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Abstract In this paper we partly extend the Beauville-Bogomolov decompo-
sition theorem to the singular setting. We show that any complex projective
variety of dimension at most five with canonical singularities and numeri-
cally trivial canonical class admits a finite cover, étale in codimension one,
that decomposes as a product of an Abelian variety, and singular analogues of
irreducible Calabi—Yau and irreducible holomorphic symplectic varieties.
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S. Druel

1 Introduction

The Beauville-Bogomolov decomposition theorem asserts that any compact
Kihler manifold with numerically trivial canonical bundle admits an étale
cover that decomposes into a product of a torus, and irreducible, simply-
connected Calabi—Yau, and holomorphic symplectic manifolds (see [7]).
Moreover, the decomposition of the simply-connected part corresponds to
a decomposition of the tangent bundle into a direct sum whose summands are
integrable and stable with respect to any polarization.

With the development of the minimal model program, it became clear that
singularities arise as an inevitable part of higher dimensional life. If X is
any complex projective manifold with Kodaira dimension x (X) = 0, standard
conjectures of the minimal model program predict the existence of a birational
contraction X --» X', where X’ has terminal singularities and K x» = 0. This
makes imperative to extend the Beauville-Bogomolov decomposition theorem
to the singular setting.

Building on recent extension theorems for differential forms on singular
spaces, Greb, Kebekus and Peternell prove a decomposition theorem for the
tangent sheaf of complex projective varieties with canonical singularities and
numerically trivial canonical class.

Theorem 1.1 ([25, Theorem 1.3]) Let X be a normal complex projective vari-
ety with canonical singularities. Assume that Kx = 0. Then there exists an
abelian variety A as well as a projective variety X with canonical singularities,
a finite cover A x X — X, étale in codimension one, and a decomposition

Tg:@@@i

iel
such that the following holds.

1. The &; are inteﬁmble Nsubsheaves of Ty, with det(&;) = O%.
Further, if g: X — X is any finite cover, étale in codimension one, then
the following properties hold in addition. R

2. The sheaves (g*&;)** are stable with respect to any polarization on X.

3. The irregularity h' (X, 0%) of X is zero.

Based on Theorem 1.1 above, they argue in [25, Sect. 8] that the natural
building blocks for any structure theory of complex projective varieties with
canonical singularities and numerically trivial canonical class are canonical
varieties with strongly stable tangent sheaf (see Definition 2.4 for this notion).
In dimension no more than five, they also show that canonical varieties with
strongly stable tangent sheaf fall into two classes, which naturally generalize
the notions of irreducible Calabi—Yau and irreducible holomorphic-symplectic
manifolds, respectively.
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A decomposition theorem for singular spaces

The main result of our paper is the following decomposition theorem.

Theorem 1.2 Let X be a normal complex projective variety of dimension at
most 5, with kit singularities. Assume thatN Kx = 0. Then there exists an abelian
variety A as well as a projective variety X with canonical singularities, a finite
cover A x X — X, étale in codimension one, and a decomposition

)?%HY,‘XHZJ'

iel jeJ

of X into normal projective varieties with trivial canonical class, such that the
following holds.

1. We have ho(?i, Qgg]) = 0 for all numbers 0 < q < dimY; and all finite
covers 171 — Y;, étale in codimension one.

2. There exists a reflexive 2-formo € H° (Z s Q[Zz]) such that o is everywhere

J
non-degenerate on the smooth locus of Z j, and such that for all finite covers
f:1Z; — Zj, étale in codimension one, the exterior algebra of global
reflexive forms is generated by f™lo € HY (Z,-, Q[Zg])
J

Remark 1.3 The decomposition of X induces the decomposition of T given
by Theorem 1.1 above up to permutation of the summands.

The proof of the Beauville-Bogomolov decomposition theorem heavily
uses Kéhler-Einstein metrics and the solution of the Calabi conjecture. But
these results are not yet available in the singular setting. Instead, the proof
of Theorem 1.2 relies on Theorem 1.1 and on sufficient criteria to guarantee
that a given foliation has algebraic leaves. In [12], Bost proved an arithmetic
algebraicity criterion for leaves of algebraic foliations defined over a number
field. Building on his result, we obtain the following algebraicity criterion.

Theorem 1.4 Let X be a normal complex projective variety of dimension n
with terminal singularities, and let H be an ample Cartier divisor. Let

Tx =@%’€9é"
iel

be a decomposition of Tx into involutive subsheaves. Suppose that for any finite
cover g: X — X, étale in codimension one, the sheaf (¢*4;)** is g* H-stable.
Suppose furthermore that
c1(%)-H" ' =0, and either
(@) -H'>#0 or
(&) - H"™2 #0
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for each i € I. Suppose finally that & is H-polystable with

(&) -H" ' =c1(6)* - H" 2
= (&) - H"? =0.

Then there exists an abelian variety A as well as a projective variety X with
terminal singularities, and a finite cover f: Ax X — X, étale in codimension
one, such that

(ffe™ = Ty %%
as subsheaves of T, %

Remark 1.5 Inthe setup of Theorem 1.4, there exists a finite cover f : X X
étale in codimension one such that (f*&)** is a locally free, flat sheaf on X
([26, Theorem 1.20]). In particular, if the étale fundamental group nf’ (Xreg) 18
finite, then the conclusion of Theorem 1.4 follows easily from the description
of the Albanese map of mildly singular varieties whose canonical divisor is
numerically trivial in [37, Proposition 8.3]. On the other hand, [25, Corollary
3.6] reduces the study of varieties with trivial canonical class to those with zero
augmented irregularity (see Definition 4.1 for this notion), and it is expected
that the étale fundamental group of their smooth locus is finite (see [25, Sect. 8]
and [26, Theorem 1.5]). This is true if dim X < 4 by [25, Corollary 8.25],
providing an alternative proof of Theorem 1.4 in this case.

The geometric counterpart of Bost’s arithmetic algebraicity criterion, inde-
pendently obtained by Bogomolov and McQuillan [11], and very recently
extended by Campana and Pdun [15] leads to the following algebraicity crite-
rion.

Theorem 1.6 Let X be a normal complex projective variety of dimension n,
and let H be an ample Cartier divisor. Suppose that X is smooth in codimension
two. Let

Ix=6®Y

be a decomposition of Tx into involutive subsheaves, where & is H-stable,
det(&) = Ox and c2(&) - H'™% # 0. Suppose furthermore that & has rank
at most 3. Then & has algebraic leaves.

Theorem 1.6 confirms a conjecture of Pereira and Touzet in some special
cases (see [53, Remark 6.5]). It is one of the main technical contributions of
this paper.

This paper is organized as follows.
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A decomposition theorem for singular spaces

In Sect. 3, we review basic definitions and results about foliations on normal
varieties.

In Sect. 4, we show that algebraic integrability of direct summands in the
decomposition of the tangent bundle given by Theorem 1.1 leads to a decom-
position of the variety, perhaps after passing to a finite cover that is étale in
codimension one (see Theorem 4.5 and Proposition 4.10). This solves [25,
Problem 8.4].

Section 5 is devoted to the proof of Theorem 1.4.

In Sects. 6-8, we prove Theorem 1.6. In the setup of Theorem 1.6, we
show that either & satisfies the Bost—Campana—Péaun algebraicity criterion
in Proposition 8.4, or & admits a holomorphic Riemannian metric. This is an
immediate consequence of our study of stable reflexive sheaves of rank at most
3 with numerically trivial first Chern class and pseudo-effective tautological
line bundle in Sect. 6. For a precise statement, see Theorem 6.1. If & admits
a holomorphic metric, then it follows from Proposition 7.5 that & admits a
holomorphic connection, yielding a contradiction.

In Sect. 9, we finally prove Theorem 1.2.

2 Notation, conventions, and basic facts

2.1 (Global Convention) Throughout the paper a variety is a reduced and
irreducible scheme separated and of finite type over a field.

2.2 (Differentials, reflexive hull) Given a normal variety X, we denote the
sheaf of Kihler differentials by 2 ; If 0 < p < dim X is any number, write
Q[)‘(”] = (Qf()**. The tangent sheaf will be denoted by Tx := (Q;)*.

Given a normal variety X, m € N, and coherent sheaves & and ¢4 on X,
write &M = (£ SIME = (§M &), det(&) = (A™KE &)™, and
ERYG = (& ® Y)*™. Given any morphism f: Y — X, write f*1& =

2.3 (Stability) The word “‘stable” will always mean “slope-stable with respect
to a given polarization”. Ditto for semistability.

Definition 2.4 ([25, Definition 7.2]). Let X be a normal complex projective
variety of dimension 7, and let & be a coherent reflexive sheaf. We call ¢
strongly stable, if for any finite morphism f: X — X that is étale in codi-
mension one, and for any choice of ample divisors ~I’-Il, ..., H,_; on X, the

~

reflexive pull-back f*1¥ is stable with respect to (Hy, ..., H,_1).

2.5 (Nef and pseudo-effective cones) Let X be a complex projective variety
and consider the finite dimensional dual R-vector spaces

Ni(X)r = ({I —cycles}/ =) ® R and N'(X)r = (Pic(X)/ =) ®R,
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where = denotes numerical equivalence. Set N! (X )o = (Pic(X ) = ) ® Q.
The Mori cone of X is the closure NE(X) C N;(X)g of the cone NE(X)
spanned by classes of effective curves. Its dual cone is the nef cone Nef(X) C
N!(X)r, which by Kleiman’s criterion is the closure of the cone spanned by
ample classes. The closure of the cone spanned by effective classes in N! (X)g
is the pseudo-effective cone Eff(X).

2.6 (Projective space bundles) If & is a locally free sheaf of finite rank on a
variety X, we denote by Px (&) the variety Proj  (Sym(&)), and by Op, () (1)
its tautological line bundle.

Lemma 2.7 Let X be a complex projective variety, let H be an ample Cartier
divisor, and let & be a locally free sheaf of finite rank. Then [Op, (s)(1)] €
N! (IP’X (& ))R is not pseudo-effective if and only if there exists ¢ > 0 such that
ho (X ,SIEROx(jH )) = 0 for any positive integer j and any natural number
i satisfyingi > cj.

Proof Set Y := Px(&), denote by Oy(1) the tautological line bundle on
Y,and by 7: ¥ — X the natural morphism. If [0y (1)] € NI (Y)R is not
pseudo-effective, then Oy (m) ® w*Ox (H) is not pseudo-effective either for a
sufficiently large positive integer m. Let now i and j be positive integers such
that i > mj. Then Oy (i) ® 7*Ox(j H) is not pseudo-effective as well, and
hence

W(X,8'¢® Ox(jH)) = h'(Y, Oy (i) @ w*Ox (jH)) = 0

by the projection formula.

Conversely, suppose that [0y (1)] € N L(Y)is pseudo-effective. Pick mg >
0 such that Oy (1) ® nw*Ox(moH) is ample. Then, for each positive integer
m, the line bundle Oy (m + 1) @ m*Ox (moH) is big, and hence there exists a
positive integer k such that

hO(X, SR8 @ Ox (kmoH)) = h°(Y, Oy (km + k) ® 7* Ox (kmoH)) # 0.

This completes the proof of the lemma. O

2.8 (Chern classes) We will need to consider intersection numbers of line
bundles with Chern classes of reflexive sheaves on singular varieties. We use
[21, Chapter 3] as our main reference for Chern classes on varieties over a
field. Given a variety X, we denote by Ay (X) the group of k-dimensional
cycles modulo rational equivalence.
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Definition 2.9 Let X be a variety of dimension r, and let & be a coherent sheaf.
Let X° C Xieg be the maximal open set where ¢ is locally free. Assume that the
complement of X° in X has codimension at least k4 1 for some positive integer
k. The k-th Chern class cx (%) of ¢ is the image of ¢ (¥4 x°)N[X°] € A,k (X°)
under the isomorphism A, _;(X°) = A,_(X), where ¢, (4 x): Ae(X°) —
A4_r(X?) is the Chern class operation.

Remark 2.10 Complex varieties with terminal singularities are smooth in codi-
mension two (see [40, Corollary 5.18]). So the first and second Chern classes
of coherent sheaves are well-defined on these varieties.

We will need the following observation. Notice that much of the intersection
theory developed in [21, Chapters 1-10] is valid for schemes, separated and of
finite type, over a noetherian regular scheme (see [21, Chapter 20]). Given a
scheme X, separated and of finite type over a noetherian regular scheme §, we
denote by Ar(X/S) the group of relative dimension k cycles modulo rational
equivalence.

Lemma 2.11 Let T be an integral noetherian scheme of dimension m, let X
be an integral scheme of dimension n, and let m: X — T be a dominant
proper morphism. Let 4 be a coherent sheaf, and let H be a Cartier divisor
on X. Givent € T, we denote by X; the fiber of mw over the point t. Write
% = Y x, and H; :== H|x,. Let X° C X be the open set where 4 is locally
free. Assume that the complement of X° in X has codimension at least k + 1
for some positive integer k. Then there exists a dense open set T° C T such
that the intersection number cy (%) - H}' =k g independent of t € T°.

Remark 2.12 Lett € T.The scheme X; is viewed as a scheme over the residue
field of z. If the complement of X° N X; in X; has codimension at least k + 1,
then ¢ (&) is well-defined.

Proof of Lemma 2.11 Replacing T by a dense open set, we may assume that
m is flat, and that, for any point ¢ € T, the complement of X° N X; in X;
has codimension at least k + 1. We will show that the intersection number
k(%) - H —m=k g independent of r € T'. In order to prove our claim, we may
assume without loss of generality that 7 = Spec R for some discrete valuation
ring R. Let n be the generic point of 7', and let ¢ be its closed point.

Let now ¢ (%) be the image of ¢, (4 x-) N[X°] € Ay—n—k(X°/S) under the
isomorphism Ay —k(X°/S) = Ap—m—k(X/S), where ¢;(¥x-): Ae(X°/S)
— Ae_1(X°/S§) is the Chern class operation. The inclusion X, C X induces
a pull-back morphism

—n: Ad(X/S) = Ad(Xy),
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and the regular embedding X; C X induces a Gysin homomorphism
=11 Ad(X/S) = Ao(Xy).
By [21, Chapter 20], there is a specialization map
5 AXy) = Ad(Xy)

such that s o —) = —.

The degree 0 component of s preserves degrees by [21, Proposition 20.3 a)]
and, by [21, Example 20.3.3], we have s(«, - H) = s(«ay) - H|x, for any cycle
o, € A.(X},) on the generic fiber. It follows that we have

cx( @)y - Hig "™ = e @), - Hl "

Notice that [X]; = [X;] since X is flatover T and {¢} C T is a regular embed-
ding (see [21, Theorem 6.2 b)]). Using functoriality of Gysin homomorphisms
(see [21, Theorem 6.5]) together with [21, Proposition 6.3], one readily checks
that the image of ¢ (¢), under the isomorphism A, (X;) = A,—x(X°NX;) is
ck (9 xonx,)- This implies that cx (¢), = ck (%) € Ay—k(X;). Similarly, using
functoriality of flat pull-backs together with [21, Theorem 3.2 d)], we see that
ck(9)y = ck(9y) € Au—r(Xy). This completes the proof of the lemma. O

2.13 (Singularities) We refer to [40, Sect. 2.3] for details. Let X be a normal
complex projective variety. Suppose that Kx is Q-Cartier, i.e., some non-
zero multiple of it is a Cartier divisor. Let 8: X — X be a resolution of
singularities of X. This means that X is a smooth projective variety, f is a
birational projective morphism whose exceptional locus is the union of prime
divisors E;, and the divisor ) E; has simple normal crossing support. There
are uniquely defined rational numbers a(E;, X) such that

Kg=p"Kx+ ) a(E, X)E;.
The numbers a(E;, X) do not depend on the resolution g, but only on the
valuations associated to the divisors E;. We say that X is terminal (respectively,
canonical) if, for some resolution of singularities 8: X — X of X,a(E;, X) >
0 (respectively, a(E;, X) > 0) for every B-exceptional prime divisor E;. If

these conditions hold for some log resolution of X, then they hold for every
log resolution of X.

3 Foliations

We first recall basic facts concerning foliations.
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A decomposition theorem for singular spaces

Definition 3.1 A foliation on a normal variety X over a field k is a coherent
subsheaf ¥ C Tx such that

1. ¢ is closed under the Lie bracket, and
2. ¢ is saturated in T. In other words, the quotient Tx /% is torsion-free.

The rank r of ¢ is the generic rank of ¢. The codimension of ¢ is defined
asq :=dimX —r.

Suppose that k = C.

Let X° C Xyeg be the open set where ¥ Xreg is a subbundle of TXreg~ A leaf
of ¢ is a connected, locally closed holomorphic submanifold L C X° such
that 7y = 9. A leaf is called algebraic if it is open in its Zariski closure.

The foliation ¥ is said to be algebraically integrable if its leaves are
algebraic.

3.2 (Analytic graph of a regular foliation) Let X be a complex manifold, and
let ¥ C Tx be a regular foliation. Set Z := X x X, and let Y C Z be the
diagonal embedding of X =: Y. Denote by p1, p2: Z = X x X — X the
projections onto X. Applying Frobenius’ Theorem to the regular foliation

P19 S piTx C piTx ® p3Tx =Tz

on Z, we see that there exists a smooth locally closed analytic submanifold
V' C Z containing Y such that pyy is smooth, and such that its fibers are
analytic open subsets of the leaves of the foliation p{% C T passing through
points of Y. Notice that Ay,y = ¢. The analytic graph of the foliation (X, ¢)
is the analytic germ of V along Y (see also [12, Sect. 2.2.2]).

3.3 (Foliations defined by ¢g-forms) Let ¢ be a codimension ¢ foliation on an
n-dimensional normal variety X. The normal sheaf of  is N = (Tx /9)**.
The g-th wedge product of the inclusion A < Q[)}] gives rise to a non-zero
global sectionw € H 0 (X , Q?( Xdet(A )) whose zero locus has codimension at
least two in X . Moreover, w is locally decomposable and integrable. To say that
w is locally decomposable means that, in a neighborhood of a general point of
X, w decomposes as the wedge product of g local 1-forms w = w; A+ -+ Aawy.
To say that it is integrable means that for this local decomposition one has
doj AN = 0 forevery i € {1,...,q}. The integrability condition for w is
equivalent to the condition that ¢ is closed under the Lie bracket.

Conversely, let .2 be a reflexive sheaf of rank 1 on X, and let v €
HO(X, Q;I( X Z) be a global section whose zero locus has codimension at
least two in X. Suppose that w is locally decomposable and integrable. Then
the kernel of the morphism Ty — Q?{l X . given by the contraction with
w defines a foliation of codimension ¢ on X. These constructions are inverse
of each other.
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3.4 (Foliations described as pull-backs) Let X and Y be normal varieties,
and let ¢: X --» Y be a dominant rational map that restricts to a morphism
¢°: X° — Y° where X° C X and Y° C Y are smooth open subsets.

Let ¢ be a codimension ¢ foliation on Y. Suppose that the restriction ¢° of
% to Y° is defined by a twisted g-form wy. € HO(Y°, Q1. ® det(A4°)).

Then wy- induces a non-zero twisted g-form wyo € HO(XO, ngo ®

(¢°)*(det(ﬂ@)|yo)), which in turn defines a codimension ¢ foliation £° on

X°. The pull-back ¢~'% of ¢ via ¢ is the foliation on X whose restriction to
X°is &°.

Definition 3.5 Let y: X — Y be an equidimensional dominant morphism of
normal varieties, and let D be a Weil Q-divisor on Y. The pull-back v *D of D
is defined as follows. We define ¥ * D to be the unique QQ-divisor on X whose
restriction to w_l (Yreg) i8 Yy (yreg))* (D Yreg)' This construction agrees with
the usual pull-back if D is Q-Cartier.

We will use the following notation.

Notation 3.6 Let ¢/ : X — Y be an equidimensional dominant morphism of
normal varieties. Write Kx,y := Kx — ¥*Ky. We refer to it as the relative
canonical divisor of X over Y.

Notation 3.7 Let ¢/ : X — Y be an equidimensional dominant morphism of
normal varieties. Set

RW) =) (V*D — (¥*D)yeq)

D

where D runs through all prime divisors on Y. We refer to it as the ramification
divisor of .

Definition 3.8 Let ¢ be a foliation on a normal projective variety X. The
canonical class Ky of & is any Weil divisor on X such that Ox(—Kg) =
det(¥).

Example 3.9 Let : X — Y be an equidimensional dominant morphism of
normal varieties, and let ¢ be the foliation on X induced by ¥. A straightfor-
ward computation shows that

Ky = Kx;y — R({).
3.10 (The family of leaves) Let X be a normal complex projective variety, and

let ¢ be an algebraically integrable foliation on X. We describe the family of
leaves of ¢ (see [1, Remark 3.12]).
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There is a unique normal complex projective variety Y contained in the
normalization of the Chow variety of X whose general point parametrizes the
closure of a general leaf of ¢ (viewed as a reduced and irreducible cycle in
X).Let Z — Y x X denotes the normalization of the universal cycle. It comes
with morphisms

Z—ﬂ>X
‘)
Y

where §: Z — X isbirational and, for a general pointy € Y, 8 (w_l (y)) cX
is the closure of a leaf of . The variety Y is called the family of leaves of 4.

Suppose furthermore that K« is Q-Cartier. There is a canonically defined
effective Weil Q-divisor B on Z such that

Kz)y — R(Y) + B ~q B* Ky, 3.1
where R () denotes the ramification divisor of .

Remark 3.11 In the setup of 3.10, notice that B is S-exceptional. This is an
immediate consequence of Example 3.9.

We will need the following easy observation.

Lemma 3.12 Let X be a normal complex projective variety with Q-factorial
terminal singularities, and let ¢ be an algebraically integrable foliation on
X. Suppose that Kx is pseudo-effective and that K¢ ~q 0. Let y: Z — Y
be the family of leaves, and let B: Z — X be the natural morphism. Then
¢ := 1 o B~V is an almost proper map, and Kg-14 ~q 0.

Proof Notice that ¢ is induced by ¢ := ¥ o 71 X —-» Y.

It follows from 3.10 that there is a canonically defined effective Weil Q-
divisor B on Z such that

Kg-1y+B=Kz;y — R(Y)+ B ~q B*Ky ~q 0, (3.2)
where R (1) denotes the ramification divisor of 1. Recall from Remark 3.11,
that B is B-exceptional. Moreover, since X has Q-factorial terminal singular-
ities, there exists an effective Q-divisor E on X such that
K7 =B*Kx +E and Supp(E) = Exc(B). (3.3)
From Egs. (3.2) and (3.3), we obtain

R(Y) ~q B*Kx —Y¥*Ky + B+ E. (3.4)

@ Springer



S. Druel

Consider a general fiber F of ¢. Equation (3.4) then shows that
(B*Kx + B+ E)|Fr ~qO0.

Since B and E are both effective divisors, and since Ky is pseudo-effective,
we must have £ N F = (. The equality Exc(8) = Supp(E) then shows that
@ 1s an almost proper map.

By the adjunction formula, Kz ~7z Kzr, and thus K ¢ is pseudo-effective.
Applying [16, Corollary 4.5] to ¥, we see that Kg-1y = Kz/y — R(Y) 1s
pseudo-effective. Equation (3.2) then shows that

Kg-14 ~@0 and B =0.

This finishes the proof of the lemma. O

It is well-known that an algebraically integrable regular foliation on a com-
plex projective manifold is induced by a morphism onto a normal projective
variety (see [35, Proposition 2.5]). The next proposition extends this result to
some foliations on mildly singular varieties.

Proposition 3.13 Let X be a normal complex projective variety with Q-
factorial terminal singularities, and let Tx = & ® ¢ be a decomposition
of Tx into involutive subsheaves. Suppose that K x is pseudo-effective and
that det(&) = Ox. Suppose furthermore that & is algebraically integrable.
Then there exists an open subset X° C X with complement of codimension
at least two and a projective morphism with irreducible fibers ¢°: X° — Y°
onto a smooth quasi-projective vartety such that & is induced by ¢°. Moreover,
there exists a finite morphism y° Y ¢ — Y° satisfying the following property.
Let X° be the normalization of Y° xyo X°, and denote by ¢>° X° - Y°
the natural morphism. Then ¢° is a locally mvml analytic fibration for the
analytic topology.

Proof Let v: Z — Y be the family of leaves, and let 8: Z — X be
the natural morphism (see 3.10). By [16, Lemma 4.2], there exists a finite
surjective morphism y: Y1 — Y with Y| normal and connected such that
the following holds. Let Z; denotes the normalization of Y; xy Z. Then
the induced morphism 1: Z; — Y| has reduced fibers over codimen-
sion one points in Y7. Hence, we obtain a commutative diagram as follows,

Z o, finite 7 B X
Illll l‘//ﬁ B ¢
Y ———=7Y
y, finite
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Claim 3.14 The tangent sheaf Tz, decomposes as a direct sum
Tz, = (Boa) '€ ®(Boa) 9.

Proof of Claim 3.14 Set q := rank&, and let 0 € HO(X, Q) a ¢-
form defining &. Then B*wz\gyc(p) extends across Exc(B) and gives a
g-form B*w € HO(Z, SZ[Zq]) by [24, Theorem 1.5]. The g-form o*(B*w) €

HO (Z 1 Q[Zq]]) defines the foliation (8 o)~ 1'% on adense open set, and induces
an Oz,-linear map (A97Tz,)** — Oz, such that the composed morphism of
reflexive sheaves of rank one

o: det((Boa) '&) — (AI1Tz)* — 0y,

is generically non-zero. By Lemma 3.12, we know that Kg-1, ~q 0. A
straightforward computation then shows that

K(gowy-16 =" Kg-10 ~q 0,
and hence o must be an isomorphism. This immediately implies that
Tz =Bow) '@ (Boa)”'Y,
proving our claim. |

-1 . .
Let Z7 C ¢ (Y1reg) be the open set where v/ W7 (Vi) 1S smooth. Notice

that Z7 has complement of codimension at least two since v has reduced
fibers over codimension one points in Yj.,. The restriction of the tangent
map

*
Tl/lllwrl(ylreg) ’ Tlewfl(ereg) - (wllwrl(ereg)) Tereg

o (Boa) G, iy,

-1 ~ * . 1
Boa)y 'Y, = (1//1‘2?) Ty, and since (B o ) glll/fl(Yneg)

(‘ﬂl Wi ))*Ty, g AT both reflexive sheaves, we finally obtain an isomor-
reg
phism of sheaves of Lie algebras

- Tzllwfl(ereg) then induces an isomorphism

and

. —1 ~ *
T (Boa) G iy = (Vo) T

Setm :=dimY = dimY,. Lety € Y, and let U > y be an open neigh-
borhood of y in ¥}, with coordinates yj, ..., y, on U. A classical result of

complex analysis says that there exists a unique local C"-action on ¥, ()
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. . _l
corresponding to the flat connection (S o) gl vl on /3 i) The local
C™-action on I//l_l(U) is given by a holomorphic map &: W — 1//1_1(U),
where W is an open neighborhood of the neutral section {0} x v~ Yw ) in
C"™ x 1//1_1(U) such that

1. Forall z € wl_l(U), the subset {r € C" | (¢, z) € W} is connected,

2. Setting t Tz = ®(t,z), we have 0 Tz = z for all z € wl_l(U), if
(t+t',z) € W,if(t',z) € Wand (¢, ' 12) € W,then (t+1)Tz = t7(t'T2)
holds.

Moreover, the above local C"-action on ¥/, ! (U) extends the local C™-action
on U C C" givenby yi(t Ty) =1t + yi(y) forany t = (t1,...,t,) € C"
and y € U such that ¢ Ty € U. This immediately implies that wll U7 Vireg) is
a locally trivial analytic fibration for the analytic topology.

By Lemma 3.12, 1 maps any irreducible component of Exc(8) to a codi-
mension one hypersurface. It follows that

Exc(8) = v~ (v (Exc(p)).

Set Y° 1= Yieg\ (¥ (Exe(B) Uy (Y1\ Y1) ), X° = By (r)), ¢° =
¢1x, and consider y° = ¥}, —1(yoy: y~H(Y°) =: Y° — Y°. One readily
checks that ¢°, y°, and 5" satisfy the conclusions of Proposition 3.13. |

4 Towards a decomposition theorem

The main results of this section assert that algebraic integrability of direct
summands in the infinitesimal analogue of the Beauville-Bogomolov decom-
position theorem (Theorem 1.1) leads to a decomposition of the variety,
perhaps after passing to a finite cover that is étale in codimension one (see
Theorem 4.5 and Proposition 4.10). This solves [25, Problem 8.4].

First, we recall structure results for complex varieties with numerically triv-
ial canonical divisor. The following invariant is relevant in their investigation
(see [25, Definition 3.1]).

Definition 4.1 Let X be a normal complex projective variety. We denote the

irregularity of X by ¢(X) := h' (X, Ox) and define the augmented irregularity
as

q(X) := max{q()N( )| X — X a finite cover, étale in codimension one}
€ NU {oo}.
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Remark 4.2 By a result of Elkik [19], canonical singularities are rational. It
follows that the irregularity is a birational invariant of complex projective
varieties with canonical singularities.

Remark 4.3 If X is a complex projective variety with canonical singulari-
ties and numericallz trivial canonical class, [37, Proposition 8.3] implies that
q (X) <dim X. If X — X is any finite cover, étale in codimension one, then
X will likewise have canonical singularities (see [43, Proposition 3.16]), and
numerically trivial canonical class. In summary, we see that g(X) < dim X.
The augmented irregularity of canonical varieties with numerically trivial
canonical class is therefore finite.

We will need the following easy observation.

Lemma 4.4 Let X and Y be normal complex projective varieties with canon-
ical singularities, and let B: Y — X be a birational morphism. Suppose that
Ky =0.Thenq(X) > q(Y).

Proof Notice first that g(Y) is finite by Remark 4.3 above. Let g: Y| — Y
be a finite cover, étale in codimension one, such that 4! (Y7, Oy,) =q(Y).Let
f: X1 — X be the Stein factorization of the composed map Y1 — ¥ — X.
Then f is obviously étale in codimension one. From [43, Proposition 3.16], we
see that X has canonical singularities, and hence h(x,, 0 X,) = h! (Y1, Oy,)
by Remark 4.2. This finishes the proof of the lemma. O

The following result often reduces the study of varieties with trivial canon-
ical class to those with g(X) = 0 (see also [37, Proposition 8.3]).

Theorem 4.5 [25, Corollary 3.6] Let X be a normal complex projective variety
with canonical singularities. Assume that K x is numerically trivial. Then there
exist projective varieties A, X and a morphism f: A X X — X such that the
following holds.

The variety A is Abelian.

The variety X is normal and has canonical singularities.

The canonical class of X is trivial, wy =0 5

The augmented irregularity of X is zero, g(X) = 0.

The morphism f is finite, surjective and étale in codimension one.

SR~

Before we give the proof of Proposition 4.10, we need the following auxil-
iary results. The author would like to thank Cinzia Casagrande who explained
Lemma 4.6 to him.

Lemma 4.6 Let X1, X, and Y be complex normal projective varieties. Sup-
pose that there exists a surjective morphism with connected fibers B: X1 X
X> — Y. Suppose furthermore that q(X1) = 0. Then Y decomposes as a
product Y = Y1 X Ya, and there exist surjective morphisms with connected
fibers B1: X1 — Y1 and By: Xo — Y> such that B = B1 X Ba.
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Proof Let H be an ample Cartier divisor on Y. Note that Pic(X; x Xp) =
Pic(X1) x Pic(X>3) since g(X1) = 0. Thus there exist Cartier divisors G| and
G2 on X and X respectively such that B*H ~7z n{G| + n; G2, where ;
is the projection onto X;. Let §;: X; — Y; be the morphism corresponding
to the semiample divisor G;, so that m; G; ~7 ﬂ;“ H; for some ample Cartier
divisor H; on Y; and some positive integer ;.

Let C C X; x X, be a complete curve contracted by 1 x fz: X1 X
X2 — Yy x Ya. Then (7G;) - C = 0, and hence g*H - C = 0.
This implies that C is contracted by B, and hence S factors through
B1 x P by the rigidity lemma. Thus, there exists a morphism y: Y1 X
Y — Y such that 8 = y o (81 x B2). Denote by p;: Y1 x Yo —
Y; the projection onto Y;. We obtain a commutative diagram as follows,

B

XixXp———Y 1 xYVp——Y

- l l”"

Xi 5 Y;.

Then

(B1 x B2)*(mapyHy + mip5Hy) ~7 mima(n{G1 + n5G2) ~7 mimyB*H
= (B1 x B2)*(mimay™H).

This implies that
mopyHy +mipsHy ~z mimoy™H

since the map B x f; is surjective with connected fibers. Because m pi Hy +
m1p5 H> is ample, we conclude that y is a finite morphism, and hence an
isomorphism since g is surjective with connected fibers. This completes the
proof of the lemma. O

4.7 (Terminalization) Let X be a normal complex projective variety with canon-
ical singularities. Recall that a Q-factorial terminalization of X is a birational
crepant morphism 8: X — X where X is a Q-factorial projective variety with
terminal singularities. The existence of § is established in [5, Corollary 1.4.3].

Proposition 4.8 Let X1, X7 and Y be complex projective varieties with canon-
ical singularities suchthat K x,, K x, and Ky arenef,andletg: X1 x X2 -—» Y
be a birational map. Suppose that g(X1) = 0. Then Y decomposes as a
product Y = Y| x Y2, and there exist birational maps ¢1: X1 --+ Y| and
@2: X2 ——» Yo such that ¢ = @1 X @».
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Proof Let B: X1 — X1, Bo: X2 — Xp and y: Y — Y be QQ-factorial

terminalizations of X, Xp, and Y respectlvely Notice that K¢ R x % and Ky

are nef. Set ¢ := y L opo (B x Bo): X1 X X2 Y. Hence, we obtain a

commutative diagram as follows,

=)

5(\1 XX\Q i >
ﬂlXﬂzl Y

X1 x X2 P >Y.

Recall from [8, Théoreme 6.5] that the product of complex Q-factorial alge-
braic varieties is Q-factorial. In particular, X 1 X X 2 is Q-factorial.

It follows from Lemma 4.6 applied to y and Remark 4.2 that it suffices to
prove Proposition 4.8 for ¢.

Now, by [38, Theorem 1], ¢ decomposes into a sequence of flops, and
therefore, using repeatedly Lemma 4.6, it suffices to prove Proposition 4.8
for a flop. Thus, we may assume that there exists a commutative diagram

Xy x Xy ? ~Y

S

where @ and o™ are small elementary birational contractions, Kz, , g, i
numerically a-trivial, and Ky is numerically « *-trivial. By Lemma 4.6 applied
toa, Z decomposes asa product Z = Z| x Z3, and there exist birational mor-
phisms o : X1 — Zjand oy Xz — Z2 such that « = a1 x a». Note that oy
or oy is an isomorphism since p(X 1 X X 2/Z) =1. We may therefore assume
without loss of generality that a5 is an isomorphism. Let o} X X7 — Z; be
the ﬂop of o1 whose existence is established in [5, Corollary l 4.1]. Then
XJr x X» — Zi x Zy is the flop of «, proving the proposition. O

We end the preparation for the proof of Proposition 4.10 with the following
lemma. It reduces the study of varieties with canonical singularities and trivial
canonical class to those with terminal singularities.

Lemma 4.9 Let X be a normal complex projective variety with canonical
singularities, and let : X — X be a Q-factorial terminalization of X. Let

Tx = @5;
iel

be a decomposition of T into involutive subsheaves with det(&;) = Ox. Then
there is a decomposition

Tg:@;@;

iel
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of Tx, into involutive subsheaves with det(;@; ) = 0% such that &; = (5*332 )*E,
Proof Notice that wgy = O%. Denote by ¢; the codimension of &;, and con-
sider w; € HO(X, Q[}?i]) a ¢g;-form defining &;. By [24, Theorem 1.5], w;
extends to a g;-form @; € H° ()? , Qi ]). Then @; defines a foliation & C Ty

- X _~
with det(&;) = 05 (E;) where E; is the maximal effective divisor on X such

that @; € HO()?, Qil X O3 (—E;)). The natural map P, , & — Ts being
generically injective, we obtain

O (Z E; + E) = det(Ty) = O3

iel

for some effective divisor E on X. It follows that E; = 0 for everyi € I, and
that T decomposes as a direct sum

Ty = @g
iel

of involutive subsheaves with trivial determinants. The sheaves &; and (B4 é“’; )E*
agree outside of the ,B—excgptional set, and since both are reflexive, we obtain
an isomorphism &; = (B,8;)**. This finishes the proof of Lemma 4.9. O

The following result together with Theorem 4.5 can be seen as a first step
towards a decomposition theorem.

Proposition 4.10 Let X be a normal complex projective variety with canonical
singularities, and let

Tx = @é‘i
iel

be a decomposition of Tx into involutive subsheaves. Suppose that g(X) = 0.
Suppose furthermore that the &; are algebraically integrable with det(&;) =
Ox. Then there exist a projective variety X with canonical singularities, a
finite cover f: X — X, étale in codimension one, and a decomposition

Z=[Tr
iel
such that the induced decomposition of Ty agree with the decomposition

Tz = @f[*]cg’,-.

iel
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Proof For the reader’s convenience, the proof is subdivided into a number of
relatively independent steps.

Step 1 Reduction to X QQ-factorial and terminal. Let 8: Z — X be a Q-factorial
terminalization of X. By Lemma 4.9, the tangent sheaf 7z decomposes as a
direct sum

Tz = @%
iel

of involutive subsheaves with trivial determinants such that & = (8.%;)**.
Notice that g(Z) = 0 by Lemma 4.4. _

Suppose that there exists a finite cover g: Z — Z, étale in codimension
one, such that Z decomposes as a product

z=[]|n
iel
such that the induced decomposition of 7% agree with the decomposition
TZ = @ g[*]% .
iel

From the Kiinneth formula (see [29, Theorem 6.7.8]), we see that g(7;) = 0
foranyi € I.Let f: X — X be the Stein factorization of the - composed map
Z — 7Z — X.Then f is étale in codimension one, and thus X has canonical
singularities by [43, Proposition 3.16]. Applying Lemma 4.6 to 7 —> X, we
see that X decomposes as a product

x=][v
iel
such that the induced decomposition of T agree with the decomposition
T)? = @ f[*]%- .
iel
We can therefore assume without loss of generality that the following holds.

Assumption 4.11 The variety X has Q-factorial terminal singularities.

To prove Proposition 4.10, it is obviously enough to consider the case where
I ={1,2}.Sett(i) =3 —iforeachi € I.

Step 2 Fori € I, let y;: Z; — Y; be the family of leaves, and let 8;: Z; —
X be the natural morphism (see 3.10). Notice that &; is induced by ¢; =
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Vio B L x -y, By Lemma 3.12, the rational map ¢; is almost proper.
Moreover, it induces a regular map X,e; — Y; since & is a regular foliation
on Xreg.

Let F; be a general fiber of ¢;(;). Then F; is a normal projective variety
with terminal singularities, and K, ~q 0. Set F? := F; N Xyeg, and denote

by F? Xy, Xreg the normalization of F; Xy, Xreg. Next, we will prove the
following.

Claim 4.12 The natural map F? Xy, Xreg —> Xreg is finite and €tale over an
open subset contained in X;e; with complement of codimension at least two.

Proof of Claim 4.12 By Lemma 3.12 and Proposition 3.13, there exists an
open subset ¥ C Yj, and a dense open subset X7 C X with complement
of codimension at least two in X such that ¢;, Xxe: X7 — Y7 is a projective
morphism with irreducible fibers. Let P be a prime divisor on Y, and write
i |*X9P = t Q for some positive integer ¢ and some prime divisor Q on X.
Set;z := dim X, and m; := dim Y;. Notice that F; N Q # @. Since & and
&, are regular foliations at a general point x in Q and Ty = &1 @ &, there
exist local analytic coordinates centered at x and y := ¢; (x) respectively such

that ¢; is given by (x1, x2,...,x,) > (x{,x2...,xy,), and such that F; is
given by equations x,,,4+1 = --- = x, = 0. The claim then follows from a
straightforward local computation. O

Step 3 End of proof. Let X 1 denotes the normalization of X in the function field
of F} ;_;I/Xreg. It comes with a finite morphism f : X 1 — X whichis étale in
codimension one by Claim 4.12. Let ¢ : X --» F) be the almost proper map
induced by the first projection F} Xy, Xreg — F7,and let G| C X be the
Zariski closure of the rational sectlon of ) given by F{ — Y. Finally, let ¢2
denotes the composed map X1 — X --» Yp,andset yr := 0(G1) = ¢ (Fy).
Notice that 52 is an almost proper map.

Claim 4.13 The following holds.

1. The variety G is a fiber of the Stein factorization @5 : X 1 -2 172 of 32.
2. The fiber @5 ' (y2) = f; ' (F) is reduced along G.

Proof of Claim 4.13 We have a commutative diagram as follows,

~ @ ~
Xli::**;>Y2
- -
_ i ~Z \\
28 T~ N
A ~
Fi X———— - =Y,
N | 2
N
N2
AV
Yr.
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Applying [43, Proposition 3.16], we see that X1 has termlnal singularities. In
particular, X, is Cohen—Macaulay, and hence so is ¢2 (yg) by [17, Proposi-
tion 18.13]. By the Nagata—Zariski purity theorem, f| branches only over the
singular set of X. This immediately implies that fl_l(Fl) is smooth in codi-
mension one. Then (2) follows easily. By Hartshorne’s connectedness theorem
(see [17, Theorem 18.12]), we see that irreducible components of @_1 (y2) are
disjoint, proving (1). O

Let Fz be a general fiber of @. Then Fz ~intersects G transversely inNa
point. From Claim 4.13 (1), it follows that F> intersects a general fiber Fj
of ¢, transversely in a point. This immediately implies that the map @) x
0. X1 --» F| x Yy is lﬂrationgl. But it also implies that F; and Y, are
birationally equivalent to Fj an(l F rgspectively, and we conclude that there
exists a birational map X --+ F| x F,. From the Kiinneth fgrmula (see [29,
Theorem 6.7.8]) together with Remark 4.2, we see that ¢(F;) = 0 for any
i € {1, 2}. The conclusion then follows from Proposition 4.8. This finishes the
proof of Proposition 4.10. O

5 Algebraicity of leaves, I

In this section we prove Theorem 1.4. The proof relies on an algebraicity
criterion for leaves of algebraic foliations proved in [12, Theorem 2.1], which
we recall now.

5.1 Let X be an algebraic variety over some field k of positive characteristic p,
and let ¢ C Tx be a subsheaf. We will denote by Faps: X — X the absolute
Frobenius morphism of X.

The sheaf of derivations Dery(0x) = Tx is endowed with the p-th power
operation, which maps any local k-derivation D of O to its p-th iterate D71,
When ¢ is involutive, the map F}, & — Tx /% which sends D to the class
in Tx /¥ of D'l is Ox-linear. The sheaf ¢ is said to be closed under p-th
powers if the map F}, & — Ty /% vanishes.

A connected complex manifold M satisfies the Liouville property when
every plurisubharmonic function on M bounded from above is constant (see
[12, Sect. 2.1.2]). Examples of complex manifolds satisfying the Liouville
property are provided by the affine space C" and connected compact complex
manifolds.

We will use the following notation.

Notation 5.2 If K is a number field, its ring of integers will be denoted by
Ok . For any non-zero prime ideal p of Ok, we let k(p) be the finite field Ok /p.
We denote by p: Speck(p) — S a geometric point of § := Spec Ok lying
over p with k(p) an algebraic closure of k(p). Given a scheme X over S, we
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let Xg := X® K, Xy := X ®k(p),and X := X ® k(p). Given a sheaf & on
X,welet%k =9 K, % =9 @k(p),and 4; := 94 @ k(p).

Theorem 5.3 ([12, Theorem 2.2]) Let X be a smooth geometrically connected
algebraic variety over a number field K, and let 4 be an involutive subbundle
of the tangent bundle Tx of X (defined over K). For some sufficiently divisible
integer N, let X (resp.9) be a smooth model of X over S := Spec Ok [1/N]
(resp. a sub-vector bundle of the relative tangent bundle Tx s such that G
coincides with 4). Assume that the following two conditions are satisfied.

1) For almost every non-zero prime ideal p of Ok [1/N], the subbundle %, of
Tx, is stable by p-th power, where p denotes the characteristic of k(p).

2) There exist a complex manifold M satisfying the Liouville property as well
as an embedding o : K — C, a holomorphic embeddingi: X,(C) - M
and a holomorphicmap j: M — X;(C) x X5 (C) such that j oi coincide
with the diagonal embedding X, (C) — X;(C) x X, (C) and j restricts
to an isomorphism from the analytic germ of M along i(X(7 ((C)) onto the
analytic graph of (XU, %U).

Then 9 is algebraically integrable.

It is well-known that in positive characteristic, there exist semistable vector
bundles such that their pull-back under the absolute Frobenius morphism is no
longer semistable. The next result says that this phenomenon does not occur
on projective varieties whose tangent bundle is semistable with zero slope. It
partly extends [50, Theorem 2.1] to the setting where polarizations are given
by big semiample divisors. The proof of Proposition 5.4 is similar to that of
[50, Theorem 2.1].

Proposition 5.4 Let X be a smooth projective variety over an algebraically
closed field k of positive characteristic p, and let H be a big semiample
divisor on X. Suppose that T is H-semistable and that wg (Tx) > 0. Let &
be a coherent locally free sheaf on X. Suppose furthermore that p > rank & +
dim X. If & is H-semistable, then so is F &

abs™ *

Proof Suppose that F', & is not H-semistable, and let

abs

0= S S C & =Fp&

abs

be the Harder—Narasimhan filtration of F}, &. By [55, Proposition 17] (see

also [46, Corollary 2.4]), the canonical connection on F:bséa induces a non-zero
O’x-linear map

bt = & /61 ® k.
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Let C be a smooth complete intersection curve of elements of |m H | for some
sufficiently large integer m. By [46, Corollary 5.4], the sheaves &;/&;—1)c
and Q% ¢ are semistable. This implies that the sheaves (¢&;/&;—1)c ® le c
are semistable as well by [36, Remark 3.4] using the assumption that p >
rank & + dim X. It follows that

W (&6 ® Q) < W™ (& /6 -1)
using the assumption that py (52%() < 0. The inequality

WENE-1) = wn(E-1/6-2) > 1 (& /60 = Wi (& /6-1)

then shows that the map &,_; — &,/&—-1 ® Q}X must vanish, yielding a
contradiction. O

Remark 5.5 The condition “Tx H -semistable with g (Tx) > 0” in Proposi-
tion 5.4 can be weakened to “i'" (Tx) > 07, but we will not need this stronger
statement.

Remark 5.6 We will use Proposition 5.4 together with [47, Proposition 5.1] to
conclude that, in the setup of Proposition 5.4, a H-semistable vector bundle
& is numerically flat if and only if

(&) - H" ' =¢1(&)* - H" 2
= (&) - H"? =0,

where n := dim X.

A coherent locally free sheaf & on a smooth projective variety X over an
algebraically closed field k is said to be étale trivializable if there exists a
finite étale cover of X on which & becomes trivial. We will need the following
observation.

Lemma 5.7 Let X be a connected smooth projective variety over an alge-
braically closed field k, let & be a coherent locally free sheaf on X, and let K

be any algebraically closed extension of k. If &k is étale trivializable, then so
is &.

Proof Setr :=rank &, and let g: ¥ — Xk be a finite étale cover such that
g* ek = ﬁ?’ . By [54, Exposé X, Corollaire 1.8], there exists a finite étale
cover f: Z — X suchthat g = fg. Since g*&x = ﬁ?r, we conclude easily
that f*&x = 0%, o

Examples of étale trivializable vector bundles are provided by the following
lemma. We use ideas from the proof of [53, Theorem A].
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Lemma 5.8 Let X be a complex projective manifold, and let Ty = & ®Y be a
decomposition of Tx into involutive subsheaves. Suppose that & is polystable
with respect to some polarization and that ¢ (&) = 0 and ¢3(&) = 0. Suppose
furthermore that & is algebraically integrable. Then & is étale trivializable.

Proof By [56, Corollary 3.10], & is flat. By a result of Uhlenbeck and Yau (see
[57]), we conclude that & admits a flat hermitian metric. Let x € X, and let
p: m(X,x) - U(&) be the corresponding unitary representation. We will
show that the image of p is finite.

By [35, Proposition 2.5], & is induced by a morphism ¢: X — Y onto
a normal projective variety. Let Y° C Y be a dense open subset such that ¢
restricts to a smooth morphism on X° := (p‘l (Y°),andset y = ¢(x). Suppose
that y € Y°. As a classical consequence of Yau’s theorem on the existence
of Kihler—Einstein metrics, the geometric generic fiber of ¢ is covered by
an abelian variety (see [42, Chap. IV Corollary 4.15]). Thus, replacing Y°
by a dense open subset and X° by a finite étale cover, if necessary, we may
assume that all fibers of ¢|x- are abelian varieties. Let F' be a general fiber of
¢. Note that the induced metric on Tr = &jr is constant. This implies that the
representation

mT1(X°, x) = (X, x) = U(&)

factors through ¢ xo.
Because ¢|xo admits a holomorphic flat connection, HO(Xy,é?l’;(y) -

HY(X y, C) is invariant under the monodromy representation 1 (Y°, y) —
GL(H'(Xy, C)). Moreover, the induced representation

m(Y°, y) = GL(H (Xy, %)) = GL(&)

coincides with p since ¢ is transversely flat hermitian (see [53, Sect. 2.4]).
By Lemma 5.9 below, we see that the monodromy representation 71 (Y °) —

GL(H L(x v (C)) is finite, and hence so is p. This shows that & is étale trivial-

izable. O

The following result is probably well-known. We include a full proof here
for the reader’s convenience.

Lemma 5.9 Let ¢: X — Y be a smooth projective morphism of quasi-
projective complex manifolds with fibers isomorphic to abelian varieties.
Suppose that ¢ is a locally trivial analytic fibration for the analytic_topol-
0g8y. Then there exists an abelian variety as well as a finite étale cover Y — Y
suchthat X xy Y = A x Y as varieties over Y.
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Proof Let y € Y, and denote by X the fiber ¢~ (y). Let Aut®(Xy) = X,
denotes the neutral component of the automorphism group Aut(X,) of X,.
Recall from [28, Exposé VI, Théoreme 3.10] that the algebraic groups
Aut®(Xy) fit together to form an abelian scheme .7 over Y. Since .27 is locally
trivial, there exist an abelian variety A, and a finite étale cover Y| — Y such
that & xy Y1 = A x Y; as group schemes over Y;. This follows from the fact
that there is a fine moduli scheme for polarized abelian varieties of dimension
g, with level N structure and polarization of degree d provided that N is large
enough. In particular, A acts faithfully on X| := X xy Y. By [14, Theorem
2], there exist a finite étale cover X of X equipped with a faithful action of
A, and an A-isomorphism X = A x Y for some quasi-projective manifold Y,

where A acts trivially on Y and diagonally on A x Y. One readily checks that
the natural morphlsm Y = {04} x Y — Y isétale, and that X = X Xy, Y
as varieties over Y. The lemma then follows easily. m|

We end the preparation for the proof of Theorem 1.4 with the following
lemma.

Lemma 5.10 Let X be a normal complex projective variety with canonical
singularities, and let Tx = & @ ¢ be a decomposition of Tx into sheaves.
Suppose that & is locally free. There exists a resolution of singularities B: X —
X such that the following holds.

1 The morphism B induces an isomorphism over the smooth locus Xyeg of X.

2 The tangent sheaf Ty decomposes as ag direct sum Ty = B*& 2 of locally
free sheaves. Moreover, we have (8,9 )** =9,

3IfX, &, and 9 are defined over a subfield k C C, then X, B, and G are
defined over k as well.

Proof Let B: X — X be a resolution of singularities of X such that 8, T3 =
Tx, and such that 8 induces an isomorphism over Xye. The existence of
is established in [23, Corollary 4.7]. It relies on the existence of functorial
resolutions of singularities (see [44, Theorem3.36]). Consider the generically
injective morphism of locally free sheaves

B*E — BTx = B*(B:Ty) — Tx,

where *(BsTgz) — Ty is the evaluation map. By [24, Theorem 1.5], the
projection morphism Tx,,, — &x,,, €xtends to a morphism

Ty — B*&.

The composed morphism *& — Ty — B*& must be the identity map, and
thus T decomposes as a direct sum T = f*& @ ¢, where ¢ is the kernel
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of the map Ty — B*&. The sheaves (8,94 )** and ¢ agree on Xieg, and since
both are reflexive, we obtain an isomorphism (B % )y =9.

Suppose that X, &, and ¢ are defined over a subfield k € C. Then X and g
are defined over k as well by [44, Theorem 3.36]. This implies that 7 is also
defined over k, completing the proof of the lemma. O

Before proving Theorem 1.4 below, we note the following immediate corol-
lary.

Corollary 5.11 Let X be a normal complex projective variety of dimension n
with terminal singularities, and let

Ix=Pg%es
iel
be a decomposition of Tx into involutive subsheaves with trivial determinants.
Suppose that ; is stable with respect to some ample Cartier divisor H, and
that ¢2(4;) - H" 2 # 0. Suppose also that for any finite cover g: X - X,

étale in codimension one, the sheaf g'¥1; is g* H-stable. Suppose furthermore
that & is H-polystable, and that c3(&) - H" %> = 0. Then §(X) = rank &.

Proof of Theorem 1.4 We maintain notation and assumptions of Theorem 1.4.
For the reader’s convenience, the proof'is subdivided into a number of relatively
independent steps. O

Step 1. Reduction step. Setd := @, ; % By [26, Theorem 1.20], there exists
a finite cover f1: X; — X that is étale in codimension one such that fl[*]é"
is a locally free, flat sheaf on X;. From [43, Proposition 3.16], we see that
X has terminal singularities. The sheaves Ty, and fl[*]g @ fl[*]éa agree on
fl_1 (Xreg), and since both are reflexive, we obtain a decomposition

Tx, = Mg @ e

of T, into involutive subsheaves with trivial determinants. The same argument
also shows that

19 = M.

iel

Notice that f; branches only over the singular set of X. It follows that
c1(f{1%) - (ffH)"™' = 0 and

either ¢ (f9)2 - (FFH)™ 2 £0 or ex(fH%) - (frH)"™2 £0
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for each i € I. Moreover, fl[*]cg’ is f* H-polystable by [34, Lemma 3.2.3].
Therefore, we may assume without loss of generality that the following holds.

Assumption 5.12 The sheaf & is a locally free, flat sheaf.

By Lemma 5.10, there exists a resolution of singularities 3 : X — X such
that Ty decomposes as

TR =p*6@9.

Moreover, we may assume that 8 1nduces an isomorphism over X e,. Set & =
B*&, and H:= = B*H. Notice that & and BTy are respectively polystable
and semistable with respect to H. Moreover, Ts is also H-semistable since
Ts and B 41Ty agree away from the B-exceptional set.

Step 2. Algebraic integrability over number fields. Suppose that X, H, &, and
the sheaves &; are defined over a number field K. We will show that & has
algebraic leaves. Recall from Lemma 5.10 that X, B, and 4 are also defined
over K.

For some sufficiently divisible integer N, let X be a flat projective model of
X over T := Spec Ok [1/N] with normal (see [30, Théoreme IV.12.2.4]) and
regular in codimension 2 geometric fibers. Let & (resp. %;) be a locally free
(resp. a coherent) subsheaf of Tx,t such that &¢ (resp. %) coincides with &
(resp. ¢;). Suppose moreover that the sheaves ¥; are flat over T, and that

TX/T=@‘$®£’.

iel

Let H be an ample Cartier divisor on X such that Hc ~ H.

Since semistability and geometric stability with respect to an ample divisor
are open conditions in flat families of sheaves (see proof of [34, Proposition
2.3.1]), we may assume that the sheaves ¥ are stable with respect to H, and
that & is Hg-polystable for every non-zero prime ideal p of O [1/N]. Suppose
furthermore that & is involutive. By Lemma 2.11, we may also assume without
loss of generality that the following holds:

L) - Hy ™ = ca(6p)? - Hy™ = ea(6p) - Hy™ = 0;
2. Cl(giﬁ)'Hg_l =0, andeithercl(%,-,a)z.Hg_2 # Oorcz(%,-ﬁ).Hg—2 £ 0.
Let X be a smooth projective model of X over T, and let B: X > X

be a projective birational morphism such that B¢ coincides with . Suppose
moreover that fB: X — X is birational, and that the Bj- exceptlonal set

maps to a closed subset of codimension at least three in Xj. Set & = ﬂ &
and H := B*H. Notice that é”f, and ﬂ'[a ]TX'3 are semistable with respect to Hp.
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Moreover, Tgﬁ is also ﬁﬁ—semistable since Tiﬁ and B ,[;"]TX'3 agree away from
the B;-exceptional set.

Let p be non-zero prime ideal of O’ [1/N ], and denote by p the characteristic
k(p). We claim the following.

Claim 5.13 The involutive sub-vector bundle g’% of Tgﬁ is closed under p-th
power.

Proof We argue by contradiction and assume that 3‘; is not closed under p-th
power, and so neither is &. Thus, the map F;, pé” — Tx;/ & induced by the
p-th power operation does not vanish identically. By Proposmon 5.4 above, the
locally free sheaf F, é”p is semistable with respect to H This implies that

abs pé”p is semlstable w1th respect to Hy. Since ¢ (&) - H" I = = 0, and since

the sheaves %p are stable with ¢ (%; )" H” '=0as well, there exists igp €

such that the induced morphism F} - & —> %Op is surjective in codimension

abs,p
one.
Let S; be a smooth two dimensional complete intersection of general
elements of |me| = ﬂ |mHj| for some positive integer m. Since the -

exceptional set maps to a closed subset of codimension at least three in X, Sp
is contained in Xp \Exc(B5) = X3\ (B; (Exc(ﬂ P ) and thus the restriction of
H to S; is ample.

By Prop0s1t10n 5.4 again, the locally free sheaves (F°X _)* é”p are semistable

abs,p
with respect to Hp Applying [46, Corollary 5.4] to the locally free sheaves

(des p)*(S’p, we see that there exists a positive integer m (that does not depend
on k > 1) such that the restrictions (Fabs p)*é’pls (Fabs p)* pIS are

semistable with respect to Hﬁlsg for any positive integer k. From [47, Propo—
sition 5.1], we conclude that & S5 is nef using the fact that

c1(6p) My~ = e1(&p) - Hy ™ = ea(85) - Hy™> = 0.

We view S as a surface contained in X Observe that ¥%;

o, is locally free
along S;, and that the restriction of F: — %Op to Sy is surjective in

codimension one by choice of ig. Since é”p‘s is nef, we obtain that ‘ﬁ,opl S5 if

nef. This implies that

1) H" 2 = c1(%)” - Hy > =0 and
2(G) - H' % = e2(SGip) - Hy 2 =0

by [47, Proposition 5.1] and Lemma 2.11, yielding a contradiction. This com-
pletes the proof of our claim.
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Set r := rank &. Recall that & is polystable with respect to the nef and big
divisor H. By [27, Theorem3.3], & is also polystable with respect to some
ample divisor on X and hence unitary flat. By [53, Theorem B], the universal
covering space XofXisa product C" x B in such a way that the decomposition

Ty = Eod
lifts to the decomposition
Tcrxp = Tcr @ T

In particular, the group m1(X) acts diagonally on C" x B. Notice that the
analytic graph of the foliation induced by & on X is the germ of XxpX along
the diagonal embeddulg X - X x5 X.

Set M := (C" x X)/m (X), and denote by p and g the projections of
X = C’ x BontoC” and B respectively. Leti: X = X /m(X) — M be the
embedding induced by

C"xB>s(a,b)r— (a,a,b) cC" xC" x B
andlet j: M — X x X be the holomorphic map induced by
C"xC"'xB>(@,a,b)— (d@,b,a,b) e C" x BxC" x B.
Onereadily checks that joi coincide with the diagonal embedding XX X ) X
and that j restricts to an isomorphism from the analytic germ of M along i (X)
onto the analytic graph of (X, &).

We finally show that M satisfies the Liouville property. Consider the com-
mutative diagram

C x X)/m(X) =M

x X

X X/mX) =X

where the vertical maps are induced by the second projection C" x X — X,and
where the horizontal maps are the quotient maps. Let ¥ be a plurisubharmonic
function on M, bounded from above. The restriction to any fiber of C" x X —
X of the pull-back ¢ of ¥ to C" x X is either —oo or a plurisubharmonic
function bounded from above. In either case, it is constant, and hence, ¥ is the
pull-back of a 71 (X)-invariant function on X. The latter is then induced by a

plurisubharmonic function on the compact complex manifold X. This implies
that ¢ is constant, proving our claim.
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By Theorem 5.3, we conclude that & and hence & have algebraic leaves.

Step 3. End of proof. To show Theorem 1.4, let R be a subring of C, finitely
generated over (Q, and let X be a flat projective model of X over T := Spec R
with normal geometric fibers. We may also assume that the geometric fibers
of X x1 T¢c over Tc = Spec R ® C have terminal singularities. Let & (resp.
%;) be a locally free (resp. a coherent) subsheaf of Tx,r such that & (resp.
Y ¢) coincides with & (resp. ¢;). Suppose moreover that the sheaves %; are
flat over T, and that

TX/T=@%EB&

iel

Let H be an ample Cartier divisor on X such that Hc ~ H. As above, we
may assume that the sheaves ¥;; are stable with respect to Hy, and that &7 is
polystable, for any geometric point ¢ of T. Suppose furthermore that &; and
the sheaves %;; are involutive. By Lemma 2.11 again, we may also assume
without loss of generality that

c1(6) My~ = 1(6)?- Hi ™ = a(6) - H; 7 =0,
c1(%;) -H' =0 and either
c1(%:)? - H:_’72 £0 or (%) - Hlt}fz £0.

Recall that R is finitely generated over Q. Whent € T = Spec R is a closed
point, its residue field is an algebraic number field, and hence & has algebraic
leaves by the previous step.

Let also X be a smooth projective model of X over T, and let B: X > X
be a projective birational morphism such that B¢ coincides with . Suppose
moreover that f;: X — X7 is birational. Set & = ﬂ &. Let G bea locally
free subsheaf of T /T such that % coincides with 2 Suppose moreover that

o~

gr=609

and that 9 is involutive. By [56, Corollary 3.10], é” is a flat vector bundle,
and hence cl(é?’) 0 and cz(é”) 0. Moreover, the vector bundle é?’ is

polystable with respect to the nef and big divisor 87Hjy, and hence polystable
with respect to some ample divisor by [27, Theorem 3.3]. Applying Lemma
5.8 and Lemma 5.7, we see that &7 is étale trivializable for any closed point
t € T. From [48, Theorem 7.9] (see also Theorem 5.14 below), we conclude
that & is étale trivializable. Thus, replacing X by a further cover that is étale
in codimension one, if necessary, we may assume that & = 6’;‘?’ .

@ Springer



A decomposition theorem for singular spaces

We claim that the neutral component Aut®(X) of the automorphism group
of X is an abelian variety. Suppose otherwise. Then Aut®(X) contains a pos-
itive dimensional affine subgroup by Chevalley’s structure theorem. Hence,
it contains an algebraic subgroup G isomorphic to G, or G,. Let x € X,
and let y € G-x\G - x. Then y is a fixed point of G. On the other
hand, dim Aut®(X) = h%(X, Tx) = r. It follows that Lie(G) is generated
by a nowhere vanishing global section of Ty, yielding a contradiction. Set
A = Aut®(X). By [14, Theorem 2], there exists a normal projective variety
X, and a finite étale cover f: A x X — X. The decomposition

Tax 2D M% e fMe

iel

of T, 3 together with the assumption that f1*1¥; is f* H-stable then imply
easily that

fME =Ty, 3%

This finishes the proof of the theorem. O

Theorem 7.9 in [48] is stated without an actual proof, as being an application
of the methods in some earlier work of André and Esnault-Langer. We include
a proof here of Theorem 5.14 for the reader’s convenience. This special case of
[48, Theorem 7.9] is enough to complete the proof of Theorem 1.4. Note also
that the proof is very similar to that of [2, Théoréme 7.2.2] and [18, Theorem
5.1].

Theorem 5.14 Let T be a variety over @ C C, and let X — T be a smooth
projective morphism with connected fibers. Denote by n the generic point of
T. Let & be a vector bundle on X such that & is polystable with respect to
some ample divisor on Xj. Suppose furthermore that &; is étale trivializable
for every closed point t € T. Then & is étale trivializable.

Proof We may assume without loss of generality that X — T has a section.
The proof of [2, Lemma 10.1.1] shows that, up to replacing X with a finite
étale cover, we may also assume that &; is a direct sum of torsion line bundles
for every closed point# € T.

Let H be a relatively ample Cartier divisor on X such that &5 is polystable
with respect to Hj, and let ® € Q[z] be the Hilbert polynomial of &; with
respect to Hj;. We denote by Mﬁ (X/T) the coarse moduli space of Gieseker
semistable sheaves on fibers of X — T with Hilbert polynomial ®, whose
existence is guaranteed by [34, Theorem 4.3.7]. Recall that Mﬁ (X/T) is pro-
jective over T.
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Since Gieseker semistability is an open condition in flat families of sheaves
(see for instance [34, Proposition 2.3.1]) and since any slope polystable vector
bundle is Gieseker semistable, we conclude that &7 is Gieseker semistable for
any point r € T. Hence & induces a section o of Mﬁ X/T) - T.

Consider the relative Picard scheme Pic(X/T) whose existence is guar-
anteed by [31, Théoréme 3.1]. By a theorem of Deligne, h! X;, Ox,) is
independent of ¢ € T. This implies that the group scheme Pic(X/T) is smooth
over T ([28, Exposé VIg, Proposition 1.6]). Recall now from [28, Exposé
VIg, Théoreme 3.10] that the algebraic groups Pic®(X;) fit together to form a
group scheme Pic®(X/T) over T, and that Pic°(X/T) C Pic(X/T) is an open
subscheme. From [10, Chapter 8, Theorem 5], we see that Pic®(X/T) is quasi-
projective. Using [30, Corollaire 15.7.11], we conclude that it is projective
over T. This shows that Pic®°(X/T) is an abelian scheme.

Next, consider the natural morphism

@ Pic°(X/T) xt - - - x7 Pic®(X/T) > ME(X/T)

r factors

which maps ([Z1], ..., [ ] to[A D D% ], where r denotes the rank of
& and .7, ..., %, are topologically trivial line bundles on X; for some closed
pointt € T. Since

o (1) € w(Pic®(X/T) x7 - - - x1 Pic®(X/T))
for any closed point ¢ € T and since @ is closed, we must have
o(T) C @ (Pic°(X/T) xt - - xt Pic°(X/T)).

Since & is polystable with respect to Hj, we conclude that, up to shrink-
ing T if necessary, there exist line bundles %, ..., %, on X with [%;] €
Pic®(X/T)(T) such that & = £1; @ --- @ &£, 5. Moreover, for any closed
pointt € T, ;7 is atorsion point. From [45, Chapter 9, Corollary 6.3], we see
that £ is a torsion point. This shows that & is étale trivializable, completing
the proof of the theorem. O

6 Stable reflexive sheaves with pseudo-effective tautological line bundle

In this section we provide a technical tool for the proof of Theorem 1.6: we
study stable reflexive sheaves with numerically trivial first Chern class and
pseudo-effective tautological line bundle.

In [51], Nakayama studies semistable vector bundle & of rank two on com-
plex projective manifold with ¢;(&) = 0 and pseudo-effective tautological
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class (see [51, Theorem IV.4.8] for a precise statement). Our strategy of proof
for Theorem 6.1 partly follows his line of reasoning.

Theorem 6.1 Let X be a normal complex projective variety of dimension n,
let H be an ample Cartier divisor, and let & be a reflexive sheaf of rank
r € {1,2,3}on X. Suppose that X is smooth in codimension two and that &
is H-stable with ¢\ (&) - H n=1 = 0. Suppose furthermore that, for any finite
morphism [ : X — X that is étale in codimension one, the reflexive pull-back
f¥& is stable with respect to f*H. Then one of the following holds:

1. either there exists ¢ > 0 such that hO(X, slile @ ox (jH)) = 0 for any
positive integer j and any natural number i satisfying i > cj,

2. orci(&)2-H" 2 =c¢y(&) - H" 2 =0, B

3. orr = 3, and there exists a finite morphism f: X — X that is étale
in codimension one, and a rank 1 reflexive sheaf £ on X with ¢1(Z) -

(f*H)"~' = 0 such that h°(X, (S2 f*&) K L) # 0.

Remark 6.2 The condition on the dimension of the singular locus of X posed
in Theorem 6.1 allows to define the Chern class ¢ (&).

Remark 6.3 The condition (1) in the statement of Theorem 6.1 is a way of
saying that the tautological line bundle is not pseudo-effective on singular
spaces (see Lemma 2.7).

Remark 6.4 In the setup of Theorem 6.1, suppose furthermore that X is
smooth, and that & is locally free. If ¢{(&)% - H" % = (&) - H"™? = 0,
then & is flat by a result of Uhlenbeck and Yau (see [57]). In particular, the
tautological line bundle is nef.

The following consequence of Theorem 6.1 improves [6, Theorem 7.7]. The
conclusion also holds for K3-surfaces by [51, Theorem 1V.4.15].

Corollary 6.5 Let X be a Calabi—Yau complex projective manifold of dimen-
sion 3. Then the tautological line bundle on Px(Ty) is not pseudo-effective.

Proof 1t is well-known that the tangent sheaf Ty is stable with respect to any
polarization H, and that ¢, (X)- H? # 0. We argue by contradiction and assume
that the tautological line bundle on Py (Tx) is pseudo-effective. By Theorem
6.1, there exists a line bundle . with g (%) = 0 such that 4° (X ,(S2Ty) ®
.,2”) # 0. This implies that Q}( = Tx ® £. Taking determinants, we obtain
£®2 = (x. Since X is simply connected, we must have . = Oy. On
the other hand, by [41, Corollary 8], we have hO(X , SZTX) = (), yielding a
contradiction. O

We collect several examples which illustrate to what extend our result is
sharp.
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Example 6.6 Let X be a projective K3-surface. The tautological line bundle
on Px (Ty) is not pseudo-effective by [51, Theorem IV.4.15 ]. Thus & satisfies
(1) in the statement of Theorem 6.1 by Lemma 2.7.

Example 6.7 Let X be a complex projective manifold, and let .2 € Pic?(X).
Then .Z obviously satisfies (2) in the statement of Theorem 6.1.

Example 6.8 Let C be a complete curve of genus g > 2. We construct a rank
two vector bundle & on C of degree 0 such that, for any étale cover f: C — C,
the pull-back f*& is stable. The vector bundle & satisfies (2) in the statement
of Theorem 6.1.

The construction is very similar to that of Hartshorne in [32, Theorem
1.10.5], and so we leave some easy details to the reader. Pick ¢ € C. By aresult
of Narasimhan and Seshadri [52], we must construct a unitary representation
p: m(C,c) — U(2) such that, for any normal subgroup H < m1(C, c¢) of
finite index, the induced representation H — U(2) is irreducible.

It is well-known that 71 (C, ¢) is generated by elements ay, by, ..., ag, by
satisfying the relation

[Cll,bl] R [ag, bg] = 1.

If we have chosen any two unitary matrices A, By € U(2), then we can find
further unitary matrices Aj, Ba, ..., Ag, By satisfying the relation above. Let
Al = <)E)1 )?2> where |1;| = 1, and Al)\gl is not a root of unity. Let By be a
very general unitary matrix. Then all the entries of all the matrices B{" (m > 1)
are non-zero. Let H <t7r((C, ¢) be a normal subgroup of finite index. Let m be
a positive integer such that AT', B{" € H. The only invariant subspaces of A’
are the subspaces spanned by some subset of the standard basis. This implies
that the representation H — U(2) is irreducible. Indeed, in order for BY" to
have as fixed subspace a subspace generated by a subset of the standard basis,
it would have to have some entries zero.

Example 6.9 Let X be a projective K3-surface, and consider & := $*Tx. A
straightforward computation shows that c3(&’) = 4 - 24. It is known that & is
stable with respect to any polarization. On the other hand,

S2(S%Ty) = S*Ty @ det(Tx)®? = S*Tx @ O,

and hence h%(X, S2&) # 0. Thus & satisfies (3) in the statement of Theorem
6.1 above.

We have divided the proof of Theorem 6.1 into a sequence of steps, each
formulated as a separate result. Some of these statements might indeed be of
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independent interest. The proof of Theorem 6.1 then follows quickly from
these preliminary steps.

6.10 (Divisorial Zariski decomposition) We briefly recall the definition of the
divisorial Zariski decomposition from [51]. Let X be a complex projective
manifold, let D be a big R-divisor on X, and let P be a prime divisor. The
asymptotic order of vanishing of D along P is

op(D) = inf {multp (G)},

where the infimum is over all effective R-divisor G with G ~r D.
Let now D be a pseudo-effective R-divisor, and let A be an ample R-divisor
on X. Let

op(D) = gii% op(D + eA).

Then op (D) exists and is independent of the choice of A. There are only
finitely many prime divisors P such that op(D) > 0, and the R-divisor
Ny (D) := ) pop(D)P is determined by the numerical equivalence class
of D. Set P,(D) := D — N4 (D).

6.11 (Diminished base locus) Let D be a (Q-divisor on a smooth projective
manifold X. Let k be a positive integer such that kD is integral. The stable
base locus of D is

B(D) := ﬂ Bs(mkD).

m>1

It is independent of the choice of k.
The diminished base locus of an R-divisor D is

B_(D)=|_JB(D+ 4)
A

where the union is taken over all ample R-divisors A such that D + A is a Q-
divisor (see [20, Definition 1.12]). The diminished base locus of a divisor is a
countable union of Zariski closed subsets of X by [20, Proposition 1.19]. Notice
that B_(D) C X if and only if D is pseudo-effective, and that B_(D) = ¢ if
and only if D nef. By [51, Proposition III 1.14], N, (D) = 0 if and only if D
is movable.

We will need the following observation.

Lemma 6.12 Let X be a complex projective manifold, and let D be a pseudo-
effective R-divisor on X. Let B be an irreducible component of B_(D). Let
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B1: Y1 — X bethe blow-up of X along B, andlet By: Y — Y| be aresolution
of singularities. Suppose that B, induces an isomorphism over the smooth locus
of Y1. Set B := B1 o Ba, and let E be the unique B-exceptional divisor on Y
with center B in X. Then og(B8*D) > 0.

Proof Let A be an ample R-divisor on X. By [20, Lemma 3.3] applied to the
divisorial valuation multg of the function field of X given by the order of
vanishing at the generic point of B,

op(B*(D+ A)) = inf {multz(8*G)}

where the infimum is over all effective R-divisor G withG = D+A. If D+ A
is a Q-divisor, then by [5, Lemma 3.5.3],

B(D + A) = (") Supp(F)
F

where the intersection is over all effective R-divisor F with F = D + A. The
assertion now follows from [51, Lemmata V.1.9 and I11.2.3]. m|

The proof of Proposition 6.22 below makes use of the following lemma.

Lemma 6.13 Let Y be a complex projective manifold of dimensionn > 2, and
let D be an R-divisor. Suppose that D is movable, and suppose furthermore
that there is an irreducible component B of B_(D) of codimension two. Let
|H| be a base-point-free linear systemon Y, let 0 < k < n — 2 be an integer,
and let S be a complete intersection of k very general elements in |H|. There
exists a real number a > 0 such that

(Dfs—aBNS) -hy----- By >0

for arbitrary codimension one nef classes hs, ..., hy—; on S.

Proof Let B1: Z1 — Y be an embedded resolution of B, andlet 8>: Z — Z;
be the blow-up of Z; along the strict transform Bj of Bin Z. Set 8 := B0 f2,
andlet £y, ..., E, be the -exceptional divisors. Suppose that £1 = Exc(8>).

Set S = ,Bl_l(S), and T := ﬂ_l(S). Notice that S; is an embedded
resolution of B N S, and that T — S| is the blow-up of the strict transform
BiNS of BN Sin ;. Write F; := E; N T, and denote by u;: S — S,
n2: T — Sy,and pw: T — S the natural morphisms. Set Dg := D)s, and let
hs, ..., h,_; be codimension one nef classes on S.

Write a; := o, (*D) € Rx. The R-divisor 8*D — Z a; E; is then

1<i<r
movable. Notice that a; > 0 by Lemma 6.12 above.
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By Lemma 6.14 below, the restriction of 8*D — Z a; E; to T is also

1<i<r
movable, and therefore
2
w*Dg — Z aiFi | -pu*hz----- wWhy—i > 0.
1<i<r
But F; - u*Ds - u*hz - -+ - u*h,—; = 0 since F; is p-exceptional, and
F-u*hs----- why_x = 0wheni > 2since u(F;) C BN S foreachi > 2.
Thus
2
n*Dg — Z aiF; | -pu*hz----- W hp—
1<i<r

= (W"(D3) + ai FY) - why -+ 1 hy i
The projection formula gives
(W (D3) +aT FT) - w3 - - - oy = (D5 =i BOS) -3 - - hyg,
using the fact that o, F 12 = — B N §;. This proves the lemma. O

Lemma 6.14 Let Y be a complex projective manifold, let V- C |H| be a not
necessarily complete base-point-free linear system on Y, and let D be an R-
divisor. If D is pseudo-effective (resp. movable), then its restriction to a very
general element in 'V is pseudo-effective (resp. movable) as well.

Proof Suppose that D is pseudo-effective (resp. movable). There is a sequence
of effective (resp. effective movable) integral divisors M; on Y and a sequence
A; of non-negative real numbers such that A;[M;] — [D] in Eff(Y) asi —
+o00. Now, the restriction of an effective (resp. effective movable) divisor to a
general element in V is effective (resp. effective movable). So, if H' is a very
general element in V, then for each i, M; g is effective (resp. movable), and
hence so is D|y. |

The proofs of Lemma 6.15 and Proposition 6.16 follow arguments that go
back at least as far as [51, Theorem IV 4.8].

Lemma 6.15 Let X be a complex projective manifold, and let & be a coherent
locally free sheaf on X. Suppose that & is semistable with respect to any
polarization and that ¢ (&) = 0. Set Y := Px (&), and denote by Oy (1) the
tautological line bundle. If & := [Oy(1)] € NY(Y)R is pseudo-effective, then
it generates an extremal ray of the cone of pseudo-effective classes Eff(Y).
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Proof Let &1 and &, be pseudo-effective classes on Y such that &€ = & + &;.
Write & = a;& +*y; for some real number g; and some class y; on X. Notice
thata; > 0,a; +a> = 1,and y; + y» = 0.

Denote by w: ¥ — X the natural projection. Let H be an ample divisor,
and let C C X be a general complete intersection curve of elements in |m H |
where m is a sufficiently large positive integer. By the restriction theorem of
Mehta and Ramanathan, the locally free sheaf &jc is stable with deg(&jc) = 0.
In particular, &jc is nef. Set Z := 7~ 10). By [22, Lemma 2.2],

Nef(Z) = Eff(Z) = (§z, f)

where f denotes the numerical class of a fiber of the projection morphism
Z — C. This implies that deg(yl-|c) > 0, and hence deg(yi|c) = 0 since
y1 + y2 = 0. Since H is arbitrary, we conclude that y; = y» = 0. This
completes the proof of the lemma. O

Proposition 6.16 Let X be a complex projective manifold, and let & be a
locally free sheaf on X. Suppose that & is semistable with respect to an ample
divisor H, and that uwg (&) = 0. Set Y := Px(&). Suppose that the tautolog-
ical line bundle Oy (1) is pseudo-effective. If Oy (1) is not movable, then there
exists a line bundle £ with uy (L) = 0 and a positive integer m such that
h(X, (S"&) ® L) # 0.

Proof Set n := dim X. Denote by E a tautological divisor on Y, and by
m: Y — X the natural morphism. Set P := P, (E) and N := N, (Z2). Write
N = Zi <7 0iN;i, where N; is a prime exceptional divisor, and o; € R.(. We
have N; ~z m; E 4+ 7*T'; for some divisor I'; on X and some non-negative
integer m;.

Let C C X be a complete intersection curve of very general elements in
|m H| where m is a sufficiently large positive integer. By the restriction theorem
of Mehta and Ramanathan, the locally free sheaf &c is stable with deg(&jc) =
0. Set Z := 7~ 1(C). Notice that E\z, Pz, and N; |z are pseudo-effective by
Lemma 6.14. Applying Lemma 6.15, we see that [7*T;|z] € R[E,z] for each
i el,andthusT;- H"~! = Osince 8z is relatively ample over Z. Picki € 1.
If m; = 0, then h°(X, Ox(I';)) # 0, and hence I'; ~z Osince I'; - H"~! = 0.
This implies that N; = 0, yielding a contradiction. Therefore, m; > 0 and
hO(X, (§™ME) ® ﬁ’x(Fi)) # 0. This proves the proposition. O

The proof of the next result follows the line of argument given in [6, Theorem
7.6].

Lemma 6.17 Let S be a smooth complex projective surface, and let & be a
locally free sheaf of rankr > 2 on S. Suppose that & is semistable with respect
to an ample divisor H, and that c1(&) - H = 0. Let £ € NY(Y)R be the class
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of the tautological line bundle Oy (1). If any irreducible component of B_ (&)
has dimension at most 1, then ¢1(&)* = ¢2(&) = 0.

Proof Denoteby 7 : ¥ — S the natural morphism, and denote by & € N!(S)g
the class of H. Let G C Y be a very general hyperplane section. Suppose that
[G] = m(§ 4 t*h) for some positive integers m and ¢. Notice that G does
not contain any irreducible component of B_ (§). It follows that &, is nef, and
hence

& .G>0.
The equation
§=ntel(&) - —ntes) £
yields

§-G=m(r*c1(&)- & —x (&) - E7%) - (E +1m*h)
=m(c1(6)” - c2(&)),

and hence
c1(6)? = e2(&) = 0.
On the other hand, we have
2rex(8) — (r — Der(6)* > 0

by Bogomolov’s inequality (see [34, Theorem 3.4.1]), and thus c1(&£)? > 0.
Finally, the Hodge index theorem implies that ¢1 (& )2 < 0, and hence we must
have ¢1(&)? = ¢»(&) = 0. This proves the lemma. O

6.18 (The holonomy group of a stable reflexive sheaf) Let X be a normal
complex projective variety, and let & be a reflexive sheaf on X. Suppose that
& is stable with respect to an ample Cartier divisor H with slope p g (&) = 0.
For a sufficiently large positive integer m, let C C X be a general complete
intersection curve of elements in [m H|. Let x € C. By the restriction theorem
of Mehta and Ramanathan, the locally free sheaf &jc is stable with deg(&jc) =
0, and hence it corresponds to a unique unitary representation p: m1(C, x) —
U(&y) by a result of Narasimhan and Seshadri [52]. The holonomy group
Hol, (&) of & is the Zariski closure of p(m (C, x)) in GL(&%). It does not
depend on C > x provided that m is large enough. Moreover, the fiber map
& — & induces a one-to-one correspondence between direct summands of
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&® K (£*)®* and Hol, (&)-invariant subspaces of &&" @ (&£;)®*, where r
and s are non-negative integers (see [9, Theorem 1]).

The proof of Theorem 6.1 makes use of the following lemma. Example 6.20
below shows that the statement of [9, Lemma 40] is slightly incorrect. An extra
assumption is needed to guarantee that the holonomy groups are well-defined.

Lemma 6.19 [9, Lemma 40] Let X be a normal complex projective variety,
let x € X be a general point, and let & be a reflexive sheaf on X. Suppose
that & is stable with respect to an ample divisor H, and that 1y (&) = 0.
Suppose furthermore that, for any finite morphism f: X — X that is étale in
codimension one, the reflexive pull-back f 41 is stable with respect to f*H.
Then there exists a finite morphism f : X — X, étale in codimension one, such
that Holz( f*¥1&) is connected, where X is a point on X such that f(X) = x.

Example 6.ZQ (see [25, Example 8.6]) Let 4 be a complex projective K3-
surface, let X := Z x Z, and let ¢ € Aut(X) be the automorphism which
interchanges the two factors. The quotient X := X /¢ is then a normal projec-
tive variety, and the quotient map 7 : X — X is finite and étale in codimension
one. The tangent sheaf Tx of X is stable with respect to any ample polar-
ization on X (see [25, Example 8.6]). Let x is a general point on X. Then
Hol, (Tx)° = SL,(C) x SL,(C), and Hol, (Tx)/Hol,(Tx)° = Z/27. More-
over, the morphism m is the map given by [9, Lemma 40]. But, the reflexive
pull-back 7Ty = Ty = Tz H Tz is obviously not stable.

Lemma 6.21 Let X be a complex projective manifold, let x € X, and let & be
a coherent locally free sheaf on X. Suppose that & is stable with respect to an
ample divisor H, and that 1y (&) = 0. Suppose furthermore that its holonomy
group Hol, (&) is connected. Then, for any finite cover f: X — X with X
smooth and projective, the pull-back f*& is stable with respect to f*H.

Proof Let Xbea complex projective manifold, and let f: X — X be a finite
cover. By [39, Theorem 1], the locally free sheaf /& is polystable with respect
to f*H. For a sufficiently large positive integer m, let C C X (resp. C) be
a general complete intersection curve of elements in |mH| (resp. |mf*H]|),
and let x € C (resp. X € f —1(x)). By the restriction theorem of Mehta and
Ramanathan, the locally free sheaf &c is stable with deg(&jc) = 0, and hence
it corresponds to a unique unitary irreducible representation p: 71 (C, x) —
U(&%) by [52]. Notice that f *éol ¢ is then induced by the representation

pi=pom(fip): m(C.%) — mi(C.x) — UE) U((f*E)z).
We argue by contradiction and assume that f*& is not stable with respect

to f*H. So let 4 be a f*H-stable direct summand of f*&. Then % is p-
invariant, and since the image of
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T (fig): m(C, %) — m(C,x)

has finite index, the orbit 771 (C, x) - % of % is a finite union of proper linear
subspaces, where we view % as a linear subspace of &, = (f*&)z. It follows
that 71 (C, x)-% is also Hol,, (&)-invariant. Now, since Hol, (&) is a connected
algebraic group, we conclude that % is 7 (C, x)-invariant. Therefore & is not
H-stable, yielding a contradiction. This completes the proof of the lemma. O

We now provide another technical tool for the proof of Theorem 6.1.

Proposition 6.22 Let X be a complex projective manifold, and let & be a
rank 3 locally free sheaf on X. Suppose that & is stable with respect to an
ample divisor H, and that g (&) = 0. Suppose furthermore that Hol, (&) is
connected for x € X. Set Y := Px (&), and denote by Oy (1) the tautological
line bundle. Suppose that &€ = [Oy(1)] € NY(Y)R is pseudo-effective. If € is
movable, then any irreducible component of B_(§) has codimension at least
three.

Proof Denoteby 7 : Y — X the natural projection. We argue by contradiction
and assume that £ is movable, and that there exists an irreducible component
B of B_ (&) of codimension two.

For a sufficiently large positive integer m, let C C X be a complete
intersection curve of very general elements in [m H|. By the restriction the-
orem of Mehta and Ramanathan, the locally free sheaf &jc is stable with
deg(&jc) = 0. Moreover, if x € C, then Hol, (&jc) = Hol, (&) is connected.
Set Z = n_l(C), and £z := &z. Notice that dim Z = 3. Then &7 is nef, and
’;‘% = 0. By Lemma 6.13, there exists a real number a > 0 such that

0<a(BNZ) &2 <& =0,

and hence (BN Z) - §z = 0. In particular, since &z is relatively ample over C,
any irreducible component of BNZ maps onto C. Let C be the normalization of
BNZ,anddenoteby f: C — C the induced morphism. The natural morphism
g: C — Z induces a surjective morphism f*(&jc) — g*(Oy(1)|z). Since

degg*(Oy(1)z) =(BNZ)-&7 =0,

the locally free sheaf f*(&jc) is not stable. But this contradicts Lemma 6.21,
completing the proof of the proposition. O

Proof of Theorem 6.1 We maintain notation and assumptions of Theorem 6.1.
We claim that we may assume without loss of generality that the algebraic
group Hol, (&) is connected. Indeed, by Lemma 6.19, there exists a finite cover
f: X — X, étale in codimension one, such that Holz( f [xlg ) is connected,
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where ¥ is apointon X such that f(¥) = x. By ‘the Nagata—Zariski purity theo-
rem, f is étale in codimension two, and hence X is smooth in codimension two
as well. Suppose now that the conclusion of Theorem 6.1 holds for f*/&. The
sheaf S'1& ® Ox (jH) is a direct summand of f,(S'(f*&) @ f*Ox(jH))
for any non-negative integers i and j. Thus, if f1*1& satisfies condition (1) in
the statement of Theorem 6.1, then the same holds for &. Let X° C Xyeg be
the open set where & is locally free. Then X° has codimension at least 3 in
X by [33, Corollary 1.4] using the fact that X is smooth in codimension two.
Since

C1 (f]?—l(xo)éixo) = flﬂ}—l(xo)cl(éiXO) and
CZ(fljc—l(XO)éiXO) = fr}—l(xo)CZ(éon)a

we conclude that

el (fME)? - (fFHY' = deg(f)e1(&)* - H'? and
2 (fH8) - (f*H)"? = deg(f)ea(8) - H' 2.

This implies that if f [*1£ satisfies condition (2) in the statement of Theorem
6.1, then the same holds for &. Finally, if f1*1& satisfies condition (3) in the
statement of Theolem 6.1, then the same obviously holds for &. Thus, by
replacing X with X, we may assume that Hol, (&) is connected. This proves
our claim.

Suppose from now on that hO(X, slilg ® ﬁx(jH)) % 0 for infinitely
many (i, j) € Nx Nx; withi/j — 4o00. Let S be a smooth two dimensional
complete intersection of very general elements in |m H | for a sufficiently large
positive integer m. Observe that S is contained in the smooth locus Xyeg of
X, and that & is locally free along S (see [33, Corollary 1.4]). We may also
obviously assume thatx € S. Set & := &js, and Hg := H)s. By the restriction
theorem of Mehta and Ramanathan, the locally free sheaf & is stable with
respect to Hg, and pp,(8s) = 0. Moreover, the algebraic group Hol, (&) =
Hol, (&) is connected. Set Y := Pg(&y) with natural morphism 7: ¥ — .
Denote by & € N (Y)r the numerical class of the tautological line bundle
Oy (1). Notice that hO(Y, SiEs ® ﬁg(jHS)) # 0 for infinitely many (i, j) €
N x N>y with i/j — +ooc. This implies that & € Eff(Y). If » = 1, then
obviously we must have & = 0. Suppose from now on that r € {2, 3}.

Case 1: £ is movable. If r = 3, then any irreducible component of B_ (&) has
codimension at least three by Proposition 6.22. In either case, any irreducible
component of B_ (&) has dimension at most 1. Thus, by Lemma 6.17, we must
have
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1 (&)? H'" 2 =¢1(&)> =0 and (&) - H' 2 = c2(&%) = 0.

Case 2: £ is not movable. By Proposition 6.16, there exists a line bundle %5 on
S with g (Zs) = 0and a positive integer k such that ho(S, Sk&s® Ls) # 0.
Since S¥&% is polystable, 35@71 is a direct summand of S¥&s, and hence
(XS‘X’_I )y C (S¥&), is Hol, (&)-invariant.

Suppose first thatr = 2. By [9, 45], Hol, (&) = SL(&%) or GL(&%). In either
case, (S¥&), is an irreducible Hol, (&)-module, yielding a contradiction.

Suppose now that r = 3. Then Hol,(&) = SL(&%), GL(&}), SO(&%),
or GSO(&%) by [9, 45] again, where GSO(&;) denotes the group of proper
similarity transformations. Arguing as above, we conclude that Hol, (&) =
SO(&;) or GSO(&Y). In either case, there exists a rank one reflexive sheaf .
on X with 1y (%) = 0 such that 1°(X, §?¢ X %) # 0. This completes the
proof of the theorem. |

7 Holomorphic Riemannian metric and holomorphic connection

7.1 (Bott connection) Let X be a complex manifold, let 4 C Tx be a regular
foliation, and set %" = Tx/¥. Let p: Tx — .4 denotes the natural projec-
tion. For sections U of 4", T of Tx, and V of ¢ over some open subset of
X with U = p(T), set VEU = p([V, U]). This expression is well-defined,
Ox-linear in V and satisfies the Leibnitz rule V‘% (fU) = fV‘]?U + V- -HU
so that VB is a @-connection on .4 (see [4]). We refer to it as the Bott (partial)
connection on A .

7.2 (Holomorphic Riemannian metric) Given a complex manifold X and a
vector bundle & on X, recall that a holomorphic metric g on & is a global
section of $2(&*) such that g(x) is non-degenerate for all x € X.

Lemma 7.3 Let X be a complex manifold, and let Ty = & & 9 be a decom-
position of Tx into locally free sheaves. Suppose that & is involutive, and
suppose furthermore that & admits a holomorphic metric g. Then there exists
an &-connection V€ on & such that, for sections U, V, and W of & over
some open subset of X, the following holds:

1. VECV — ViCU =[U, V] (V€ is torsion-free), and
2. W-g(U, V)= Q(V]V“VCU, V) + g(U, V‘]}“VCV) (VLC preserves g).

Definition 7.4 We will refer to V€ as the Levi-Civita (partial) connection on
&.
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Proof of Lemma 7.3 Let U and V be local sections of & over some open subset
of X. Then V5CV is defined by

20(VEV,0) =U -g(V,e)+V -g(e,U) —e-g(U, V)

+g([U, V1, e) —g([V, o], U) — g([U, o], V).
A straightforward local computation shows that VC is a torsion-free &-
connection on & that preserves the metric. O

Proposition 7.5 Let X be a complex manifold, and let Ty = & & ¢4 be a
decomposition of Tx into locally free involutive subsheaves. Suppose that &
admits a holomorphic metric. Then & has a holomorphic connection.

Proof Let X = U 4 V and W be local sections of Tx = & & ¢ and &
respectively. Set

VxW = ViEW + VEW

where VIC denotes the Levi-Civita connection on & and where VB denotes
the Bott connection on & induced by the foliation 4 C Ty. This expression is
Ox-linear in X and satisfies the Leibnitzrule Vx (fW) = fVxW+(X- /)W
so that V is a holomorphic connection on &. O

Remark 7.6 In the setup of Proposition 7.5, let S C X be a projective subva-
riety. Then characteristic classes of &js vanish. This follows from [3].

8 Bost-Campana-Paun algebraicity criterion: algebraicity of leaves, 11

We prove Theorem 1.6 in this section. We first provide a technical tool for
the proof of our main result (see [16, Proposition 6.1] for a somewhat related
result).

Proposition 8.1 Let X be a normal complex projective variety, and let H be
an ample Cartier divisor. Let & C Tyx be a foliation on X. Suppose that & is
H-stable and that (&) = 0. Suppose furthermore that through a general
point of X, there is a positive-dimensional algebraic subvariety that is tangent
to &. Then & has algebraic leaves.

Proof There exist a normal projective variety Y, unique up to birational equiv-
alence, a dominant rational map with connected fibers ¢: X --» Y, and a
holomorphic foliation .7 on Y such that the following holds (see [49, Sect.
2.4]):

1. 27 is purely transcendental, i.e., there is no positive-dimensional algebraic
subvariety through a general point of Y that is tangent to ¢; and
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2. & is the pullback of 77 via ¢.

Let 4 C & be the foliation on X induced by ¢. Let ¥: Z — Y be the
family of leaves of ¢, and let §: Z — X be the natural morphism, so that
¢ =1%o B~ X --5 Y. By 3.10, there is an effective divisor R on X such
that

Ky — Kg =—(¢*"K v+ R).

Notice that the pull-back ¢* K ,~ is well-defined (see Definition 3.5). Applying
[15, Corollary 4.8] to the foliation induced by .7#’ on a desingularization of
Y, we see that K j» is pseudo-effective: given an ample divisor A on Y and
a positive number ¢ € Q, there exists an effective Q-divisor D, such that
K ;v +¢eA ~q Dg. This implies that 1 (¢* K ) > 0, and hence py (Kg) <
0. Since & is H-stable, we must have &4 = &. This proves the lemma. O

The proof of Theorem 1.6 relies on a criterion (see Proposition 8.4) that
guarantees that a given foliation has algebraic leaves, which we establish now.
The following observation, due to Bost, will prove to be crucial.

Proposition 8.2 [13, Proposition 2.2] Let Z be a projective variety over a field
k, let x be a k-point, and let H be an ample /c\iivisor. LetV C é be a smooth
formal subscheme of the formal completion Z of Z at x. Then V is algebraic
if and only if there exists ¢ > 0 such that, for any positive integer j and
any section s € HO(Z, Oz (jH)) such that sy; is non-zero, the multiplicity
multx(s‘ﬁ) ofs|‘7 atx is < ¢j.

Corollary 8.3 Let Y° be a smooth complex quasi-projective variety, let Z be a
complex projective variety with Y° C Z, and let H be an ample Cartier divisor
onZ. Let V.C Z be a germ of smooth locally closed analytic submanifold
along Y° in Z. Then V is algebraic if and only if there exists ¢ > 0 such that,
for any positive integer j and any section s € H° (Z, Oz(j H)) such that sy
is non-zero, the multiplicity multy.(s|v) of s|v along Y° is < cj.

Proof Let n € Z be the generic point of Y°. Denote by k() its residue field.
Set Z, := Z®k(n), and H, := H ®k(n) . Notice that H*(Z,, 07, (j H,)) =
HO(Z, ﬁz(jH)) ® k(n) for any number j € Z. The point 1 corresponds
to a k(n)-point on Z, still denoted by 7. Let V be the formal completion of
V along Y°. Then V induces a smooth formal subscheme V of the formal
completion Z of Z, at . Observe that Vis algebraic if and only if V is. The
lemma now follows from Proposition 8.2 applied to (Z;, n, H,) and V since
multye(sjy) = mult, (s ® k(n)m) for any number j € Z and any section

s € HYZ, 07(jH)).

@ Springer



S. Druel

The proof of Proposition 8.4 below follows the line of argument given in
[15, 4.1] (see also [12, Corollary 3.8]).

Proposition 8.4 Let X be a normal complex projective variety, let H be an
ample Cartier divisor, and let ¢ C Ty be a foliation. Suppose that there exists
¢ > 0 such that hO(X, slilg* @ o (jH)) = 0 for any positive integer j and
any natural number i satisfying i > cj. Then ¢ has algebraic leaves.

Proof Let X° C Xreg be the open set where 4., is a subbundle of Tx,,. Set
Z° = X°xX° Z:=XxX,and A := p{H + p5H where p1, p2: Z =
X x X — X denote the projections on X. Let Y° C Z° be the open subset
of the diagonal corresponding to X°. Let now V C Z° be the analytic graph
of (X°, 9 x-). Recall that Y° C V and that A#y./y = ¥ xo. The closed subset
X \ X, has codimension > 2, and hence h°(X°, Si%’i/v ® Ox-(jH)) =0
for any positive integer j and any natural number i satisfying i > c¢j by
assumption. This implies that multy-(s;y) < ¢j/2 for any positive integer j
and any sections € H° (Z , Oz7( jA)) such that s|y is non-zero. The proposition
now follows from Corollary 8.3 applied to (Z, Y°, A) and V. O

We end the preparation for the proof of Theorem 1.6 with a flatness criterion
(see Remark 8.6 below). We feel that it might be of independent interest.

Proposition 8.5 Let X be a normal complex projective variety of dimension n,
and let H be an ample Cartier divisor. Suppose that X is smooth in codimension
two. Let Ty = & ® 9 be a decomposition into involutive subsheaves, where
& is H-stable and det(&) = Ox. Suppose furthermore that h° (X, S2(&* K
A ) =+ 0 for some rank one reflexive sheaf £ with c1(.£) - H"™' = 0. Then
(&) -H" 2= (&) -H'" 2 =0.

Proof Setr := rank &. Consider a non-zero sectiong € H° (X, S2(&%) &Z).
Since & is H-stable, g induces an isomorphism & = &* X .. Taking deter-
minants and double duals, we obtain .Z!1®1 = @y. Let f: X — X be
the corresponding cyclic cover (see for instance [40, Lemma 2.53]). Then
fH# = 0%, and g induces a holomorphic metric on f [*]é" % . Apply-
ing Proposition 7.5, we see that f*1& 1K e admlts a holomorphlc connectlon
Notice that X \ Xreg has codimension at least three. It follows from Remark
7.6 that

2 g _ ! [¥] 2y2 n-2 _
(&) -H = % (f)01(f &) - (f*H)

and that

(&) - H"? o (fMe) . (frH)? =

" de (f)

proving the proposition. O
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Remark 8.6 In the setup of Proposition 8.5, suppose furthermore that X is a
Q-factorial variety with only canonical singularities. Then it follows from [27,
Theorem 6.5] that there exists a finite surjective morphism f: X — X, étale
in codimension one, such that f*1& is a locally free, flat sheaf on X.

Proof of Theorem 1.6 Maintaining notation and assumptions of Theorem 1.6,
set 7 :=rank &. _

Suppose that there exists a finite cover f: X — X that is étale in codimen-
sion one such that the reflexive pull-back f[*1& is not stable with respect to
f*H. Applying [34, Lemma 3.2.3], we see that the f*1& is polystable, and
hence, there exist non-zero reflexive sheaves (&;);er, f*H-stable with slopes
W (E) = wpea (f¥1€) = 0 such that

fiHlg = @g

iel

Suppose that the number of direct summands is maximal. Then, for any finite
cover g: X — X that is étale in codimension one, the reflexive pull-back
g*1&; is obviously stable with respect to (f o g)*H. Notice that X is still
smooth in codimension two, since f branches only over the singular set of X.
It follows from Proposition 8.1 that if &; has algebraic leaves for some i € I,
then so does &

Suppose first that there exists ig € I such that ¢ (é?io)2 (f*H)""2 #£0o0r
c2(&y) - (f*H y"=2 = 0. Applying Theorem 6.1 to c%al(’)“, we see that one of the
following holds.

1. Either there exists ¢ > 0 such that ho()?, S[i]é‘;.: ® ﬁg(jf*H)) = 0 for
any positive integer j and any natural number i satisfying i > ¢j,
2. or r = 3, and there exists a finite morphism g: X — X that is étale in

codimension one, and arank 1 reflexive sheaf .Z on X with W(fogy H (L) =
0 such that (X, (S2(f 0 g)*&, YR.Z) #0.

If we are in case (1), apply Proposition 8.4 to conclude that &, has algebraic
leaves. _

Suppose that we are in case (2). Then we may assume that X = X, and that
&;, = &. Taking pull-backs and double duals, we obtain a decomposition

Ty = M @ gy

into involutive subsheaves, where g!*1& is g* H-stable and det(g!*1€) = 05
Applying Proposition 8.5 to g*/&, we see that

1
C1(éa)2 CH'2 — 2 C1(g[*]£)2 ) (g*H)n_2 —0

@ Springer



S. Druel

and

c2(&) - H" 2 = c2(8™1é) - (g H)" 2 =0,

deg(g)

yielding a contradiction.

Finally, suppose that ¢ (&},)%-(f*H)" 2 = ¢2(&)-(f*H)"~? = 0 for each
i € I.Let S be a smooth two dimensional complete intersection of general
elements in |m H | for a sufficiently large positive integer m. Observe that S is
contained in the smooth locus X,eg of X, and that & is locally free along S (see
[33, Corollary 1.4]). By the restriction theorem of Mehta and Ramanathan, the
locally free sheaf &; | is stable with respect to H|s with up¢(&;)s) = 0, and
cl(éai‘s)z = ¢2(&}s) = 0. This implies that &; g is flat (see Remark 6.4). A
straightforward computation then shows that c»(&) - H" 2 = c2(8js) = 0,
yielding a contradiction. This completes the proof of the theorem. O

9 Proof of Theorem 1.2

We are now in position to prove our main result.

Proposition 9.1 Let X be a normal complex projective variety of dimension
at most 5, with kit singularities. Assume that IS x = 0. Then there exists an
abelian variety A as well as a projective variety X with canonical singularities,
a finite cover f: A x X — X, étale in codimension one, and a decomposition

x=J]v

jedJ

such that the induced decomposition of Ty agree with the decomposition given
by Theorem 1.1.

Proof Notice first that Kx ~q 0 by [51, Corollary V 4.9]. Thus, there exists
a finite cover f1: X; — X, étale in codimension one, such that Ky, ~z 0
(see [40, Lemma 2.53]). By [43, Proposition 3.16], X has klt singularities.
It follows that X has canonical singularities since Ky, is a Cartier divisor.
Applying Theorem 1.1, we conclude that there exists an abelian variety A
as well as a projective variety X» with canonical singularities, a finite cover
21 A x X2 — X1, étale in codimension one, and a decomposition

TXz :@gl

iel

such that the following holds.
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A decomposition theorem for singular spaces

1. The &; are integrable subsheaves of Ty,, with det(&;) = OY,.
2. The sheaves &; are strongly stable.
3. The augemented irregularity of X» is zero.

To prove the theorem, we will show that the foliations &; are algebraically
integrable. We may obviously assume that T, is not strongly stable. Let
B: X2 — X» be a Q-factorial terminalization of X;. By Lemma 4.9, there is
a decomposition

. =Da

iel

of Tg, into involutive subsheaves with det(ﬁ ) = Og, suchthat & = (,3*55; )*E,
Notice that q(Xg) = 0 by Lemma 4.4. Let

=@

ieJ

be a decomposition of T, into strongly stable involutive subsheaves with
det(% ) = 0%, whose existence is guaranteed by Theorem 1.1. Forany j € J,

% is a direct summand of &, for some ij € I. To prove the claim, it suffices

to prove that the foliations % are algebraically integrable. By Corollary 5.11,
we must have ¢ (% ) # 0 for each j € J. This implies in particular that g
has rank at least 2, and therefore, rank G, i € {2,3} since dim X < 5 and Ty,
is not strongly stable by assumption. Now, by Theorem 1.6, we conclude that
the sheaves &; are algebraically integrable, proving our claim. The proposition
then follows from Proposition 4.10. O

Proof of Theorem 1.2 Theorem 1.2 is an immediate consequence of Proposi-
tion 9.1 and of the characterization [25, Proposition 8.21] of canonical varieties
with trivial canonical class and strongly stable tangent bundle as singular ana-
logues of Calabi—Yau or irreducible holomorphic symplectic manifolds. O
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