2(1)).

First we consider case (B). We claim that TX/Y � F . Since F is log terminal,
F �= TX/Y by Proposition 3.14. Hence, if TX/Y ⊂ F , we must be in case (B4).
In this case, by [1, Lemma 6.7], F is the pullback by p of a rank 1 foliation on Y ,
and thus F|� � TF |� ⊕ OP1 , where � is a general line on F . But this contradicts the
assumptions that −KF ∼Q (n − 2)c1(L ), and proves the claim.

By considering the possible splitting types of the restriction of F to a general line
on F , and using the fact that TX/Y � F , we see that cases (B1) and (B4) do not occur.

Next we show that case (B2) cannot occur either. Let C ⊂ Qn−1\Sing(Qn−1)

be a general conic. Then X is smooth in a neighborhood of C and F|C ⊂ TX |C �
OP1(2)⊕n−1 ⊕ OP1 . Since F �= TX/Y , the foliation G := F ∩ TX/Y has rank n − 2,
and G|C � OP1(2)⊕n−2. It induces a foliation on F � Qn−1 defined by a twisted
1-form in H0(F,�[1]

F ⊗ L|F ). But h0(F,�[1]
F ⊗ L|F ) = 0, a contradiction.

Suppose we are in case (B3). The short exact sequence

0 → TX/Y → TX → p∗TY → 0

yields an exact sequence

0 → ∧n−1TX/Y → ∧n−1TX → ∧n−2TX/Y ⊗ p∗TY → 0.

Since F � TX/Y , h0(X,∧n−2TX/Y ⊗ p∗TY ⊗ L ⊗−(n−2)) �= 0. By [1, Proposition
9.11 (4)], Y � P1. The description of X and F now follows from [1, Theorem 9.6].

Finally, we show that case (A) does not occur. Let p : X → Y be the blowup of Y
at a smooth point y ∈ Y , with exceptional divisor E . Then L + E � p∗M for some
ample line bundle M on Y , and F induces a codimension 1 del Pezzo foliation G on
Y with det(G ) � M ⊗n−2.

By replacing (X,F ,L ) with (Y,G ,M ) successively, we may assume that either
ρ(Y ) = 1 or Y satisfies (B3). In either case there is an unsplit covering family H of
rational curves on Y such that M · H = 1 (when ρ(Y ) = 1, this follows from the
classification in Theorem 5.2). Let C be a curve from the family H passing through
y, and C̃ its strict transform in X . Then

123

Author's personal copy



794 C. Araujo, S. Druel

M · H = M · C = π∗M · C̃ = L · C̃ + E · C̃ � 2,

contradicting the choice of H . This completes the proof. ��
Remark 5.6 Under the assumptions of Theorem 5.5, we have shown in particular that
X is smooth. So F is algebraically integrable, and [1, Remark 7.11] provides complete
description of the general log leaf.

Proof of Theorem 1.3 Apply Theorems 5.2 and 5.5. ��

6 Regular foliations

In this section, we discuss the singular locus of Q-Fano foliations on varieties with
mild singularities. Let F � TX be a regular foliation on a complex projective manifold
X . If F is algebraically integrable, then −KF is not ample by Proposition 3.14. We
start by generalizing this result to arbitrary regular foliations on complex projective
manifolds with Picard number one.

Theorem 6.1 Let F � TX be a regular foliation on a complex projective manifold
X with Picard number ρ(X) = 1. Then −KF is not ample.

Proof Suppose to the contrary that −KF is ample. Set Q := TX/F , L := det(F ),
and denote by r the rank of F . Then det(Q) � OX (−K X )⊗L ⊗−1. By [6, Corollary
3.4], det(Q)dim(X) = 0. Since ρ(X) = 1, we must have det(Q) ≡ 0. This implies that
X is a Fano manifold, and, by Lemma 2.5, det(Q) � OX . So h0(X,�dim(X)−r

X ) �= 0.

On the other hand, by Hodge symmetry, h0(X,�dim(X)−r
X ) = hdim(X)−r (X,OX ), and

the latter vanishes by Kodaira vanishing theorem, a contradiction. ��
6.2 (The Atiyah class of a locally free sheaf) Let X be a smooth variety, and E a

locally free sheaf of rank r � 1 on X. Let J 1
X (E ) be the sheaf of 1-jets of E . I.e., as a

sheaf of abelian groups on X, J 1
X (E ) � E ⊕ (�1

X ⊗E ), and the OX -module structure
is given by f (e, α) = ( f e, f α − d f ⊗ e), where f , e and α are local sections of
OX , E and �1

X ⊗ E , respectively. The Atiyah class of E is defined to be the element
at (E ) ∈ H1(X,�1

X ⊗ EndOX (E )) corresponding to the Atiyah extension

0 → �1
X ⊗ E → J 1

X (E ) → E → 0.

It can be explicitly described as follows. Choose an affine open cover (Ui )i∈I of X
such that E admits a frame fi : Or

Ui

∼→ E |Ui for each Ui . For i, j ∈ I , define

fi j := f −1
j |Ui j ◦ fi |Ui j . Then

at (E ) = [(− f j |Ui j ◦ d fi j |Ui j ◦ f −1
i |Ui j )i, j ] ∈ H1(X,�1

X ⊗ EndOX (E ))

(see [4, Proof of Theorem 5]).

The next result follows from the proof of [6, Proposition 3.3] and [6, Corollary 3.4].
We sketch the proof for the reader’s convenience.
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Lemma 6.3 Let X be a smooth variety, and F � TX a regular foliation. Set Q =
TX/F . Then at (Q) ∈ H1(X,�1

X ⊗ E ndOX (Q)) is in the image of the natural map

H1(X,Q∗ ⊗ E ndOX (Q)) → H1(X,�1
X ⊗ E ndOX (Q)).

Proof Since F is regular, there is an exact sequence

0 → Q∗ → �1
X → F ∗ → 0.

Taking cohomology yields

H1(X,Q∗ ⊗ E ndOX (Q)) → H1(X,�1
X ⊗ E ndOX (Q))

δ→ H1(X,F ∗ ⊗ E ndOX (Q)).

We must show that δ(at (Q)) = 0.
Denote by q the rank of Q. Choose an affine open cover (Ui )i∈I of X such that,

over each Ui , Q admits a frame αi : O
q
Ui

∼→ Q∗|Ui . By assumption, F is stable under

the Lie bracket. This is equivalent to saying that dQ∗ ⊂ Q∗ ∧�1
X . Thus, viewing αi

as a line vector whose entries are local sections of Q∗ ⊂ �1
X over Ui , we get a matrix

βi , whose entries are local sections of Q∗ ⊂ �1
X over Ui , such that dαi = αi ∧ βi .

For i, j ∈ I , set fi j := α−1
j |Ui j ◦ αi |Ui j . Then

at (Q) = [(−α j |Ui j ◦ d fi j |Ui j ◦ α−1
i |Ui j )i, j ] ∈ H1(X,�1

X ⊗ E ndOX (Q)).

Since αi = α j · fi j on Ui j ,

dαi = dα j · fi j + α j ∧ d fi j ,

and

αi ∧ βi = α j · fi j ∧ βi = α j ∧ β j · fi j + α j ∧ d fi j .

Given v ∈ H0(Ui j ,F|Ui j ),

α j · fi j · βi (v) = iv(α j · fi j ∧ βi )

= iv(α j ∧ β j · fi j + α j ∧ d fi j ).

= α j · β j (v) · fi j + α j · d fi j (v).

This implies that

δ(at (Q)) = [(β j |Ui j − βi |Ui j )i, j ],
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and thus

δ(at (Q)) = 0.

��
The following result is certainly well known. We include a proof for lack of adequate

reference. We remark that a locally free sheaf of finite rank on a Cohen–Macaulay
locally noetherian scheme satisfies Serre’s condition Sk for any integer k � 0.

Lemma 6.4 Let X be a noetherian scheme, and G a coherent sheaf of OX -modules
on X. Suppose that G satisfies Serre’s condition Sk for some integer k � 1. Let U ⊂ X
be an open subset such that codim X (X\U ) � k. Then Hi (X,G ) � Hi (U,G|U ) for
0 � i � k − 1.

Proof Set Y := X\U . Denote by H i
Y (G ) the local cohomology sheaf. By assumption,

H i
Y (G ) = 0 for 0 � i � k. The spectral sequence of local cohomology groups and

sheaves implies that Hi
Y (X,G ) = 0. The long exact sequence

· · · → Hi
Y (X,G ) → Hi (X,G ) → Hi (U,G|U ) → Hi+1

Y (X,G ) → · · ·

then yields Hi (X,G ) � Hi (U,G|U ) for 0 � i � k − 1, as claimed. ��
We can now prove our result in the mildly singular setting.

Proof of Theorem 1.5 Let F � TX be a codimension 1 foliation on a klt projective
variety X , and suppose that X and F are both regular in codimension 2. We want to
show that −KF is not ample.

Assume to the contrary that −KF is ample. Set Q := TX/F and L :=
det(F ). Then Q∗∗ � OX (−K X ) ⊗ L ⊗−1. Let U ⊂ X be a smooth open
subset such that codim(X\U ) � 3, and F is regular on U . By Lemma 6.4,
h1(U,Q∗|U ) = h1(X,Q∗) = h1(X,OX (K X ) ⊗ L ), and the latter vanishes by
the Kawamata–Viehweg Vanishing Theorem (see [31, Theorem 1.2.5]). By Lemma
6.3, 0 = at (Q|U ) ∈ H1(U,�1

U ). This implies that, for any smooth complete
curve C ⊂ U , (K X + c1(L )) · C = 0. Hence K X + c1(L ) ≡ 0. Thus, X is
a Q-Fano variety. Let k be a positive integer such that k(K X + c1(L )) is Cartier.
By Lemma 2.5, OX (k(KF + c1(L ))) � OX . This contradicts Lemma 2.10 since
h0(X,�q

X [⊗]OX (−KF − c1(L ))) �= 0. ��
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