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Abstract In this paper we partly extend the Beauville–Bogomolov decompo-
sition theorem to the singular setting. We show that any complex projective
variety of dimension at most five with canonical singularities and numeri-
cally trivial canonical class admits a finite cover, étale in codimension one,
that decomposes as a product of an Abelian variety, and singular analogues of
irreducible Calabi–Yau and irreducible holomorphic symplectic varieties.
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S. Druel

1 Introduction

The Beauville–Bogomolov decomposition theorem asserts that any compact
Kähler manifold with numerically trivial canonical bundle admits an étale
cover that decomposes into a product of a torus, and irreducible, simply-
connected Calabi–Yau, and holomorphic symplectic manifolds (see [7]).
Moreover, the decomposition of the simply-connected part corresponds to
a decomposition of the tangent bundle into a direct sum whose summands are
integrable and stable with respect to any polarization.

With the development of the minimal model program, it became clear that
singularities arise as an inevitable part of higher dimensional life. If X is
any complex projective manifold with Kodaira dimension κ(X) = 0, standard
conjectures of the minimal model program predict the existence of a birational
contraction X ��� X ′, where X ′ has terminal singularities and KX ′ ≡ 0. This
makes imperative to extend theBeauville–Bogomolov decomposition theorem
to the singular setting.

Building on recent extension theorems for differential forms on singular
spaces, Greb, Kebekus and Peternell prove a decomposition theorem for the
tangent sheaf of complex projective varieties with canonical singularities and
numerically trivial canonical class.

Theorem 1.1 ([25, Theorem 1.3]) Let X be a normal complex projective vari-
ety with canonical singularities. Assume that KX ≡ 0. Then there exists an
abelian variety A aswell as a projective variety ˜X with canonical singularities,
a finite cover A × ˜X → X, étale in codimension one, and a decomposition

T
˜X =

⊕

i∈I
Ei

such that the following holds.

1. The Ei are integrable subsheaves of T˜X , with det(Ei )
∼= O

˜X .
Further, if g : ̂X → ˜X is any finite cover, étale in codimension one, then
the following properties hold in addition.

2. The sheaves (g∗Ei )∗∗ are stable with respect to any polarization on ̂X.
3. The irregularity h1(̂X ,O

̂X ) of ̂X is zero.

Based on Theorem 1.1 above, they argue in [25, Sect. 8] that the natural
building blocks for any structure theory of complex projective varieties with
canonical singularities and numerically trivial canonical class are canonical
varieties with strongly stable tangent sheaf (see Definition 2.4 for this notion).
In dimension no more than five, they also show that canonical varieties with
strongly stable tangent sheaf fall into two classes, which naturally generalize
the notions of irreducible Calabi–Yau and irreducible holomorphic-symplectic
manifolds, respectively.

123



A decomposition theorem for singular spaces

The main result of our paper is the following decomposition theorem.

Theorem 1.2 Let X be a normal complex projective variety of dimension at
most 5, with klt singularities. Assume that KX ≡ 0. Then there exists an abelian
variety A as well as a projective variety ˜X with canonical singularities, a finite
cover A × ˜X → X, étale in codimension one, and a decomposition

˜X ∼=
∏

i∈I
Yi ×

∏

j∈J

Z j

of ˜X into normal projective varieties with trivial canonical class, such that the
following holds.

1. We have h0
(

˜Yi , �
[q]
˜Yi

) = 0 for all numbers 0 < q < dim Yi and all finite

covers ˜Yi → Yi , étale in codimension one.
2. There exists a reflexive 2-form σ ∈ H0

(

Z j , �
[2]
Z j

)

such that σ is everywhere
non-degenerate on the smooth locus of Z j , and such that for all finite covers
f : ˜Z j → Z j , étale in codimension one, the exterior algebra of global

reflexive forms is generated by f [∗]σ ∈ H0
(

˜Z j , �
[2]
˜Z j

)

.

Remark 1.3 The decomposition of ˜X induces the decomposition of T
˜X given

by Theorem 1.1 above up to permutation of the summands.

The proof of the Beauville–Bogomolov decomposition theorem heavily
uses Kähler–Einstein metrics and the solution of the Calabi conjecture. But
these results are not yet available in the singular setting. Instead, the proof
of Theorem 1.2 relies on Theorem 1.1 and on sufficient criteria to guarantee
that a given foliation has algebraic leaves. In [12], Bost proved an arithmetic
algebraicity criterion for leaves of algebraic foliations defined over a number
field. Building on his result, we obtain the following algebraicity criterion.

Theorem 1.4 Let X be a normal complex projective variety of dimension n
with terminal singularities, and let H be an ample Cartier divisor. Let

TX =
⊕

i∈I
Gi ⊕ E

be a decomposition of TX into involutive subsheaves. Suppose that for any finite
cover g : ̂X → X, étale in codimension one, the sheaf (g∗Gi )

∗∗ is g∗H-stable.
Suppose furthermore that

c1(Gi ) · Hn−1 = 0, and either

c1(Gi )
2 · Hn−2 	= 0 or

c2(Gi ) · Hn−2 	= 0
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for each i ∈ I . Suppose finally that E is H-polystable with

c1(E ) · Hn−1 = c1(E )2 · Hn−2

= c2(E ) · Hn−2 = 0.

Then there exists an abelian variety A as well as a projective variety ˜X with
terminal singularities, and a finite cover f : A×˜X → X, étale in codimension
one, such that

( f ∗E )∗∗ = TA×˜X/˜X

as subsheaves of TA×˜X .

Remark 1.5 In the setup of Theorem 1.4, there exists a finite cover f : ˜X → X
étale in codimension one such that ( f ∗E )∗∗ is a locally free, flat sheaf on ˜X
([26, Theorem 1.20]). In particular, if the étale fundamental group π ét

1 (Xreg) is
finite, then the conclusion of Theorem 1.4 follows easily from the description
of the Albanese map of mildly singular varieties whose canonical divisor is
numerically trivial in [37, Proposition 8.3]. On the other hand, [25, Corollary
3.6] reduces the study of varieties with trivial canonical class to thosewith zero
augmented irregularity (see Definition 4.1 for this notion), and it is expected
that the étale fundamental group of their smooth locus is finite (see [25, Sect. 8]
and [26, Theorem 1.5]). This is true if dim X � 4 by [25, Corollary 8.25],
providing an alternative proof of Theorem 1.4 in this case.

The geometric counterpart of Bost’s arithmetic algebraicity criterion, inde-
pendently obtained by Bogomolov and McQuillan [11], and very recently
extended by Campana and Păun [15] leads to the following algebraicity crite-
rion.

Theorem 1.6 Let X be a normal complex projective variety of dimension n,
and let H be anampleCartier divisor. Suppose that X is smooth in codimension
two. Let

TX = E ⊕ G

be a decomposition of TX into involutive subsheaves, where E is H-stable,
det(E ) ∼= OX and c2(E ) · Hn−2 	= 0. Suppose furthermore that E has rank
at most 3. Then E has algebraic leaves.

Theorem 1.6 confirms a conjecture of Pereira and Touzet in some special
cases (see [53, Remark 6.5]). It is one of the main technical contributions of
this paper.

This paper is organized as follows.
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In Sect. 3, we review basic definitions and results about foliations on normal
varieties.

In Sect. 4, we show that algebraic integrability of direct summands in the
decomposition of the tangent bundle given by Theorem 1.1 leads to a decom-
position of the variety, perhaps after passing to a finite cover that is étale in
codimension one (see Theorem 4.5 and Proposition 4.10). This solves [25,
Problem 8.4].

Section 5 is devoted to the proof of Theorem 1.4.
In Sects. 6–8, we prove Theorem 1.6. In the setup of Theorem 1.6, we

show that either E satisfies the Bost–Campana–Păun algebraicity criterion
in Proposition 8.4, or E admits a holomorphic Riemannian metric. This is an
immediate consequence of our study of stable reflexive sheaves of rank at most
3 with numerically trivial first Chern class and pseudo-effective tautological
line bundle in Sect. 6. For a precise statement, see Theorem 6.1. If E admits
a holomorphic metric, then it follows from Proposition 7.5 that E admits a
holomorphic connection, yielding a contradiction.

In Sect. 9, we finally prove Theorem 1.2.

2 Notation, conventions, and basic facts

2.1 (Global Convention) Throughout the paper a variety is a reduced and
irreducible scheme separated and of finite type over a field.

2.2 (Differentials, reflexive hull) Given a normal variety X , we denote the
sheaf of Kähler differentials by �1

X . If 0 � p � dim X is any number, write

�
[p]
X := (�

p
X )∗∗. The tangent sheaf will be denoted by TX := (�1

X )∗.
Given a normal variety X , m ∈ N, and coherent sheaves E and G on X ,

write E [m] := (E ⊗m)∗∗, S[m]E := (SmE )∗∗, det(E ) := (�rank E E )∗∗, and
E � G := (E ⊗ G )∗∗. Given any morphism f : Y → X , write f [∗]E :=
( f ∗E )∗∗.

2.3 (Stability) The word “stable” will always mean “slope-stable with respect
to a given polarization”. Ditto for semistability.

Definition 2.4 ([25, Definition 7.2]). Let X be a normal complex projective
variety of dimension n, and let G be a coherent reflexive sheaf. We call G
strongly stable, if for any finite morphism f : ˜X → X that is étale in codi-
mension one, and for any choice of ample divisors ˜H1, . . . , ˜Hn−1 on ˜X , the
reflexive pull-back f [∗]G is stable with respect to ( ˜H1, . . . , ˜Hn−1).

2.5 (Nef and pseudo-effective cones) Let X be a complex projective variety
and consider the finite dimensional dual R-vector spaces

N1(X)R = ({1 − cycles}/ ≡ ) ⊗ R and N1(X)R = (

Pic(X)/ ≡ ) ⊗ R,
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where ≡ denotes numerical equivalence. Set N1(X)Q = (

Pic(X)/ ≡ ) ⊗ Q.
The Mori cone of X is the closure NE(X) ⊂ N1(X)R of the cone NE(X)

spanned by classes of effective curves. Its dual cone is the nef cone Nef(X) ⊂
N1(X)R, which by Kleiman’s criterion is the closure of the cone spanned by
ample classes. The closure of the cone spanned by effective classes in N1(X)R

is the pseudo-effective cone Eff(X).

2.6 (Projective space bundles) If E is a locally free sheaf of finite rank on a
variety X , we denote by PX (E ) the variety ProjX

(

Sym(E )
)

, and byOPX (E )(1)
its tautological line bundle.

Lemma 2.7 Let X be a complex projective variety, let H be an ample Cartier
divisor, and let E be a locally free sheaf of finite rank. Then [OPX (E )(1)] ∈
N1

(

PX (E )
)

R
is not pseudo-effective if and only if there exists c > 0 such that

h0
(

X, SiE ⊗OX ( j H)
) = 0 for any positive integer j and any natural number

i satisfying i > cj .

Proof Set Y := PX (E ), denote by OY (1) the tautological line bundle on
Y , and by π : Y → X the natural morphism. If [OY (1)] ∈ N1(Y )R is not
pseudo-effective, thenOY (m)⊗π∗OX (H) is not pseudo-effective either for a
sufficiently large positive integer m. Let now i and j be positive integers such
that i > mj . Then OY (i) ⊗ π∗OX ( j H) is not pseudo-effective as well, and
hence

h0
(

X, SiE ⊗ OX ( j H)
) = h0

(

Y,OY (i) ⊗ π∗OX ( j H)
) = 0

by the projection formula.
Conversely, suppose that [OY (1)] ∈ N 1(Y ) is pseudo-effective. Pick m0 >

0 such that OY (1) ⊗ π∗OX (m0H) is ample. Then, for each positive integer
m, the line bundle OY (m + 1) ⊗ π∗OX (m0H) is big, and hence there exists a
positive integer k such that

h0
(

X, Skm+kE ⊗ OX (km0H)
) = h0

(

Y,OY (km + k) ⊗ π∗OX (km0H)
) 	= 0.

This completes the proof of the lemma. �

2.8 (Chern classes) We will need to consider intersection numbers of line
bundles with Chern classes of reflexive sheaves on singular varieties. We use
[21, Chapter 3] as our main reference for Chern classes on varieties over a
field. Given a variety X , we denote by Ak(X) the group of k-dimensional
cycles modulo rational equivalence.
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Definition 2.9 Let X be a variety of dimension n, and letG be a coherent sheaf.
Let X◦ ⊂ Xreg be themaximal open setwhereG is locally free.Assume that the
complement of X◦ in X has codimension at least k+1 for some positive integer
k. The k-thChern class ck(G ) ofG is the image of ck(G|X◦)∩[X◦] ∈ An−k(X◦)
under the isomorphism An−k(X◦) ∼= An−k(X), where ck(G|X◦) : A•(X◦) →
A•−k(X◦) is the Chern class operation.

Remark 2.10 Complex varietieswith terminal singularities are smooth in codi-
mension two (see [40, Corollary 5.18]). So the first and second Chern classes
of coherent sheaves are well-defined on these varieties.

Wewill need the following observation. Notice that much of the intersection
theory developed in [21, Chapters 1–10] is valid for schemes, separated and of
finite type, over a noetherian regular scheme (see [21, Chapter 20]). Given a
scheme X , separated and of finite type over a noetherian regular scheme S, we
denote by Ak(X/S) the group of relative dimension k cycles modulo rational
equivalence.

Lemma 2.11 Let T be an integral noetherian scheme of dimension m, let X
be an integral scheme of dimension n, and let π : X → T be a dominant
proper morphism. Let G be a coherent sheaf, and let H be a Cartier divisor
on X. Given t ∈ T , we denote by Xt the fiber of π over the point t . Write
Gt := G|Xt and Ht := H|Xt . Let X

◦ ⊂ X be the open set where G is locally
free. Assume that the complement of X◦ in X has codimension at least k + 1
for some positive integer k. Then there exists a dense open set T ◦ ⊂ T such
that the intersection number ck(Gt ) · Hn−m−k

t is independent of t ∈ T ◦.

Remark 2.12 Let t ∈ T . The scheme Xt is viewed as a scheme over the residue
field of t . If the complement of X◦ ∩ Xt in Xt has codimension at least k + 1,
then ck(Et ) is well-defined.

Proof of Lemma 2.11 Replacing T by a dense open set, we may assume that
π is flat, and that, for any point t ∈ T , the complement of X◦ ∩ Xt in Xt
has codimension at least k + 1. We will show that the intersection number
ck(Gt ) · Hn−m−k

t is independent of t ∈ T . In order to prove our claim, we may
assume without loss of generality that T = Spec R for some discrete valuation
ring R. Let η be the generic point of T , and let t be its closed point.

Let now ck(G ) be the image of ck(G|X◦)∩[X◦] ∈ An−m−k(X◦/S) under the
isomorphism An−m−k(X◦/S) ∼= An−m−k(X/S), where ck(G|X◦) : A•(X◦/S)

→ A•−k(X◦/S) is the Chern class operation. The inclusion Xη ⊂ X induces
a pull-back morphism

−η : A•(X/S) → A•(Xη),
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and the regular embedding Xt ⊂ X induces a Gysin homomorphism

−t : A•(X/S) → A•(Xt ).

By [21, Chapter 20], there is a specialization map

s : A•(Xη) → A•(Xt )

such that s ◦ −η = −t .
The degree 0 component of s preserves degrees by [21, Proposition 20.3 a)]

and, by [21, Example 20.3.3], we have s(αη · H) = s(αη) · H|Xt for any cycle
αη ∈ A•(Xη) on the generic fiber. It follows that we have

ck(G )η · Hn−m−k
|Xη

= ck(G )t · Hn−m−k
|Xt

.

Notice that [X ]t = [Xt ] since X is flat over T and {t} ⊂ T is a regular embed-
ding (see [21, Theorem 6.2 b)]). Using functoriality of Gysin homomorphisms
(see [21, Theorem 6.5]) together with [21, Proposition 6.3], one readily checks
that the image of ck(G )t under the isomorphismAn−k(Xt ) ∼= An−k(X◦∩Xt ) is
ck(G|X◦∩Xt ). This implies that ck(G )t = ck(Gt ) ∈ An−k(Xt ). Similarly, using
functoriality of flat pull-backs together with [21, Theorem 3.2 d)], we see that
ck(G )η = ck(Gη) ∈ An−k(Xη). This completes the proof of the lemma. �
2.13 (Singularities) We refer to [40, Sect. 2.3] for details. Let X be a normal
complex projective variety. Suppose that KX is Q-Cartier, i.e., some non-
zero multiple of it is a Cartier divisor. Let β : ̂X → X be a resolution of
singularities of X . This means that ̂X is a smooth projective variety, β is a
birational projective morphism whose exceptional locus is the union of prime
divisors Ei , and the divisor

∑

Ei has simple normal crossing support. There
are uniquely defined rational numbers a(Ei , X) such that

K
̂X ≡ β∗KX +

∑

a(Ei , X)Ei .

The numbers a(Ei , X) do not depend on the resolution β, but only on the
valuations associated to the divisors Ei .We say that X is terminal (respectively,
canonical) if, for some resolution of singularitiesβ : ̂X → X of X ,a(Ei , X) >

0 (respectively, a(Ei , X) ≥ 0) for every β-exceptional prime divisor Ei . If
these conditions hold for some log resolution of X , then they hold for every
log resolution of X .

3 Foliations

We first recall basic facts concerning foliations.
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Definition 3.1 A foliation on a normal variety X over a field k is a coherent
subsheaf G ⊆ TX such that

1. G is closed under the Lie bracket, and
2. G is saturated in TX . In other words, the quotient TX/G is torsion-free.

The rank r of G is the generic rank of G . The codimension of G is defined
as q := dim X − r .

Suppose that k = C.
Let X◦ ⊂ Xreg be the open set where G|Xreg is a subbundle of TXreg . A leaf

of G is a connected, locally closed holomorphic submanifold L ⊂ X◦ such
that TL = G|L . A leaf is called algebraic if it is open in its Zariski closure.

The foliation G is said to be algebraically integrable if its leaves are
algebraic.

3.2 (Analytic graph of a regular foliation) Let X be a complex manifold, and
let G ⊆ TX be a regular foliation. Set Z := X × X , and let Y ⊂ Z be the
diagonal embedding of X =: Y . Denote by p1, p2 : Z = X × X → X the
projections onto X . Applying Frobenius’ Theorem to the regular foliation

p∗
1G ⊆ p∗

1TX ⊂ p∗
1TX ⊕ p∗

2TX = TZ

on Z , we see that there exists a smooth locally closed analytic submanifold
V ⊂ Z containing Y such that p2|V is smooth, and such that its fibers are
analytic open subsets of the leaves of the foliation p∗

1G ⊂ TZ passing through
points of Y . Notice thatNY/V

∼= G . The analytic graph of the foliation (X,G )

is the analytic germ of V along Y (see also [12, Sect. 2.2.2]).

3.3 (Foliations defined by q-forms) Let G be a codimension q foliation on an
n-dimensional normal variety X . The normal sheaf of G isN := (TX/G )∗∗.
The q-th wedge product of the inclusionN ∗ ↪→ �

[1]
X gives rise to a non-zero

global sectionω ∈ H0
(

X, �
q
X�det(N )

)

whose zero locus has codimension at
least two in X .Moreover,ω is locally decomposable and integrable. To say that
ω is locally decomposable means that, in a neighborhood of a general point of
X , ω decomposes as the wedge product of q local 1-forms ω = ω1 ∧· · ·∧ωq .
To say that it is integrable means that for this local decomposition one has
dωi ∧ ω = 0 for every i ∈ {1, . . . , q}. The integrability condition for ω is
equivalent to the condition that G is closed under the Lie bracket.

Conversely, let L be a reflexive sheaf of rank 1 on X , and let ω ∈
H0(X, �

q
X � L ) be a global section whose zero locus has codimension at

least two in X . Suppose that ω is locally decomposable and integrable. Then
the kernel of the morphism TX → �

q−1
X � L given by the contraction with

ω defines a foliation of codimension q on X . These constructions are inverse
of each other.
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3.4 (Foliations described as pull-backs) Let X and Y be normal varieties,
and let ϕ : X ��� Y be a dominant rational map that restricts to a morphism
ϕ◦ : X◦ → Y ◦, where X◦ ⊂ X and Y ◦ ⊂ Y are smooth open subsets.

Let G be a codimension q foliation on Y . Suppose that the restriction G ◦ of
G to Y ◦ is defined by a twisted q-form ωY ◦ ∈ H0

(

Y ◦, �q
Y ◦ ⊗ det(NG ◦)

)

.

Then ωY ◦ induces a non-zero twisted q-form ωX◦ ∈ H0
(

X◦, �q
X◦ ⊗

(ϕ◦)∗
(

det(NG )|Y ◦
)

)

, which in turn defines a codimension q foliation E ◦ on

X◦. The pull-back ϕ−1G of G via ϕ is the foliation on X whose restriction to
X◦ is E ◦.

Definition 3.5 Letψ : X → Y be an equidimensional dominant morphism of
normal varieties, and let D be aWeilQ-divisor on Y . The pull-backψ∗D of D
is defined as follows. We define ψ∗D to be the unique Q-divisor on X whose
restriction toψ−1(Yreg) is (ψ|ψ−1(Yreg))

∗(D|Yreg). This construction agrees with
the usual pull-back if D is Q-Cartier.

We will use the following notation.

Notation 3.6 Let ψ : X → Y be an equidimensional dominant morphism of
normal varieties. Write KX/Y := KX − ψ∗KY . We refer to it as the relative
canonical divisor of X over Y .

Notation 3.7 Let ψ : X → Y be an equidimensional dominant morphism of
normal varieties. Set

R(ψ) =
∑

D

(

ψ∗D − (ψ∗D)red
)

where D runs through all prime divisors on Y . We refer to it as the ramification
divisor of ψ .

Definition 3.8 Let G be a foliation on a normal projective variety X . The
canonical class KG of G is any Weil divisor on X such that OX (−KG ) ∼=
det(G ).

Example 3.9 Let ψ : X → Y be an equidimensional dominant morphism of
normal varieties, and let G be the foliation on X induced by ψ . A straightfor-
ward computation shows that

KG = KX/Y − R(ψ).

3.10 (The family of leaves) Let X be a normal complex projective variety, and
let G be an algebraically integrable foliation on X . We describe the family of
leaves of G (see [1, Remark 3.12]).
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There is a unique normal complex projective variety Y contained in the
normalization of the Chow variety of X whose general point parametrizes the
closure of a general leaf of G (viewed as a reduced and irreducible cycle in
X ). Let Z → Y × X denotes the normalization of the universal cycle. It comes
with morphisms

Z
β

ψ

X

Y
whereβ : Z → X is birational and, for a general point y ∈ Y ,β

(

ψ−1(y)
) ⊂ X

is the closure of a leaf of G . The variety Y is called the family of leaves of G .
Suppose furthermore that KG is Q-Cartier. There is a canonically defined

effective Weil Q-divisor B on Z such that

KZ/Y − R(ψ) + B ∼Q β∗KG , (3.1)

where R(ψ) denotes the ramification divisor of ψ .

Remark 3.11 In the setup of 3.10, notice that B is β-exceptional. This is an
immediate consequence of Example 3.9.

We will need the following easy observation.

Lemma 3.12 Let X be a normal complex projective variety with Q-factorial
terminal singularities, and let G be an algebraically integrable foliation on
X. Suppose that KX is pseudo-effective and that KG ∼Q 0. Let ψ : Z → Y
be the family of leaves, and let β : Z → X be the natural morphism. Then
ϕ := ψ ◦ β−1 is an almost proper map, and Kβ−1G ∼Q 0.

Proof Notice that G is induced by ϕ := ψ ◦ β−1 : X ��� Y .
It follows from 3.10 that there is a canonically defined effective Weil Q-

divisor B on Z such that

Kβ−1G + B = KZ/Y − R(ψ) + B ∼Q β∗KG ∼Q 0, (3.2)

where R(ψ) denotes the ramification divisor of ψ . Recall from Remark 3.11,
that B is β-exceptional. Moreover, since X has Q-factorial terminal singular-
ities, there exists an effective Q-divisor E on X such that

KZ = β∗KX + E and Supp(E) = Exc(β). (3.3)

From Eqs. (3.2) and (3.3), we obtain

R(ψ) ∼Q β∗KX − ψ∗KY + B + E . (3.4)
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Consider a general fiber F of ψ . Equation (3.4) then shows that

(β∗KX + B + E)|F ∼Q 0.

Since B and E are both effective divisors, and since KX is pseudo-effective,
we must have E ∩ F = ∅. The equality Exc(β) = Supp(E) then shows that
ϕ is an almost proper map.

By the adjunction formula, KF ∼Z KZ |F , and thus KF is pseudo-effective.
Applying [16, Corollary 4.5] to ψ , we see that Kβ−1G = KZ/Y − R(ψ) is
pseudo-effective. Equation (3.2) then shows that

Kβ−1G ∼Q 0 and B = 0.

This finishes the proof of the lemma. �
It is well-known that an algebraically integrable regular foliation on a com-

plex projective manifold is induced by a morphism onto a normal projective
variety (see [35, Proposition 2.5]). The next proposition extends this result to
some foliations on mildly singular varieties.

Proposition 3.13 Let X be a normal complex projective variety with Q-
factorial terminal singularities, and let TX = E ⊕ G be a decomposition
of TX into involutive subsheaves. Suppose that KX is pseudo-effective and
that det(E ) ∼= OX . Suppose furthermore that E is algebraically integrable.
Then there exists an open subset X◦ ⊂ X with complement of codimension
at least two and a projective morphism with irreducible fibers φ◦ : X◦ → Y ◦
onto a smooth quasi-projective variety such that E is induced by φ◦. Moreover,
there exists a finite morphism γ ◦ : ˜Y ◦ → Y ◦ satisfying the following property.
Let ˜X◦ be the normalization of ˜Y ◦ ×Y ◦ X◦, and denote by ˜φ◦ : ˜X◦ → ˜Y ◦
the natural morphism. Then ˜φ◦ is a locally trivial analytic fibration for the
analytic topology.

Proof Let ψ : Z → Y be the family of leaves, and let β : Z → X be
the natural morphism (see 3.10). By [16, Lemma 4.2], there exists a finite
surjective morphism γ : Y1 → Y with Y1 normal and connected such that
the following holds. Let Z1 denotes the normalization of Y1 ×Y Z . Then
the induced morphism ψ1 : Z1 → Y1 has reduced fibers over codimen-
sion one points in Y1. Hence, we obtain a commutative diagram as follows,

Z1

ψ1

α, finite
Z

ψ

β
X

φ

Y1
γ, finite

Y.
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Claim 3.14 The tangent sheaf TZ1 decomposes as a direct sum

TZ1 = (β ◦ α)−1E ⊕ (β ◦ α)−1G .

Proof of Claim 3.14 Set q := rankE , and let ω ∈ H0
(

X, �
[q]
X

)

a q-
form defining G . Then β∗ω|Z\Exc(β) extends across Exc(β) and gives a

q-form β∗ω ∈ H0
(

Z , �
[q]
Z

)

by [24, Theorem 1.5]. The q-form α∗(β∗ω) ∈
H0

(

Z1, �
[q]
Z1

)

defines the foliation (β◦α)−1G on a dense open set, and induces
an OZ1-linear map (�qTZ1)

∗∗ → OZ1 such that the composed morphism of
reflexive sheaves of rank one

σ : det
(

(β ◦ α)−1E
) → (�qTZ1)

∗∗ → OZ1

is generically non-zero. By Lemma 3.12, we know that Kβ−1E ∼Q 0. A
straightforward computation then shows that

K(β◦α)−1E = α∗Kβ−1E ∼Q 0,

and hence σ must be an isomorphism. This immediately implies that

TZ1 = (β ◦ α)−1E ⊕ (β ◦ α)−1G ,

proving our claim. �
Let Z◦

1 ⊂ ψ−1
1 (Y1reg) be the open set where ψ1|ψ−1

1 (Y1reg)
is smooth. Notice

that Z◦
1 has complement of codimension at least two since ψ1 has reduced

fibers over codimension one points in Y1reg. The restriction of the tangent
map

Tψ1|ψ−1
1 (Y1reg)

: TZ1 |ψ−1
1 (Y1reg)

→ (

ψ1|ψ−1
1 (Y1reg)

)∗
TY1reg

to (β ◦ α)−1G|ψ−1
1 (Y1reg)

⊂ TZ1 |ψ−1
1 (Y1reg)

then induces an isomorphism

(β ◦ α)−1G|Z◦
1

∼= (

ψ1|Z◦
1

)∗
TY1reg , and since (β ◦ α)−1G|ψ−1

1 (Y1reg)
and

(

ψ1|ψ−1
1 (Y1reg)

)∗
TY1reg are both reflexive sheaves, we finally obtain an isomor-

phism of sheaves of Lie algebras

τ : (β ◦ α)−1G|ψ−1
1 (Y1reg)

∼= (

ψ1|ψ−1
1 (Y1reg)

)∗
TY1reg .

Set m := dim Y = dim Y1. Let y ∈ Y1reg, and let U � y be an open neigh-
borhood of y in Y1reg with coordinates y1, . . . , ym on U . A classical result of
complex analysis says that there exists a unique local C

m-action on ψ−1
1 (U )
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corresponding to the flat connection (β◦α)−1G|ψ−1
1 (U )

onψ1|ψ−1
1 (U )

. The local

C
m-action on ψ−1

1 (U ) is given by a holomorphic map � : W → ψ−1
1 (U ),

where W is an open neighborhood of the neutral section {0} × ψ−1
1 (U ) in

C
m × ψ−1

1 (U ) such that

1. For all z ∈ ψ−1
1 (U ), the subset {t ∈ C

m | (t, z) ∈ W } is connected,
2. Setting t ᵀ z := �(t, z), we have 0 ᵀ z = z for all z ∈ ψ−1

1 (U ), if
(t+t ′, z) ∈ W , if (t ′, z) ∈ W and (t, t ′ᵀz) ∈ W , then (t+t ′)ᵀz = tᵀ(t ′ᵀz)
holds.

Moreover, the above local C
m-action on ψ−1

1 (U ) extends the local C
m-action

on U ⊂ C
m given by yi (t ᵀ y) = ti + yi (y) for any t = (t1, . . . , tm) ∈ C

m

and y ∈ U such that t ᵀ y ∈ U . This immediately implies that ψ1|ψ−1
1 (Y1reg)

is
a locally trivial analytic fibration for the analytic topology.

By Lemma 3.12, ψ maps any irreducible component of Exc(β) to a codi-
mension one hypersurface. It follows that

Exc(β) = ψ−1
(

ψ
(

Exc(β)
)

)

.

Set Y ◦ := Yreg\
(

ψ
(

Exc(β)
) ∪ γ

(

Y1\Y1reg
)

)

, X◦ := β
(

ψ−1(Y ◦)
)

, φ◦ :=
φ|X◦ , and consider γ ◦ := γ|γ −1(Y ◦) : γ −1(Y ◦) =: ˜Y ◦ → Y ◦. One readily
checks that φ◦, γ ◦, and ˜φ◦ satisfy the conclusions of Proposition 3.13. �

4 Towards a decomposition theorem

The main results of this section assert that algebraic integrability of direct
summands in the infinitesimal analogue of the Beauville–Bogomolov decom-
position theorem (Theorem 1.1) leads to a decomposition of the variety,
perhaps after passing to a finite cover that is étale in codimension one (see
Theorem 4.5 and Proposition 4.10). This solves [25, Problem 8.4].

First, we recall structure results for complex varieties with numerically triv-
ial canonical divisor. The following invariant is relevant in their investigation
(see [25, Definition 3.1]).

Definition 4.1 Let X be a normal complex projective variety. We denote the
irregularity of X byq(X) := h1(X, OX ) and define theaugmented irregularity
as

q̃(X) := max
{

q(˜X) | ˜X → X a finite cover, étale in codimension one
}

∈ N ∪ {∞}.
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Remark 4.2 By a result of Elkik [19], canonical singularities are rational. It
follows that the irregularity is a birational invariant of complex projective
varieties with canonical singularities.

Remark 4.3 If X is a complex projective variety with canonical singulari-
ties and numerically trivial canonical class, [37, Proposition 8.3] implies that
q(X) ≤ dim X . If ˜X → X is any finite cover, étale in codimension one, then
˜X will likewise have canonical singularities (see [43, Proposition 3.16]), and
numerically trivial canonical class. In summary, we see that q̃(X) ≤ dim X .
The augmented irregularity of canonical varieties with numerically trivial
canonical class is therefore finite.

We will need the following easy observation.

Lemma 4.4 Let X and Y be normal complex projective varieties with canon-
ical singularities, and let β : Y → X be a birational morphism. Suppose that
KY ≡ 0. Then q̃(X) ≥ q̃(Y ).

Proof Notice first that q̃(Y ) is finite by Remark 4.3 above. Let g : Y1 → Y
be a finite cover, étale in codimension one, such that h1(Y1,OY1) = q̃(Y ). Let
f : X1 → X be the Stein factorization of the composed map Y1 → Y → X .
Then f is obviously étale in codimension one. From [43, Proposition 3.16], we
see that X1 has canonical singularities, and hence h1(X1,OX1) = h1(Y1,OY1)

by Remark 4.2. This finishes the proof of the lemma. �
The following result often reduces the study of varieties with trivial canon-

ical class to those with q̃(X) = 0 (see also [37, Proposition 8.3]).

Theorem 4.5 [25,Corollary 3.6]Let X be a normal complex projective variety
with canonical singularities. Assume that KX is numerically trivial. Then there
exist projective varieties A, ˜X and a morphism f : A × ˜X → X such that the
following holds.

1. The variety A is Abelian.
2. The variety ˜X is normal and has canonical singularities.
3. The canonical class of ˜X is trivial, ω

˜X
∼= O

˜X .
4. The augmented irregularity of ˜X is zero, q̃(˜X) = 0.
5. The morphism f is finite, surjective and étale in codimension one.

Before we give the proof of Proposition 4.10, we need the following auxil-
iary results. The author would like to thank Cinzia Casagrande who explained
Lemma 4.6 to him.

Lemma 4.6 Let X1, X2 and Y be complex normal projective varieties. Sup-
pose that there exists a surjective morphism with connected fibers β : X1 ×
X2 → Y . Suppose furthermore that q(X1) = 0. Then Y decomposes as a
product Y ∼= Y1 × Y2, and there exist surjective morphisms with connected
fibers β1 : X1 → Y1 and β2 : X2 → Y2 such that β = β1 × β2.
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Proof Let H be an ample Cartier divisor on Y . Note that Pic(X1 × X2) ∼=
Pic(X1) × Pic(X2) since q(X1) = 0. Thus there exist Cartier divisors G1 and
G2 on X1 and X2 respectively such that β∗H ∼Z π∗

1G1 + π∗
2G2, where πi

is the projection onto Xi . Let βi : Xi → Yi be the morphism corresponding
to the semiample divisor Gi , so that miGi ∼Z β∗

i Hi for some ample Cartier
divisor Hi on Yi and some positive integer mi .

Let C ⊂ X1 × X2 be a complete curve contracted by β1 × β2 : X1 ×
X2 → Y1 × Y2. Then (π∗

i Gi ) · C = 0, and hence β∗H · C = 0.
This implies that C is contracted by β, and hence β factors through
β1 × β2 by the rigidity lemma. Thus, there exists a morphism γ : Y1 ×
Y2 → Y such that β = γ ◦ (β1 × β2). Denote by pi : Y1 × Y2 →
Yi the projection onto Yi . We obtain a commutative diagram as follows,

X1 × X2
β1×β2

πi

β

Y1 × Y2
γ

pi

Y

Xi
βi

Yi .

Then

(β1 × β2)
∗(m2 p

∗
1H1 + m1 p

∗
2H2) ∼Z m1m2(π

∗
1G1 + π∗

2G2) ∼Z m1m2β
∗H

= (β1 × β2)
∗(m1m2γ

∗H).

This implies that

m2 p
∗
1H1 + m1 p

∗
2H2 ∼Z m1m2γ

∗H

since the map β1 ×β2 is surjective with connected fibers. Becausem2 p∗
1H1 +

m1 p∗
2H2 is ample, we conclude that γ is a finite morphism, and hence an

isomorphism since β is surjective with connected fibers. This completes the
proof of the lemma. �
4.7 (Terminalization)Let X be anormal complexprojective varietywith canon-
ical singularities. Recall that a Q-factorial terminalization of X is a birational
crepant morphism β : ̂X → X where ̂X is aQ-factorial projective variety with
terminal singularities. The existence of β is established in [5, Corollary 1.4.3].

Proposition 4.8 Let X1, X2 and Y be complex projective varieties with canon-
ical singularities such that KX1 , KX2 and KY are nef, and letϕ : X1×X2 ��� Y
be a birational map. Suppose that q(X1) = 0. Then Y decomposes as a
product Y ∼= Y1 × Y2, and there exist birational maps ϕ1 : X1 ��� Y1 and
ϕ2 : X2 ��� Y2 such that ϕ = ϕ1 × ϕ2.
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Proof Let β1 : ̂X1 → X1, β2 : ̂X2 → X2 and γ : ̂Y → Y be Q-factorial
terminalizations of X1, X2, and Y respectively. Notice that K

̂X1×̂X2
and K

̂Y

are nef. Set ϕ̂ := γ −1 ◦ ϕ ◦ (β1 × β2) : ̂X1 × ̂X2 ��� ̂Y . Hence, we obtain a
commutative diagram as follows,

̂X1 × ̂X2

β1×β2

ϕ̂
̂Y

γ

X1 × X2 ϕ
Y.

Recall from [8, Théorème 6.5] that the product of complex Q-factorial alge-
braic varieties is Q-factorial. In particular, ̂X1 × ̂X2 is Q-factorial.

It follows from Lemma 4.6 applied to γ and Remark 4.2 that it suffices to
prove Proposition 4.8 for ϕ̂.

Now, by [38, Theorem 1], ϕ̂ decomposes into a sequence of flops, and
therefore, using repeatedly Lemma 4.6, it suffices to prove Proposition 4.8
for a flop. Thus, we may assume that there exists a commutative diagram

̂X1 × ̂X2
ϕ

α

̂Y

α+

Z
where α and α+ are small elementary birational contractions, K

̂X1×̂X2
is

numericallyα-trivial, and K
̂Y is numericallyα+-trivial. ByLemma4.6 applied

to α, Z decomposes as a product Z ∼= Z1× Z2, and there exist birational mor-
phisms α1 : ̂X1 → Z1 and α2 : ̂X2 → Z2 such that α = α1 × α2. Note that α1
or α2 is an isomorphism since ρ(̂X1 × ̂X2/Z) = 1. We may therefore assume
without loss of generality that α2 is an isomorphism. Let α+

1 : ̂X+
1 → Z1 be

the flop of α1 whose existence is established in [5, Corollary 1.4.1]. Then
̂X+
1 × ̂X2 → Z1 × Z2 is the flop of α, proving the proposition. �
We end the preparation for the proof of Proposition 4.10 with the following

lemma. It reduces the study of varieties with canonical singularities and trivial
canonical class to those with terminal singularities.

Lemma 4.9 Let X be a normal complex projective variety with canonical
singularities, and let β : ̂X → X be a Q-factorial terminalization of X. Let

TX =
⊕

i∈I
Ei

be a decomposition of TX into involutive subsheaves with det(Ei ) ∼= OX . Then
there is a decomposition

T
̂X =

⊕

i∈I
̂Ei
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of T
̂X into involutive subsheaves with det(̂Ei ) ∼= O

̂X such that Ei ∼= (β∗ ̂Ei )
∗∗.

Proof Notice that ω
̂X

∼= O
̂X . Denote by qi the codimension of Ei , and con-

sider ωi ∈ H0
(

X, �
[qi ]
X

)

a qi -form defining Ei . By [24, Theorem 1.5], ωi

extends to a qi -form ω̂i ∈ H0
(

̂X , �
[qi ]
̂X

)

. Then ω̂i defines a foliation ̂Ei ⊆ T
̂X

with det(̂Ei ) ∼= O
̂X (Ei ) where Ei is the maximal effective divisor on ̂X such

that ω̂i ∈ H0
(

̂X , �
qi
̂X

� O
̂X (−Ei )

)

. The natural map
⊕

i∈I ̂Ei → T
̂X being

generically injective, we obtain

O
̂X

(

∑

i∈I
Ei + E

)

∼= det(T
̂X ) ∼= O

̂X

for some effective divisor E on ̂X . It follows that Ei = 0 for every i ∈ I , and
that T

̂X decomposes as a direct sum

T
̂X =

⊕

i∈I
̂Ei

of involutive subsheaveswith trivial determinants. The sheavesEi and (β∗ ̂Ei )
∗∗

agree outside of the β-exceptional set, and since both are reflexive, we obtain
an isomorphism Ei ∼= (β∗ ̂Ei )

∗∗. This finishes the proof of Lemma 4.9. �
The following result together with Theorem 4.5 can be seen as a first step

towards a decomposition theorem.

Proposition 4.10 Let X beanormal complex projective varietywith canonical
singularities, and let

TX =
⊕

i∈I
Ei

be a decomposition of TX into involutive subsheaves. Suppose that q̃(X) = 0.
Suppose furthermore that the Ei are algebraically integrable with det(Ei ) ∼=
OX . Then there exist a projective variety ˜X with canonical singularities, a
finite cover f : ˜X → X, étale in codimension one, and a decomposition

˜X ∼=
∏

i∈I
Yi

such that the induced decomposition of T
˜X agree with the decomposition

T
˜X =

⊕

i∈I
f [∗]Ei .
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Proof For the reader’s convenience, the proof is subdivided into a number of
relatively independent steps.

Step 1Reduction to X Q-factorial and terminal. Letβ : Z → X be aQ-factorial
terminalization of X . By Lemma 4.9, the tangent sheaf TZ decomposes as a
direct sum

TZ =
⊕

i∈I
Gi

of involutive subsheaves with trivial determinants such that Ei ∼= (β∗Gi )
∗∗.

Notice that q̃(Z) = 0 by Lemma 4.4.
Suppose that there exists a finite cover g : ˜Z → Z , étale in codimension

one, such that ˜Z decomposes as a product

˜Z ∼=
∏

i∈I
Ti

such that the induced decomposition of T
˜Z agree with the decomposition

T
˜Z =

⊕

i∈I
g[∗]Gi .

From the Künneth formula (see [29, Theorem 6.7.8]), we see that q(Ti ) = 0
for any i ∈ I . Let f : ˜X → X be the Stein factorization of the composed map
˜Z → Z → X . Then f is étale in codimension one, and thus ˜X has canonical
singularities by [43, Proposition 3.16]. Applying Lemma 4.6 to ˜Z → ˜X , we
see that ˜X decomposes as a product

˜X ∼=
∏

i∈I
Yi

such that the induced decomposition of T
˜X agree with the decomposition

T
˜X =

⊕

i∈I
f [∗]Gi .

We can therefore assume without loss of generality that the following holds.

Assumption 4.11 The variety X has Q-factorial terminal singularities.

To prove Proposition 4.10, it is obviously enough to consider the case where
I = {1, 2}. Set τ(i) = 3 − i for each i ∈ I .

Step 2 For i ∈ I , let ψi : Zi → Yi be the family of leaves, and let βi : Zi →
X be the natural morphism (see 3.10). Notice that Ei is induced by ϕi :=
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ψi ◦ β−1
i : X ��� Yi . By Lemma 3.12, the rational map ϕi is almost proper.

Moreover, it induces a regular map Xreg → Yi since Ei is a regular foliation
on Xreg.

Let Fi be a general fiber of ϕτ(i). Then Fi is a normal projective variety
with terminal singularities, and KFi ∼Q 0. Set F◦

i := Fi ∩ Xreg, and denote

by ˜F◦
i ×Yi Xreg the normalization of F◦

i ×Yi Xreg. Next, we will prove the
following.

Claim 4.12 The natural map ˜F◦
i ×Yi Xreg → Xreg is finite and étale over an

open subset contained in Xreg with complement of codimension at least two.

Proof of Claim 4.12 By Lemma 3.12 and Proposition 3.13, there exists an
open subset Y ◦

i ⊂ Yi reg and a dense open subset X◦
i ⊂ X with complement

of codimension at least two in X such that ϕi |X◦
i
: X◦

i → Y ◦
i is a projective

morphism with irreducible fibers. Let P be a prime divisor on Y ◦
i , and write

ϕi
∗
|X◦

i
P = t Q for some positive integer t and some prime divisor Q on X .

Set n := dim X , and mi := dim Yi . Notice that Fi ∩ Q 	= ∅. Since E1 and
E2 are regular foliations at a general point x in Q and TX = E1 ⊕ E2, there
exist local analytic coordinates centered at x and y := φi (x) respectively such
that φi is given by (x1, x2, . . . , xn) �→ (xt1, x2 . . . , xmi ), and such that Fi is
given by equations xmi+1 = · · · = xn = 0. The claim then follows from a
straightforward local computation. �
Step 3End of proof. Let ˜X1 denotes the normalization of X in the function field

of ˜F◦
1 ×Y1 Xreg. It comeswith a finitemorphism f1 : ˜X1 → X which is étale in

codimension one by Claim 4.12. Let ϕ̃1 : ˜X1 ��� F1 be the almost proper map
induced by the first projection F◦

1 ×Y1 Xreg → F◦
1 , and let G1 ⊂ ˜X1 be the

Zariski closure of the rational section of ϕ̃1 given by F◦
1 → Y1. Finally, let ̂φ2

denotes the composed map ˜X1 → X ��� Y2, and set y2 := ϕ̂2(G1) = φ2(F1).
Notice that ̂φ2 is an almost proper map.

Claim 4.13 The following holds.

1. The variety G1 is a fiber of the Stein factorization ϕ̃2 : ˜X1 ��� ˜Y2 of ̂φ2.
2. The fiber ϕ̂−1

2 (y2) = f −1
1 (F1) is reduced along G1.

Proof of Claim 4.13 We have a commutative diagram as follows,

˜X1
f1

ϕ̃2

ϕ̃1

ϕ̂2

˜Y2

F1 X

ϕ1

ϕ2
Y2

Y1.
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Applying [43, Proposition 3.16], we see that ˜X1 has terminal singularities. In
particular, ˜X1 is Cohen–Macaulay, and hence so is ̂φ−1

2 (y2) by [17, Proposi-
tion 18.13]. By the Nagata–Zariski purity theorem, f1 branches only over the
singular set of X . This immediately implies that f −1

1 (F1) is smooth in codi-
mension one. Then (2) follows easily. By Hartshorne’s connectedness theorem
(see [17, Theorem 18.12]), we see that irreducible components of ϕ̂−1

2 (y2) are
disjoint, proving (1). �

Let ˜F2 be a general fiber of ϕ̃1. Then ˜F2 intersects G1 transversely in a
point. From Claim 4.13 (1), it follows that ˜F2 intersects a general fiber ˜F1
of ϕ̃2 transversely in a point. This immediately implies that the map ϕ̃1 ×
ϕ̃2 : ˜X1 ��� F1 × ˜Y2 is birational. But it also implies that F1 and ˜Y2 are
birationally equivalent to ˜F1 and ˜F2 respectively, and we conclude that there
exists a birational map ˜X1 ��� ˜F1 × ˜F2. From the Künneth formula (see [29,
Theorem 6.7.8]) together with Remark 4.2, we see that q(˜Fi ) = 0 for any
i ∈ {1, 2}. The conclusion then follows from Proposition 4.8. This finishes the
proof of Proposition 4.10. �

5 Algebraicity of leaves, I

In this section we prove Theorem 1.4. The proof relies on an algebraicity
criterion for leaves of algebraic foliations proved in [12, Theorem 2.1], which
we recall now.

5.1 Let X be an algebraic variety over some field k of positive characteristic p,
and let G ⊂ TX be a subsheaf. We will denote by Fabs : X → X the absolute
Frobenius morphism of X .

The sheaf of derivations Derk(OX ) ∼= TX is endowed with the p-th power
operation, which maps any local k-derivation D ofOX to its p-th iterate D[p].
When G is involutive, the map F∗

absG → TX/G which sends D to the class
in TX/G of D[p] is OX -linear. The sheaf G is said to be closed under p-th
powers if the map F∗

absG → TX/G vanishes.
A connected complex manifold M satisfies the Liouville property when

every plurisubharmonic function on M bounded from above is constant (see
[12, Sect. 2.1.2]). Examples of complex manifolds satisfying the Liouville
property are provided by the affine space C

n and connected compact complex
manifolds.

We will use the following notation.
Notation 5.2 If K is a number field, its ring of integers will be denoted by

OK . For any non-zero prime ideal p ofOK , we let k(p) be the finite fieldOK /p.
We denote by p̄ : Spec k(p̄) → S a geometric point of S := SpecOK lying
over p with k(p̄) an algebraic closure of k(p). Given a scheme X over S, we
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let XK := X ⊗ K , Xp := X ⊗ k(p), and X p̄ := X ⊗ k(p̄). Given a sheaf G on
X , we let GK := G ⊗ K , Gp := G ⊗ k(p), and Gp̄ := G ⊗ k(p̄).

Theorem 5.3 ([12, Theorem 2.2]) Let X be a smooth geometrically connected
algebraic variety over a number field K , and let G be an involutive subbundle
of the tangent bundle TX of X (defined over K ). For some sufficiently divisible
integer N, let X (resp.� ) be a smooth model of X over S := SpecOK [1/N ]
(resp. a sub-vector bundle of the relative tangent bundle TX/S such that �K
coincides with G ). Assume that the following two conditions are satisfied.

1) For almost every non-zero prime ideal p of OK [1/N ], the subbundle �p of
TXp is stable by p-th power, where p denotes the characteristic of k(p).

2) There exist a complex manifold M satisfying the Liouville property as well
as an embedding σ : K ↪→ C, a holomorphic embedding i : Xσ (C) → M
and a holomorphic map j : M → Xσ (C)× Xσ (C) such that j ◦ i coincide
with the diagonal embedding Xσ (C) ↪→ Xσ (C) × Xσ (C) and j restricts
to an isomorphism from the analytic germ of M along i

(

Xσ (C)
)

onto the
analytic graph of

(

Xσ ,Gσ

)

.

Then Gσ is algebraically integrable.

It is well-known that in positive characteristic, there exist semistable vector
bundles such that their pull-back under the absolute Frobenius morphism is no
longer semistable. The next result says that this phenomenon does not occur
on projective varieties whose tangent bundle is semistable with zero slope. It
partly extends [50, Theorem 2.1] to the setting where polarizations are given
by big semiample divisors. The proof of Proposition 5.4 is similar to that of
[50, Theorem 2.1].

Proposition 5.4 Let X be a smooth projective variety over an algebraically
closed field k of positive characteristic p, and let H be a big semiample
divisor on X. Suppose that TX is H-semistable and that μH (TX ) ≥ 0. Let E
be a coherent locally free sheaf on X. Suppose furthermore that p ≥ rankE +
dim X. If E is H-semistable, then so is F∗

absE .

Proof Suppose that F∗
absE is not H -semistable, and let

{0} = E0 � E1 � · · · � Er := F∗
absE

be the Harder–Narasimhan filtration of F∗
absE . By [55, Proposition 1p] (see

also [46, Corollary 2.4]), the canonical connection on F∗
absE induces a non-zero

OX -linear map

Er−1 → Er/Er−1 ⊗ �1
X .
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Let C be a smooth complete intersection curve of elements of |mH | for some
sufficiently large integer m. By [46, Corollary 5.4], the sheaves Ei/Ei−1|C
and �1

X |C are semistable. This implies that the sheaves (Ei/Ei−1)|C ⊗ �1
X |C

are semistable as well by [36, Remark 3.4] using the assumption that p ≥
rankE + dim X . It follows that

μmax
H

(

Er/Er−1 ⊗ �1
X

)

� μmax
H

(

Er/Er−1)

using the assumption that μH (�1
X ) � 0. The inequality

μmin
H

(

Er−1
) = μH

(

Er−1/Er−2
)

> μH
(

Er/Er−1) = μmax
H

(

Er/Er−1)

then shows that the map Er−1 → Er/Er−1 ⊗ �1
X must vanish, yielding a

contradiction. �
Remark 5.5 The condition “TX H -semistable with μH (TX ) ≥ 0” in Proposi-
tion 5.4 can beweakened to “μmin

H (TX ) ≥ 0”, but wewill not need this stronger
statement.

Remark 5.6 Wewill use Proposition 5.4 together with [47, Proposition 5.1] to
conclude that, in the setup of Proposition 5.4, a H -semistable vector bundle
E is numerically flat if and only if

c1(E ) · Hn−1 = c1(E )2 · Hn−2

= c2(E ) · Hn−2 = 0,

where n := dim X .

A coherent locally free sheaf E on a smooth projective variety X over an
algebraically closed field k is said to be étale trivializable if there exists a
finite étale cover of X on which E becomes trivial. We will need the following
observation.

Lemma 5.7 Let X be a connected smooth projective variety over an alge-
braically closed field k, let E be a coherent locally free sheaf on X, and let K
be any algebraically closed extension of k. If EK is étale trivializable, then so
is E .

Proof Set r := rankE , and let g : Y → XK be a finite étale cover such that
g∗EK

∼= O⊕r
Y . By [54, Exposé X, Corollaire 1.8], there exists a finite étale

cover f : Z → X such that g ∼= fK . Since g∗EK
∼= O⊕r

Y , we conclude easily
that f ∗EK

∼= O⊕r
Z . �

Examples of étale trivializable vector bundles are provided by the following
lemma. We use ideas from the proof of [53, Theorem A].
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Lemma 5.8 Let X be a complex projective manifold, and let TX = E ⊕G be a
decomposition of TX into involutive subsheaves. Suppose that E is polystable
with respect to some polarization and that c1(E ) ≡ 0 and c2(E ) ≡ 0. Suppose
furthermore that E is algebraically integrable. Then E is étale trivializable.

Proof By [56, Corollary 3.10], E is flat. By a result of Uhlenbeck and Yau (see
[57]), we conclude that E admits a flat hermitian metric. Let x ∈ X , and let
ρ : π1(X, x) → U(Ex ) be the corresponding unitary representation. We will
show that the image of ρ is finite.

By [35, Proposition 2.5], E is induced by a morphism ϕ : X → Y onto
a normal projective variety. Let Y ◦ ⊂ Y be a dense open subset such that ϕ

restricts to a smoothmorphism on X◦ := ϕ−1(Y ◦), and set y = ϕ(x). Suppose
that y ∈ Y ◦. As a classical consequence of Yau’s theorem on the existence
of Kähler–Einstein metrics, the geometric generic fiber of ϕ is covered by
an abelian variety (see [42, Chap. IV Corollary 4.15]). Thus, replacing Y ◦
by a dense open subset and X◦ by a finite étale cover, if necessary, we may
assume that all fibers of ϕ|X◦ are abelian varieties. Let F be a general fiber of
ϕ. Note that the induced metric on TF = E|F is constant. This implies that the
representation

π1(X
◦, x) → π1(X, x) → U(Ex )

factors through ϕ|X◦ .
Because ϕ|X◦ admits a holomorphic flat connection, H0(Xy,E

∗|Xy
) ⊂

H1(Xy, C) is invariant under the monodromy representation π1(Y ◦, y) →
GL

(

H1(Xy, C)
)

. Moreover, the induced representation

π1(Y
◦, y) → GL

(

H0(Xy,E
∗|Xy

)
) ∼= GL(E ∗

x )

coincides with ρ since G is transversely flat hermitian (see [53, Sect. 2.4]).
By Lemma 5.9 below,we see that themonodromy representationπ1(Y ◦) →

GL
(

H1(Xy, C)
)

is finite, and hence so is ρ. This shows that E is étale trivial-
izable. �

The following result is probably well-known. We include a full proof here
for the reader’s convenience.

Lemma 5.9 Let ϕ : X → Y be a smooth projective morphism of quasi-
projective complex manifolds with fibers isomorphic to abelian varieties.
Suppose that ϕ is a locally trivial analytic fibration for the analytic topol-
ogy. Then there exists an abelian variety as well as a finite étale cover ˜Y → Y
such that X ×Y ˜Y ∼= A × ˜Y as varieties over ˜Y .
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Proof Let y ∈ Y , and denote by Xy the fiber ϕ−1(y). Let Aut◦(Xy) ∼= Xy
denotes the neutral component of the automorphism group Aut(Xy) of Xy .
Recall from [28, Exposé VIB, Théorème 3.10] that the algebraic groups
Aut◦(Xy) fit together to form an abelian schemeA over Y . SinceA is locally
trivial, there exist an abelian variety A, and a finite étale cover Y1 → Y such
thatA ×Y Y1 ∼= A× Y1 as group schemes over Y1. This follows from the fact
that there is a fine moduli scheme for polarized abelian varieties of dimension
g, with level N structure and polarization of degree d provided that N is large
enough. In particular, A acts faithfully on X1 := X ×Y Y1. By [14, Theorem
2], there exist a finite étale cover ˜X of X1 equipped with a faithful action of
A, and an A-isomorphism ˜X ∼= A × ˜Y for some quasi-projective manifold ˜Y ,
where A acts trivially on ˜Y and diagonally on A × ˜Y . One readily checks that
the natural morphism ˜Y ∼= {0A} × ˜Y → Y1 is étale, and that ˜X ∼= X1 ×Y1

˜Y
as varieties over ˜Y . The lemma then follows easily. �

We end the preparation for the proof of Theorem 1.4 with the following
lemma.

Lemma 5.10 Let X be a normal complex projective variety with canonical
singularities, and let TX = E ⊕ G be a decomposition of TX into sheaves.
Suppose thatE is locally free. There exists a resolutionof singularitiesβ : ̂X →
X such that the following holds.

1 The morphism β induces an isomorphism over the smooth locus Xreg of X.
2 The tangent sheaf T

̂X decomposes as a direct sum T
̂X

∼= β∗E ⊕ ̂G of locally
free sheaves. Moreover, we have (β∗ ̂G )∗∗ ∼= G .

3 If X, E , and G are defined over a subfield k ⊆ C, then ̂X , β, and ̂G are
defined over k as well.

Proof Let β : ̂X → X be a resolution of singularities of X such that β∗T̂X
∼=

TX , and such that β induces an isomorphism over Xreg. The existence of β

is established in [23, Corollary 4.7]. It relies on the existence of functorial
resolutions of singularities (see [44, Theorem3.36]). Consider the generically
injective morphism of locally free sheaves

β∗E → β∗TX ∼= β∗(β∗T̂X

) → T
̂X ,

where β∗(β∗T̂X

) → T
̂X is the evaluation map. By [24, Theorem 1.5], the

projection morphism TXreg → E|Xreg extends to a morphism

T
̂X → β∗E .

The composed morphism β∗E → T
̂X → β∗E must be the identity map, and

thus T
̂X decomposes as a direct sum T

̂X
∼= β∗E ⊕ ̂G , where ̂G is the kernel
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of the map T
̂X → β∗E . The sheaves (β∗ ̂G )∗∗ and G agree on Xreg, and since

both are reflexive, we obtain an isomorphism (β∗ ̂G )∗∗ ∼= G .
Suppose that X , E , and G are defined over a subfield k ⊆ C. Then ̂X and β

are defined over k as well by [44, Theorem 3.36]. This implies that ̂G is also
defined over k, completing the proof of the lemma. �

Before proving Theorem 1.4 below, we note the following immediate corol-
lary.

Corollary 5.11 Let X be a normal complex projective variety of dimension n
with terminal singularities, and let

TX =
⊕

i∈I
Gi ⊕ E

be a decomposition of TX into involutive subsheaves with trivial determinants.
Suppose that Gi is stable with respect to some ample Cartier divisor H, and
that c2(Gi ) · Hn−2 	= 0. Suppose also that for any finite cover g : ̂X → X,
étale in codimension one, the sheaf g[∗]Gi is g∗H-stable. Suppose furthermore
that E is H-polystable, and that c2(E ) · Hn−2 = 0. Then q̃(X) = rankE .

Proof of Theorem 1.4 Wemaintain notation and assumptions of Theorem 1.4.
For the reader’s convenience, the proof is subdivided into a number of relatively
independent steps. �
Step 1. Reduction step. Set G := ⊕

i∈I Gi . By [26, Theorem 1.20], there exists
a finite cover f1 : X1 → X that is étale in codimension one such that f [∗]

1 E
is a locally free, flat sheaf on X1. From [43, Proposition 3.16], we see that
X1 has terminal singularities. The sheaves TX1 and f [∗]

1 G ⊕ f [∗]
1 E agree on

f −1
1 (Xreg), and since both are reflexive, we obtain a decomposition

TX1
∼= f [∗]

1 G ⊕ f [∗]
1 E

of TX1 into involutive subsheaveswith trivial determinants. The same argument
also shows that

f [∗]
1 G ∼=

⊕

i∈I
f [∗]
1 Gi .

Notice that f1 branches only over the singular set of X . It follows that
c1( f

[∗]
1 Gi ) · ( f ∗

1 H)n−1 = 0 and

either c1( f
[∗]
1 Gi )

2 · ( f ∗
1 H)n−2 	= 0 or c2( f

[∗]
1 Gi ) · ( f ∗

1 H)n−2 	= 0
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for each i ∈ I . Moreover, f [∗]
1 E is f ∗

1 H -polystable by [34, Lemma 3.2.3].
Therefore, we may assume without loss of generality that the following holds.

Assumption 5.12 The sheaf E is a locally free, flat sheaf.

By Lemma 5.10, there exists a resolution of singularities β : ̂X → X such
that T

̂X decomposes as

T
̂X

∼= β∗E ⊕ ̂G .

Moreover, we may assume that β induces an isomorphism over Xreg. Set ̂E :=
β∗E , and ̂H := β∗H . Notice that ̂E and β[∗]TX are respectively polystable
and semistable with respect to ̂H . Moreover, T

̂X is also ̂H -semistable since
T

̂X and β[∗]TX agree away from the β-exceptional set.

Step 2. Algebraic integrability over number fields. Suppose that X , H , E , and
the sheaves Gi are defined over a number field K . We will show that E has
algebraic leaves. Recall from Lemma 5.10 that ̂X , β, and ̂G are also defined
over K .

For some sufficiently divisible integer N , letX be a flat projective model of
X over T := SpecOK [1/N ] with normal (see [30, Théorème IV.12.2.4]) and
regular in codimension 2 geometric fibers. Let � (resp. �i ) be a locally free
(resp. a coherent) subsheaf of TX/T such that �C (resp. �iC) coincides with E
(resp. Gi ). Suppose moreover that the sheaves �i are flat over T, and that

TX/T =
⊕

i∈I
�i ⊕ � .

Let H be an ample Cartier divisor on X such that HC ∼ H .
Since semistability and geometric stability with respect to an ample divisor

are open conditions in flat families of sheaves (see proof of [34, Proposition
2.3.1]), we may assume that the sheaves�i p̄ are stable with respect toHp̄, and
that�p̄ isHp̄-polystable for every non-zero prime ideal p ofOK [1/N ]. Suppose
furthermore that�p̄ is involutive. ByLemma2.11,wemay also assumewithout
loss of generality that the following holds:

1. c1(�p̄) · Hn−1
p̄

= c1(�p̄)2 · Hn−2
p̄

= c2(�p̄) · Hn−2
p̄

= 0;

2. c1(�i p̄) ·Hn−1
p̄

= 0, and either c1(�i p̄)2 ·Hn−2
p̄

	= 0 or c2(�i p̄) ·Hn−2
p̄

	= 0.

Let ̂X be a smooth projective model of ̂X over T, and let β : ̂X → X
be a projective birational morphism such that βC coincides with β. Suppose
moreover that β p̄ : ̂Xp̄ → Xp̄ is birational, and that the β p̄-exceptional set
maps to a closed subset of codimension at least three in Xp̄. Set ̂� := β∗�
and ̂H := β∗H. Notice that ̂�p̄ and β

[∗]
p̄
TXp̄

are semistable with respect to ̂Hp̄.
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Moreover, T
̂Xp̄

is also ̂Hp̄-semistable since T
̂Xp̄

and β
[∗]
p̄
TXp̄

agree away from
the β p̄-exceptional set.

Letpbenon-zeroprime ideal ofOK [1/N ], anddenote by p the characteristic
k(p). We claim the following.

Claim 5.13 The involutive sub-vector bundle ̂�p̄ of T̂Xp̄
is closed under p-th

power.

Proof We argue by contradiction and assume that ̂�p̄ is not closed under p-th
power, and so neither is �p̄. Thus, the map F∗

abs,p̄�p̄ → TXp̄
/�p̄ induced by the

p-th power operation does not vanish identically. By Proposition 5.4 above, the
locally free sheaf F∗

abs,p̄
̂�p̄ is semistable with respect to ̂Hp̄. This implies that

F∗
abs,p̄�p̄ is semistable with respect to Hp̄. Since c1(�p̄) ·Hn−1

p̄
= 0, and since

the sheaves �i p̄ are stable with c1(�i p̄) ·Hn−1
p̄

= 0 as well, there exists i0 ∈ I
such that the induced morphism F∗

abs,p̄�p̄ → �i0 p̄ is surjective in codimension
one.

Let Sp̄ be a smooth two dimensional complete intersection of general
elements of |m̂Hp̄| = β ∗̄

p|mHp̄| for some positive integer m. Since the β p̄-
exceptional set maps to a closed subset of codimension at least three inXp̄, Sp̄
is contained in ̂Xp̄\Exc(β p̄)

∼= Xp̄\(β p̄

(

Exc(β p̄)
)

, and thus the restriction of
̂Hp̄ to Sp̄ is ample.

By Proposition 5.4 again, the locally free sheaves (F ◦k
abs,p̄)

∗
̂�p̄ are semistable

with respect to ̂Hp̄. Applying [46, Corollary 5.4] to the locally free sheaves
(F ◦k

abs,p̄)
∗
̂�p̄, we see that there exists a positive integer m (that does not depend

on k ≥ 1) such that the restrictions (F ◦k
abs,p̄)

∗
̂�p̄|Sp̄

∼= (F ◦k
abs,p̄)

∗�p̄|Sp̄
are

semistable with respect to Hp̄|Sp̄ for any positive integer k. From [47, Propo-

sition 5.1], we conclude that �p̄|Sp̄ is nef using the fact that

c1(�p̄) · Hn−1
p̄

= c1(�p̄)2 · Hn−2
p̄

= c2(�p̄) · Hn−2
p̄

= 0.

We view Sp̄ as a surface contained in Xp̄. Observe that �i0 p̄ is locally free
along Sp̄, and that the restriction of F∗

abs,p̄�p̄ → �i0 p̄ to Sp̄ is surjective in
codimension one by choice of i0. Since �p̄|Sp̄ is nef, we obtain that �i0 p̄|Sp̄ if

nef. This implies that

c1(Gi0)
2 · Hn−2 = c1(�i0 p̄)2 · Hn−2

p̄
= 0 and

c2(Gi0) · Hn−2 = c2(�i0 p̄) · Hn−2
p̄

= 0

by [47, Proposition 5.1] and Lemma 2.11, yielding a contradiction. This com-
pletes the proof of our claim.
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Set r := rankE . Recall that ̂E is polystable with respect to the nef and big
divisor ̂H . By [27, Theorem3.3], ̂E is also polystable with respect to some
ample divisor on ̂X , and hence unitary flat. By [53, Theorem B], the universal
covering space ˜X of ̂X is a productCr×B in such away that the decomposition

T
̂X = ̂E ⊕ ̂G

lifts to the decomposition

TCr×B = TCr ⊕ TB .

In particular, the group π1(̂X) acts diagonally on C
r × B. Notice that the

analytic graph of the foliation induced by E on ˜X is the germ of ˜X ×B ˜X along
the diagonal embedding ˜X ↪→ ˜X ×B ˜X .

Set M := (Cr × ˜X)/π1(̂X), and denote by p and q the projections of
˜X ∼= C

r × B onto C
r and B respectively. Let i : ̂X ∼= ˜X/π1(̂X) → M be the

embedding induced by

C
r × B � (a, b) �→ (a, a, b) ∈ C

r × C
r × B

and let j : M → ̂X × ̂X be the holomorphic map induced by

C
r × C

r × B � (a′, a, b) �→ (a′, b, a, b) ∈ C
r × B × C

r × B.

One readily checks that j◦i coincidewith the diagonal embedding ̂X ↪→ ̂X×̂X
and that j restricts to an isomorphism from the analytic germ of M along i(̂X)

onto the analytic graph of (̂X , ̂E ).
We finally show that M satisfies the Liouville property. Consider the com-

mutative diagram

C
r × ˜X (Cr × ˜X)/π1(̂X) = M

˜X ˜X/π1(̂X) ∼= ̂X

where the verticalmaps are induced by the second projectionC
r×˜X → ˜X , and

where the horizontal maps are the quotient maps. Letψ be a plurisubharmonic
function on M , bounded from above. The restriction to any fiber of C

r × ˜X →
˜X of the pull-back ˜ψ of ψ to C

r × ˜X is either −∞ or a plurisubharmonic
function bounded from above. In either case, it is constant, and hence, ˜ψ is the
pull-back of a π1(˜X)-invariant function on ˜X . The latter is then induced by a
plurisubharmonic function on the compact complex manifold ̂X . This implies
that ψ is constant, proving our claim.
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By Theorem 5.3, we conclude that ̂E and hence E have algebraic leaves.

Step 3. End of proof. To show Theorem 1.4, let R be a subring of C, finitely
generated over Q, and let X be a flat projective model of X over T := Spec R
with normal geometric fibers. We may also assume that the geometric fibers
of X ×T TC over TC = Spec R ⊗ C have terminal singularities. Let � (resp.
�i ) be a locally free (resp. a coherent) subsheaf of TX/T such that �C (resp.
�iC) coincides with E (resp. Gi ). Suppose moreover that the sheaves �i are
flat over T, and that

TX/T =
⊕

i∈I
�i ⊕ � .

Let H be an ample Cartier divisor on X such that HC ∼ H . As above, we
may assume that the sheaves �i t̄ are stable with respect to Ht̄ , and that �t̄ is
polystable, for any geometric point t̄ of T. Suppose furthermore that �t̄ and
the sheaves �i t̄ are involutive. By Lemma 2.11 again, we may also assume
without loss of generality that

c1(�t̄ ) · Hn−1
t̄ = c1(�t̄ )2 · Hn−2

t̄ = c2(�t̄ ) · Hn−2
t̄ = 0,

c1(�i t̄ ) · Hn−1
t̄ = 0 and either

c1(�i t̄ )2 · Hn−2
t̄ 	= 0 or c2(�i t̄ ) · Hn−2

t̄ 	= 0.

Recall that R is finitely generated overQ. When t ∈ T = Spec R is a closed
point, its residue field is an algebraic number field, and hence �t̄ has algebraic
leaves by the previous step.

Let also ̂X be a smooth projective model of ̂X over T, and let β : ̂X → X
be a projective birational morphism such that βC coincides with β. Suppose
moreover that β t̄ : ̂Xt̄ → Xt̄ is birational. Set ̂� := β∗� . Let ̂� be a locally
free subsheaf of T

̂X/T such that �C coincides with ̂G . Suppose moreover that

T
̂X/T = ̂� ⊕ ̂�

and that ̂� is involutive. By [56, Corollary 3.10], ̂�t̄ is a flat vector bundle,
and hence c1(̂�t̄ ) ≡ 0 and c2(̂�t̄ ) ≡ 0. Moreover, the vector bundle ̂�t̄ is
polystable with respect to the nef and big divisor β ∗̄

t Ht̄ , and hence polystable
with respect to some ample divisor by [27, Theorem 3.3]. Applying Lemma
5.8 and Lemma 5.7, we see that ̂Et̄ is étale trivializable for any closed point
t ∈ T . From [48, Theorem 7.9] (see also Theorem 5.14 below), we conclude
that ̂E is étale trivializable. Thus, replacing X by a further cover that is étale
in codimension one, if necessary, we may assume that E ∼= O⊕r

X .
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We claim that the neutral component Aut◦(X) of the automorphism group
of X is an abelian variety. Suppose otherwise. Then Aut◦(X) contains a pos-
itive dimensional affine subgroup by Chevalley’s structure theorem. Hence,
it contains an algebraic subgroup G isomorphic to Gm or Ga . Let x ∈ X ,
and let y ∈ G · x\G · x . Then y is a fixed point of G. On the other
hand, dim Aut◦(X) = h0(X, TX ) = r . It follows that Lie(G) is generated
by a nowhere vanishing global section of TX , yielding a contradiction. Set
A := Aut◦(X). By [14, Theorem 2], there exists a normal projective variety
˜X , and a finite étale cover f : A × ˜X → X . The decomposition

TA×˜X
∼=

⊕

i∈I
f [∗]Gi ⊕ f [∗]E

of TA×˜X together with the assumption that f [∗]Gi is f ∗H -stable then imply
easily that

f [∗]E = TA×˜X/˜X .

This finishes the proof of the theorem. �
Theorem 7.9 in [48] is statedwithout an actual proof, as being an application

of the methods in some earlier work of André and Esnault–Langer.We include
a proof here of Theorem 5.14 for the reader’s convenience. This special case of
[48, Theorem 7.9] is enough to complete the proof of Theorem 1.4. Note also
that the proof is very similar to that of [2, Théorème 7.2.2] and [18, Theorem
5.1].

Theorem 5.14 Let T be a variety over Q̄ ⊂ C, and let X → T be a smooth
projective morphism with connected fibers. Denote by η the generic point of
T. Let � be a vector bundle on X such that �η̄ is polystable with respect to
some ample divisor on Xη̄. Suppose furthermore that �t̄ is étale trivializable
for every closed point t ∈ T. Then �η̄ is étale trivializable.

Proof We may assume without loss of generality that X → T has a section.
The proof of [2, Lemma 10.1.1] shows that, up to replacing X with a finite
étale cover, we may also assume that �t̄ is a direct sum of torsion line bundles
for every closed point t ∈ T.

Let H be a relatively ample Cartier divisor on X such that �η̄ is polystable
with respect to Hη̄, and let � ∈ Q[z] be the Hilbert polynomial of �η̄ with
respect to Hη̄. We denote by M�

H(X/T) the coarse moduli space of Gieseker
semistable sheaves on fibers of X → T with Hilbert polynomial �, whose
existence is guaranteed by [34, Theorem 4.3.7]. Recall that M�

H(X/T) is pro-
jective over T.

123



S. Druel

Since Gieseker semistability is an open condition in flat families of sheaves
(see for instance [34, Proposition 2.3.1]) and since any slope polystable vector
bundle is Gieseker semistable, we conclude that �t̄ is Gieseker semistable for
any point t ∈ T . Hence � induces a section σ of M�

H(X/T) → T.
Consider the relative Picard scheme Pic(X/T) whose existence is guar-

anteed by [31, Théorème 3.1]. By a theorem of Deligne, h1(Xt ,OXt ) is
independent of t ∈ T. This implies that the group scheme Pic(X/T) is smooth
over T ([28, Exposé VIB, Proposition 1.6]). Recall now from [28, Exposé
VIB, Théorème 3.10] that the algebraic groups Pic◦(Xt ) fit together to form a
group scheme Pic◦(X/T) over T, and that Pic◦(X/T) ⊂ Pic(X/T) is an open
subscheme. From [10, Chapter 8, Theorem 5], we see that Pic◦(X/T) is quasi-
projective. Using [30, Corollaire 15.7.11], we conclude that it is projective
over T. This shows that Pic◦(X/T) is an abelian scheme.

Next, consider the natural morphism

� : Pic◦(X/T) ×T · · · ×T Pic◦(X/T)
︸ ︷︷ ︸

r factors

→ M�
H(X/T)

which maps ([L1], . . . , [Lr ]) to [L1⊕· · ·⊕Lr ], where r denotes the rank of� andL1, . . . ,Lr are topologically trivial line bundles onXt̄ for some closed
point t ∈ T . Since

σ(t) ∈ �
(

Pic◦(X/T) ×T · · · ×T Pic◦(X/T)
)

for any closed point t ∈ T and since � is closed, we must have

σ(T) ⊂ �
(

Pic◦(X/T) ×T · · · ×T Pic◦(X/T)
)

.

Since �η̄ is polystable with respect to Hη̄, we conclude that, up to shrink-
ing T if necessary, there exist line bundles �1, . . . ,�r on X with [�i ] ∈
Pic◦(X/T)(T) such that �η̄ ∼= �1η̄ ⊕ · · · ⊕ �r η̄. Moreover, for any closed
point t ∈ T ,�i t̄ is a torsion point. From [45, Chapter 9, Corollary 6.3], we see
that�η̄ is a torsion point. This shows that �η̄ is étale trivializable, completing
the proof of the theorem. �

6 Stable reflexive sheaves with pseudo-effective tautological line bundle

In this section we provide a technical tool for the proof of Theorem 1.6: we
study stable reflexive sheaves with numerically trivial first Chern class and
pseudo-effective tautological line bundle.

In [51], Nakayama studies semistable vector bundle E of rank two on com-
plex projective manifold with c1(E ) ≡ 0 and pseudo-effective tautological
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class (see [51, Theorem IV.4.8] for a precise statement). Our strategy of proof
for Theorem 6.1 partly follows his line of reasoning.

Theorem 6.1 Let X be a normal complex projective variety of dimension n,
let H be an ample Cartier divisor, and let E be a reflexive sheaf of rank
r ∈ {1, 2, 3} on X. Suppose that X is smooth in codimension two and that E
is H-stable with c1(E ) · Hn−1 = 0. Suppose furthermore that, for any finite
morphism f : ˜X → X that is étale in codimension one, the reflexive pull-back
f [∗]E is stable with respect to f ∗H. Then one of the following holds:

1. either there exists c > 0 such that h0
(

X, S[i]E ⊗ OX ( j H)
) = 0 for any

positive integer j and any natural number i satisfying i > cj ,
2. or c1(E )2 · Hn−2 = c2(E ) · Hn−2 = 0,
3. or r = 3, and there exists a finite morphism f : ˜X → X that is étale

in codimension one, and a rank 1 reflexive sheaf L on ˜X with c1(L ) ·
( f ∗H)n−1 = 0 such that h0

(

˜X , (S2 f ∗E ) � L
) 	= 0.

Remark 6.2 The condition on the dimension of the singular locus of X posed
in Theorem 6.1 allows to define the Chern class c2(E ).

Remark 6.3 The condition (1) in the statement of Theorem 6.1 is a way of
saying that the tautological line bundle is not pseudo-effective on singular
spaces (see Lemma 2.7).

Remark 6.4 In the setup of Theorem 6.1, suppose furthermore that X is
smooth, and that E is locally free. If c1(E )2 · Hn−2 = c2(E ) · Hn−2 = 0,
then E is flat by a result of Uhlenbeck and Yau (see [57]). In particular, the
tautological line bundle is nef.

The following consequence of Theorem 6.1 improves [6, Theorem 7.7]. The
conclusion also holds for K3-surfaces by [51, Theorem IV.4.15].

Corollary 6.5 Let X be a Calabi–Yau complex projective manifold of dimen-
sion 3. Then the tautological line bundle on PX (TX ) is not pseudo-effective.

Proof It is well-known that the tangent sheaf TX is stable with respect to any
polarization H , and that c2(X)·H2 	= 0.We argue by contradiction and assume
that the tautological line bundle on PX (TX ) is pseudo-effective. By Theorem
6.1, there exists a line bundleL with μH (L ) = 0 such that h0

(

X, (S2TX ) ⊗
L

) 	= 0. This implies that �1
X

∼= TX ⊗ L . Taking determinants, we obtain
L ⊗2 ∼= OX . Since X is simply connected, we must have L ∼= OX . On
the other hand, by [41, Corollary 8], we have h0(X, S2TX ) = 0, yielding a
contradiction. �

We collect several examples which illustrate to what extend our result is
sharp.
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Example 6.6 Let X be a projective K3-surface. The tautological line bundle
on PX (TX ) is not pseudo-effective by [51, Theorem IV.4.15 ]. Thus E satisfies
(1) in the statement of Theorem 6.1 by Lemma 2.7.

Example 6.7 Let X be a complex projective manifold, and let L ∈ Pic0(X).
ThenL obviously satisfies (2) in the statement of Theorem 6.1.

Example 6.8 Let C be a complete curve of genus g ≥ 2. We construct a rank
two vector bundle E onC of degree 0 such that, for any étale cover f : ˜C → C ,
the pull-back f ∗E is stable. The vector bundle E satisfies (2) in the statement
of Theorem 6.1.

The construction is very similar to that of Hartshorne in [32, Theorem
I.10.5], and so we leave some easy details to the reader. Pick c ∈ C . By a result
of Narasimhan and Seshadri [52], we must construct a unitary representation
ρ : π1(C, c) → U(2) such that, for any normal subgroup H � π1(C, c) of
finite index, the induced representation H → U(2) is irreducible.

It is well-known that π1(C, c) is generated by elements a1, b1, . . . , ag, bg
satisfying the relation

[a1, b1] · · · · · [ag, bg] = 1.

If we have chosen any two unitary matrices A1, B1 ∈ U(2), then we can find
further unitary matrices A2, B2, . . . , Ag, Bg satisfying the relation above. Let

A1 =
(

λ1 0
0 λ2

)

where |λi | = 1, and λ1λ
−1
2 is not a root of unity. Let B1 be a

very general unitarymatrix. Then all the entries of all the matrices Bm
1 (m ≥ 1)

are non-zero. Let H �π1(C, c) be a normal subgroup of finite index. Letm be
a positive integer such that Am

1 , Bm
1 ∈ H . The only invariant subspaces of Am

1
are the subspaces spanned by some subset of the standard basis. This implies
that the representation H → U(2) is irreducible. Indeed, in order for Bm

1 to
have as fixed subspace a subspace generated by a subset of the standard basis,
it would have to have some entries zero.

Example 6.9 Let X be a projective K3-surface, and consider E := S2TX . A
straightforward computation shows that c2(E ) = 4 · 24. It is known that E is
stable with respect to any polarization. On the other hand,

S2(S2TX ) ∼= S4TX ⊕ det(TX )⊗2 ∼= S4TX ⊕ OX ,

and hence h0(X, S2E ) 	= 0. Thus E satisfies (3) in the statement of Theorem
6.1 above.

We have divided the proof of Theorem 6.1 into a sequence of steps, each
formulated as a separate result. Some of these statements might indeed be of
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independent interest. The proof of Theorem 6.1 then follows quickly from
these preliminary steps.

6.10 (Divisorial Zariski decomposition) We briefly recall the definition of the
divisorial Zariski decomposition from [51]. Let X be a complex projective
manifold, let D be a big R-divisor on X , and let P be a prime divisor. The
asymptotic order of vanishing of D along P is

σP(D) = inf
G

{

multP(G)
}

,

where the infimum is over all effective R-divisor G with G ∼R D.
Let now D be a pseudo-effectiveR-divisor, and let A be an ampleR-divisor

on X . Let

σP(D) = lim
ε ↓ 0

σP(D + εA).

Then σP(D) exists and is independent of the choice of A. There are only
finitely many prime divisors P such that σP(D) > 0, and the R-divisor
Nσ (D) := ∑

P σP(D)P is determined by the numerical equivalence class
of D. Set Pσ (D) := D − Nσ (D).

6.11 (Diminished base locus) Let D be a Q-divisor on a smooth projective
manifold X . Let k be a positive integer such that kD is integral. The stable
base locus of D is

B(D) :=
⋂

m≥1

Bs(mkD).

It is independent of the choice of k.
The diminished base locus of an R-divisor D is

B−(D) =
⋃

A

B(D + A)

where the union is taken over all ample R-divisors A such that D + A is a Q-
divisor (see [20, Definition 1.12]). The diminished base locus of a divisor is a
countable unionofZariski closed subsets of X by [20, Proposition1.19].Notice
that B−(D) � X if and only if D is pseudo-effective, and that B−(D) = ∅ if
and only if D nef. By [51, Proposition III 1.14], Nσ (D) = 0 if and only if D
is movable.

We will need the following observation.

Lemma 6.12 Let X be a complex projective manifold, and let D be a pseudo-
effective R-divisor on X. Let B be an irreducible component of B−(D). Let
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β1 : Y1 → X be the blow-up of X along B, and let β2 : Y → Y1 be a resolution
of singularities. Suppose thatβ2 induces an isomorphismover the smooth locus
of Y1. Set β := β1 ◦ β2, and let E be the unique β-exceptional divisor on Y
with center B in X. Then σE (β∗D) > 0.

Proof Let A be an ample R-divisor on X . By [20, Lemma 3.3] applied to the
divisorial valuation multE of the function field of X given by the order of
vanishing at the generic point of B,

σE
(

β∗(D + A)
) = inf

G

{

multE (β∗G)
}

where the infimum is over all effectiveR-divisorG withG ≡ D+ A. If D+ A
is a Q-divisor, then by [5, Lemma 3.5.3],

B(D + A) =
⋂

F

Supp(F)

where the intersection is over all effective R-divisor F with F ≡ D + A. The
assertion now follows from [51, Lemmata V.1.9 and III.2.3]. �

The proof of Proposition 6.22 below makes use of the following lemma.

Lemma 6.13 Let Y be a complex projective manifold of dimension n ≥ 2, and
let D be an R-divisor. Suppose that D is movable, and suppose furthermore
that there is an irreducible component B of B−(D) of codimension two. Let
|H | be a base-point-free linear system on Y , let 0 � k � n − 2 be an integer,
and let S be a complete intersection of k very general elements in |H |. There
exists a real number a > 0 such that

(D2|S − aB ∩ S) · h3 · · · · · hn−k ≥ 0

for arbitrary codimension one nef classes h3, . . . , hn−k on S.

Proof Let β1 : Z1 → Y be an embedded resolution of B, and let β2 : Z → Z1
be the blow-up of Z1 along the strict transform B1 of B in Z1. Set β := β1◦β2,
and let E1, . . . , Er be the β-exceptional divisors. Suppose that E1 = Exc(β2).

Set S1 := β−1
1 (S), and T := β−1(S). Notice that S1 is an embedded

resolution of B ∩ S, and that T → S1 is the blow-up of the strict transform
B1 ∩ S1 of B ∩ S in S1. Write Fi := Ei ∩ T , and denote by μ1 : S1 → S,
μ2 : T → S1, and μ : T → S the natural morphisms. Set DS := D|S , and let
h3, . . . , hn−k be codimension one nef classes on S.

Write ai := σEi (β
∗D) ∈ R≥0. The R-divisor β∗D −

∑

1�i�r
ai Ei is then

movable. Notice that a1 > 0 by Lemma 6.12 above.
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By Lemma 6.14 below, the restriction of β∗D −
∑

1�i�r
ai Ei to T is also

movable, and therefore

⎛

⎝μ∗DS −
∑

1�i�r

ai Fi

⎞

⎠

2

· μ∗h3 · · · · · μ∗hn−k ≥ 0.

But Fi · μ∗DS · μ∗h3 · · · · · μ∗hn−k = 0 since Fi is μ-exceptional, and
Fi · μ∗h3 · · · · · μ∗hn−k ≡ 0 when i ≥ 2 since μ(Fi ) � B ∩ S for each i ≥ 2.
Thus

⎛

⎝μ∗DS −
∑

1�i�r

ai Fi

⎞

⎠

2

· μ∗h3 · · · · · μ∗hn−k

= (

μ∗(D2
S) + a21F

2
1

) · μ∗h3 · · · · · μ∗hn−k .

The projection formula gives

(

μ∗(D2
S) + a21F

2
1

) · μ∗h3 · · · · · μ∗hn−k = (

D2
S − a21B ∩ S

) · h3 · · · · · hn−k,

using the fact that μ2∗F2
1 = −B1 ∩ S1. This proves the lemma. �

Lemma 6.14 Let Y be a complex projective manifold, let V ⊂ |H | be a not
necessarily complete base-point-free linear system on Y , and let D be an R-
divisor. If D is pseudo-effective (resp. movable), then its restriction to a very
general element in V is pseudo-effective (resp. movable) as well.

Proof Suppose that D is pseudo-effective (resp. movable). There is a sequence
of effective (resp. effective movable) integral divisors Mi on Y and a sequence
λi of non-negative real numbers such that λi [Mi ] → [D] in Eff(Y ) as i →
+∞. Now, the restriction of an effective (resp. effective movable) divisor to a
general element in V is effective (resp. effective movable). So, if H ′ is a very
general element in V , then for each i , Mi |H ′ is effective (resp. movable), and
hence so is D|H ′ . �

The proofs of Lemma 6.15 and Proposition 6.16 follow arguments that go
back at least as far as [51, Theorem IV 4.8].

Lemma 6.15 Let X be a complex projective manifold, and let E be a coherent
locally free sheaf on X. Suppose that E is semistable with respect to any
polarization and that c1(E ) ≡ 0. Set Y := PX (E ), and denote by OY (1) the
tautological line bundle. If ξ := [OY (1)] ∈ N1(Y )R is pseudo-effective, then
it generates an extremal ray of the cone of pseudo-effective classes Eff(Y ).
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Proof Let ξ1 and ξ2 be pseudo-effective classes on Y such that ξ = ξ1 + ξ2.
Write ξi = aiξ +π∗γi for some real number ai and some class γi on X . Notice
that ai ≥ 0, a1 + a2 = 1, and γ1 + γ2 = 0.

Denote by π : Y → X the natural projection. Let H be an ample divisor,
and let C ⊂ X be a general complete intersection curve of elements in |mH |
where m is a sufficiently large positive integer. By the restriction theorem of
Mehta and Ramanathan, the locally free sheaf E|C is stable with deg(E|C) = 0.
In particular, E|C is nef. Set Z := π−1(C). By [22, Lemma 2.2],

Nef(Z) = Eff(Z) = 〈ξ|Z , f 〉
where f denotes the numerical class of a fiber of the projection morphism
Z → C . This implies that deg(γi |C ) ≥ 0, and hence deg(γi |C) = 0 since
γ1 + γ2 = 0. Since H is arbitrary, we conclude that γ1 = γ2 = 0. This
completes the proof of the lemma. �
Proposition 6.16 Let X be a complex projective manifold, and let E be a
locally free sheaf on X. Suppose that E is semistable with respect to an ample
divisor H, and that μH (E ) = 0. Set Y := PX (E ). Suppose that the tautolog-
ical line bundle OY (1) is pseudo-effective. If OY (1) is not movable, then there
exists a line bundle L with μH (L ) = 0 and a positive integer m such that
h0

(

X, (SmE ) ⊗ L
) 	= 0.

Proof Set n := dim X . Denote by � a tautological divisor on Y , and by
π : Y → X the natural morphism. Set P := Pσ (�) and N := Nσ (�). Write
N = ∑

i∈I σi Ni , where Ni is a prime exceptional divisor, and σi ∈ R>0. We
have Ni ∼Z mi� + π∗�i for some divisor �i on X and some non-negative
integer mi .

Let C ⊂ X be a complete intersection curve of very general elements in
|mH |wherem is a sufficiently large positive integer. By the restriction theorem
ofMehta and Ramanathan, the locally free sheaf E|C is stable with deg(E|C) =
0. Set Z := π−1(C). Notice that �|Z , P|Z , and Ni |Z are pseudo-effective by
Lemma 6.14. Applying Lemma 6.15, we see that [π∗�i |Z ] ∈ R[�|Z ] for each
i ∈ I , and thus �i ·Hn−1 = 0 since�|Z is relatively ample over Z . Pick i ∈ I .
If mi = 0, then h0

(

X,OX (�i )
) 	= 0, and hence �i ∼Z 0 since �i · Hn−1 = 0.

This implies that Ni = 0, yielding a contradiction. Therefore, mi > 0 and
h0

(

X, (SmiE ) ⊗ OX (�i )
) 	= 0. This proves the proposition. �

The proof of the next result follows the line of argument given in [6, Theorem
7.6].

Lemma 6.17 Let S be a smooth complex projective surface, and let E be a
locally free sheaf of rank r ≥ 2 on S. Suppose that E is semistable with respect
to an ample divisor H, and that c1(E ) · H = 0. Let ξ ∈ N1(Y )R be the class

123



A decomposition theorem for singular spaces

of the tautological line bundle OY (1). If any irreducible component of B−(ξ)

has dimension at most 1, then c1(E )2 = c2(E ) = 0.

Proof Denote byπ : Y → S the natural morphism, and denote by h ∈ N1(S)R

the class of H . Let G ⊂ Y be a very general hyperplane section. Suppose that
[G] ≡ m(ξ + tπ∗h) for some positive integers m and t . Notice that G does
not contain any irreducible component of B−(ξ). It follows that ξ|G is nef, and
hence

ξ r · G ≥ 0.

The equation

ξ r ≡ π∗c1(E ) · ξ r−1 − π∗c2(E ) · ξ r−2,

yields

ξ r · G = m
(

π∗c1(E ) · ξ r−1 − π∗c2(E ) · ξ r−2) · (ξ + tπ∗h)

= m
(

c1(E )2 − c2(E )
)

,

and hence

c1(E )2 − c2(E ) ≥ 0.

On the other hand, we have

2rc2(E ) − (r − 1)c1(E )2 ≥ 0

by Bogomolov’s inequality (see [34, Theorem 3.4.1]), and thus c1(E )2 ≥ 0.
Finally, the Hodge index theorem implies that c1(E )2 � 0, and hence we must
have c1(E )2 = c2(E ) = 0. This proves the lemma. �
6.18 (The holonomy group of a stable reflexive sheaf) Let X be a normal
complex projective variety, and let E be a reflexive sheaf on X . Suppose that
E is stable with respect to an ample Cartier divisor H with slope μH (E ) = 0.
For a sufficiently large positive integer m, let C ⊂ X be a general complete
intersection curve of elements in |mH |. Let x ∈ C . By the restriction theorem
ofMehta and Ramanathan, the locally free sheaf E|C is stable with deg(E|C) =
0, and hence it corresponds to a unique unitary representation ρ : π1(C, x) →
U(Ex ) by a result of Narasimhan and Seshadri [52]. The holonomy group
Holx (E ) of E is the Zariski closure of ρ

(

π1(C, x)
)

in GL(Ex ). It does not
depend on C � x provided that m is large enough. Moreover, the fiber map
E → Ex induces a one-to-one correspondence between direct summands of
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E ⊗r � (E ∗)⊗s and Holx (E )-invariant subspaces of E ⊗r
x ⊗ (E ∗

x )⊗s , where r
and s are non-negative integers (see [9, Theorem 1]).

The proof of Theorem 6.1 makes use of the following lemma. Example 6.20
below shows that the statement of [9, Lemma 40] is slightly incorrect. An extra
assumption is needed to guarantee that the holonomy groups are well-defined.

Lemma 6.19 [9, Lemma 40] Let X be a normal complex projective variety,
let x ∈ X be a general point, and let E be a reflexive sheaf on X. Suppose
that E is stable with respect to an ample divisor H, and that μH (E ) = 0.
Suppose furthermore that, for any finite morphism f : ˜X → X that is étale in
codimension one, the reflexive pull-back f [∗]E is stable with respect to f ∗H.
Then there exists a finite morphism f : ̂X → X, étale in codimension one, such
that Hol̂x ( f [∗]E ) is connected, where x̂ is a point on ̂X such that f (̂x) = x.

Example 6.20 (see [25, Example 8.6]) Let Z be a complex projective K3-
surface, let ˜X := Z × Z , and let ι ∈ Aut(˜X) be the automorphism which
interchanges the two factors. The quotient X := ˜X/ι is then a normal projec-
tive variety, and the quotient mapπ : ˜X → X is finite and étale in codimension
one. The tangent sheaf TX of X is stable with respect to any ample polar-
ization on X (see [25, Example 8.6]). Let x is a general point on X . Then
Holx (TX )◦ = SL2(C) × SL2(C), and Holx (TX )/Holx (TX )◦ ∼= Z/2Z. More-
over, the morphism π is the map given by [9, Lemma 40]. But, the reflexive
pull-back π [∗]TX = T

˜X = TZ � TZ is obviously not stable.

Lemma 6.21 Let X be a complex projective manifold, let x ∈ X, and let E be
a coherent locally free sheaf on X. Suppose that E is stable with respect to an
ample divisor H, and thatμH (E ) = 0. Suppose furthermore that its holonomy
group Holx (E ) is connected. Then, for any finite cover f : ˜X → X with ˜X
smooth and projective, the pull-back f ∗E is stable with respect to f ∗H.

Proof Let ˜X be a complex projective manifold, and let f : ˜X → X be a finite
cover. By [39, Theorem1], the locally free sheaf f ∗E is polystablewith respect
to f ∗H . For a sufficiently large positive integer m, let C ⊂ X (resp. ˜C) be
a general complete intersection curve of elements in |mH | (resp. |m f ∗H |),
and let x ∈ C (resp. x̃ ∈ f −1(x)). By the restriction theorem of Mehta and
Ramanathan, the locally free sheaf E|C is stable with deg(E|C) = 0, and hence
it corresponds to a unique unitary irreducible representation ρ : π1(C, x) →
U(Ex ) by [52]. Notice that f ∗E|˜C is then induced by the representation

ρ̃ := ρ ◦ π1( f|˜C) : π1(˜C, x̃) → π1(C, x) → U(Ex ) ∼= U
(

( f ∗E )x̃
)

.

We argue by contradiction and assume that f ∗E is not stable with respect
to f ∗H . So let G be a f ∗H -stable direct summand of f ∗E . Then Gx̃ is ρ̃-
invariant, and since the image of
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π1( f|˜C) : π1(˜C, x̃) → π1(C, x)

has finite index, the orbit π1(C, x) · Gx̃ of Gx̃ is a finite union of proper linear
subspaces, where we view Gx̃ as a linear subspace of Ex ∼= ( f ∗E )x̃ . It follows
thatπ1(C, x)·Gx̃ is alsoHolx (E )-invariant. Now, sinceHolx (E ) is a connected
algebraic group, we conclude that Gx̃ is π1(C, x)-invariant. Therefore E is not
H -stable, yielding a contradiction. This completes the proof of the lemma. �
We now provide another technical tool for the proof of Theorem 6.1.

Proposition 6.22 Let X be a complex projective manifold, and let E be a
rank 3 locally free sheaf on X. Suppose that E is stable with respect to an
ample divisor H, and that μH (E ) = 0. Suppose furthermore that Holx (E ) is
connected for x ∈ X. Set Y := PX (E ), and denote by OY (1) the tautological
line bundle. Suppose that ξ := [OY (1)] ∈ N1(Y )R is pseudo-effective. If ξ is
movable, then any irreducible component of B−(ξ) has codimension at least
three.

Proof Denote byπ : Y → X the natural projection.We argue by contradiction
and assume that ξ is movable, and that there exists an irreducible component
B of B−(ξ) of codimension two.
For a sufficiently large positive integer m, let C ⊂ X be a complete

intersection curve of very general elements in |mH |. By the restriction the-
orem of Mehta and Ramanathan, the locally free sheaf E|C is stable with
deg(E|C) = 0. Moreover, if x ∈ C , then Holx (E|C) = Holx (E ) is connected.
Set Z := π−1(C), and ξZ := ξ|Z . Notice that dim Z = 3. Then ξZ is nef, and
ξ3Z = 0. By Lemma 6.13, there exists a real number a > 0 such that

0 � a(B ∩ Z) · ξZ � ξ3Z = 0,

and hence (B ∩ Z) · ξZ = 0. In particular, since ξZ is relatively ample over C ,
any irreducible component of B∩Z maps ontoC . Let ˜C be the normalization of
B∩Z , and denote by f : ˜C → C the inducedmorphism. The naturalmorphism
g : ˜C → Z induces a surjective morphism f ∗(E|C) 	 g∗(OY (1)|Z ). Since

deg g∗(OY (1)|Z ) = (B ∩ Z) · ξZ = 0,

the locally free sheaf f ∗(E|C) is not stable. But this contradicts Lemma 6.21,
completing the proof of the proposition. �
Proof of Theorem 6.1 Wemaintain notation and assumptions of Theorem 6.1.
We claim that we may assume without loss of generality that the algebraic
groupHolx (E ) is connected. Indeed, by Lemma 6.19, there exists a finite cover
f : ˜X → X , étale in codimension one, such that Hol̃x ( f [∗]E ) is connected,
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where x̃ is a point on ˜X such that f (̃x) = x . By theNagata–Zariski purity theo-
rem, f is étale in codimension two, and hence ˜X is smooth in codimension two
as well. Suppose now that the conclusion of Theorem 6.1 holds for f [∗]E . The
sheaf S[i]E ⊗ OX ( j H) is a direct summand of f[∗]

(

Si ( f ∗E ) ⊗ f ∗OX ( j H)
)

for any non-negative integers i and j . Thus, if f [∗]E satisfies condition (1) in
the statement of Theorem 6.1, then the same holds for E . Let X◦ ⊂ Xreg be
the open set where E is locally free. Then X◦ has codimension at least 3 in
X by [33, Corollary 1.4] using the fact that X is smooth in codimension two.
Since

c1
(

f ∗
| f −1(X◦)E|X◦

) = f ∗
| f −1(X◦)c1(E|X◦) and

c2
(

f ∗
| f −1(X◦)E|X◦

) = f ∗
| f −1(X◦)c2(E|X◦),

we conclude that

c1( f
[∗]E )2 · ( f ∗H)n−2 = deg( f )c1(E )2 · Hn−2 and

c2( f
[∗]E ) · ( f ∗H)n−2 = deg( f )c2(E ) · Hn−2.

This implies that if f [∗]E satisfies condition (2) in the statement of Theorem
6.1, then the same holds for E . Finally, if f [∗]E satisfies condition (3) in the
statement of Theorem 6.1, then the same obviously holds for E . Thus, by
replacing X with ˜X , we may assume that Holx (E ) is connected. This proves
our claim.

Suppose from now on that h0
(

X, S[i]E ⊗ OX ( j H)
) 	= 0 for infinitely

many (i, j) ∈ N × N≥1 with i/j → +∞. Let S be a smooth two dimensional
complete intersection of very general elements in |mH | for a sufficiently large
positive integer m. Observe that S is contained in the smooth locus Xreg of
X , and that E is locally free along S (see [33, Corollary 1.4]). We may also
obviously assume that x ∈ S. Set ES := E|S , and HS := H|S . By the restriction
theorem of Mehta and Ramanathan, the locally free sheaf ES is stable with
respect to HS , and μHS (ES) = 0. Moreover, the algebraic group Holx (ES) =
Holx (E ) is connected. Set Y := PS(ES) with natural morphism π : Y → S.
Denote by ξ ∈ N1(Y )R the numerical class of the tautological line bundle
OY (1). Notice that h0

(

Y, SiES ⊗ OS( j HS)
) 	= 0 for infinitely many (i, j) ∈

N × N≥1 with i/j → +∞. This implies that ξ ∈ Eff(Y ). If r = 1, then
obviously we must have ξ = 0. Suppose from now on that r ∈ {2, 3}.
Case 1: ξ is movable. If r = 3, then any irreducible component of B−(ξ) has
codimension at least three by Proposition 6.22. In either case, any irreducible
component ofB−(ξ) has dimension at most 1. Thus, by Lemma 6.17, we must
have
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c1(E )2 · Hn−2 = c1(ES)
2 = 0 and c2(E ) · Hn−2 = c2(ES) = 0.

Case 2: ξ is not movable.By Proposition 6.16, there exists a line bundleLS on
S withμHS (LS) = 0 and a positive integer k such that h0(S, SkES⊗LS) 	= 0.
Since SkES is polystable, L ⊗−1

S is a direct summand of SkES , and hence
(L ⊗−1

S )x ⊂ (SkE )x is Holx (E )-invariant.
Suppose first that r = 2. By [9, 45], Holx (E ) = SL(Ex ) orGL(Ex ). In either

case, (SkE )x is an irreducible Holx (E )-module, yielding a contradiction.
Suppose now that r = 3. Then Holx (E ) = SL(Ex ), GL(Ex ), SO(Ex ),

or GSO(Ex ) by [9, 45] again, where GSO(Ex ) denotes the group of proper
similarity transformations. Arguing as above, we conclude that Holx (E ) =
SO(Ex ) or GSO(Ex ). In either case, there exists a rank one reflexive sheafL
on X with μH (L ) = 0 such that h0(X, S2E � L ) 	= 0. This completes the
proof of the theorem. �

7 Holomorphic Riemannian metric and holomorphic connection

7.1 (Bott connection) Let X be a complex manifold, let G ⊂ TX be a regular
foliation, and set N = TX/G . Let p : TX → N denotes the natural projec-
tion. For sections U of N , T of TX , and V of G over some open subset of
X with U = p(T ), set ∇B

VU = p([V,U ]). This expression is well-defined,
OX -linear in V and satisfies the Leibnitz rule ∇B

V ( f U ) = f ∇B
VU + (V · f )U

so that∇B is a G -connection onN (see [4]). We refer to it as the Bott (partial)
connection on N .

7.2 (Holomorphic Riemannian metric) Given a complex manifold X and a
vector bundle E on X , recall that a holomorphic metric g on E is a global
section of S2(E ∗) such that g(x) is non-degenerate for all x ∈ X .

Lemma 7.3 Let X be a complex manifold, and let TX = E ⊕ G be a decom-
position of TX into locally free sheaves. Suppose that E is involutive, and
suppose furthermore that E admits a holomorphic metric g. Then there exists
an E -connection ∇LC on E such that, for sections U, V , and W of E over
some open subset of X, the following holds:

1. ∇LC
U V − ∇LC

V U = [U, V ] (∇LC is torsion-free), and
2. W · g(U, V ) = g

(∇LC
W U, V

) + g
(

U, ∇LC
W V

)

(∇LC preserves g).

Definition 7.4 We will refer to ∇LC as the Levi-Civita (partial) connection on
E .
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Proof of Lemma 7.3 LetU and V be local sections ofE over some open subset
of X . Then ∇LC

U V is defined by

2g
(∇LC

U V, •) = U · g(V, •) + V · g(•,U ) − • · g(U, V )

+g
([U, V ], •) − g

([V, •],U) − g
([U, •], V )

.

A straightforward local computation shows that ∇LC is a torsion-free E -
connection on E that preserves the metric. �
Proposition 7.5 Let X be a complex manifold, and let TX = E ⊕ G be a
decomposition of TX into locally free involutive subsheaves. Suppose that E
admits a holomorphic metric. Then E has a holomorphic connection.

Proof Let X = U + V and W be local sections of TX = E ⊕ G and E
respectively. Set

∇XW := ∇LC
U W + ∇B

VW

where ∇LC denotes the Levi-Civita connection on E and where ∇B denotes
the Bott connection on E induced by the foliation G ⊂ TX . This expression is
OX -linear in X and satisfies the Leibnitz rule∇X ( f W ) = f ∇XW + (X · f )W
so that ∇ is a holomorphic connection on E . �
Remark 7.6 In the setup of Proposition 7.5, let S ⊂ X be a projective subva-
riety. Then characteristic classes of E|S vanish. This follows from [3].

8 Bost–Campana–Păun algebraicity criterion: algebraicity of leaves, II

We prove Theorem 1.6 in this section. We first provide a technical tool for
the proof of our main result (see [16, Proposition 6.1] for a somewhat related
result).

Proposition 8.1 Let X be a normal complex projective variety, and let H be
an ample Cartier divisor. Let E ⊂ TX be a foliation on X. Suppose that E is
H-stable and that μH (E ) = 0. Suppose furthermore that through a general
point of X, there is a positive-dimensional algebraic subvariety that is tangent
to E . Then E has algebraic leaves.

Proof There exist a normal projective variety Y , unique up to birational equiv-
alence, a dominant rational map with connected fibers ϕ : X ��� Y , and a
holomorphic foliation H on Y such that the following holds (see [49, Sect.
2.4]):

1. H is purely transcendental, i.e., there is no positive-dimensional algebraic
subvariety through a general point of Y that is tangent to G ; and
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2. E is the pullback ofH via ϕ.

Let G ⊆ E be the foliation on X induced by ϕ. Let ψ : Z → Y be the
family of leaves of G , and let β : Z → X be the natural morphism, so that
ϕ := ψ ◦ β−1 : X ��� Y . By 3.10, there is an effective divisor R on X such
that

KG − KE = −(ϕ∗KH + R).

Notice that the pull-back ϕ∗KH is well-defined (see Definition 3.5). Applying
[15, Corollary 4.8] to the foliation induced by H on a desingularization of
Y , we see that KH is pseudo-effective: given an ample divisor A on Y and
a positive number ε ∈ Q, there exists an effective Q-divisor Dε such that
KH + εA ∼Q Dε. This implies that μH (φ∗KH ) ≥ 0, and hence μH (KG ) �
0. Since E is H -stable, we must have G = E . This proves the lemma. �

The proof of Theorem 1.6 relies on a criterion (see Proposition 8.4) that
guarantees that a given foliation has algebraic leaves, which we establish now.

The following observation, due to Bost, will prove to be crucial.

Proposition 8.2 [13, Proposition 2.2] Let Z be a projective variety over a field
k, let x be a k-point, and let H be an ample divisor. Let ̂V ⊂ ̂Z be a smooth
formal subscheme of the formal completion ̂Z of Z at x. Then ̂V is algebraic
if and only if there exists c > 0 such that, for any positive integer j and
any section s ∈ H0

(

Z ,OZ ( j H)
)

such that s|̂V is non-zero, the multiplicity
multx (s|̂V ) of s|̂V at x is � cj .

Corollary 8.3 Let Y ◦ be a smooth complex quasi-projective variety, let Z be a
complex projective variety with Y ◦ ⊆ Z, and let H be an ample Cartier divisor
on Z. Let V ⊂ Z be a germ of smooth locally closed analytic submanifold
along Y ◦ in Z. Then V is algebraic if and only if there exists c > 0 such that,
for any positive integer j and any section s ∈ H0

(

Z ,OZ ( j H)
)

such that s|V
is non-zero, the multiplicity multY ◦(s|V ) of s|V along Y ◦ is � cj .

Proof Let η ∈ Z be the generic point of Y ◦. Denote by k(η) its residue field.
Set Zη := Z ⊗k(η), and Hη := H ⊗k(η) . Notice that H0

(

Zη,OZη ( j Hη)
) ∼=

H0
(

Z ,OZ ( j H)
) ⊗ k(η) for any number j ∈ Z. The point η corresponds

to a k(η)-point on Zη still denoted by η. Let ̂V be the formal completion of
V along Y ◦. Then ̂V induces a smooth formal subscheme ̂Vη of the formal
completion ̂Zη of Zη at η. Observe that ̂V is algebraic if and only if ̂Vη is. The
lemma now follows from Proposition 8.2 applied to (Zη, η, Hη) and ̂Vη since
multY ◦(s|V ) = multη

(

s ⊗ k(η)|̂Vη

)

for any number j ∈ Z and any section

s ∈ H0
(

Z ,OZ ( j H)
)

.
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The proof of Proposition 8.4 below follows the line of argument given in
[15, 4.1] (see also [12, Corollary 3.8]).

Proposition 8.4 Let X be a normal complex projective variety, let H be an
ample Cartier divisor, and let G ⊆ TX be a foliation. Suppose that there exists
c > 0 such that h0

(

X, S[i]G ∗ ⊗ OX ( j H)
) = 0 for any positive integer j and

any natural number i satisfying i > cj . Then G has algebraic leaves.

Proof Let X◦ ⊂ Xreg be the open set where G|Xreg is a subbundle of TXreg . Set
Z◦ := X◦ × X◦, Z := X × X , and A := p∗

1H + p∗
2H where p1, p2 : Z =

X × X → X denote the projections on X . Let Y ◦ ⊂ Z◦ be the open subset
of the diagonal corresponding to X◦. Let now V ⊂ Z◦ be the analytic graph
of (X◦,G|X◦). Recall that Y ◦ ⊂ V and thatNY ◦/V ∼= G|X◦ . The closed subset
X \ X◦ has codimension ≥ 2, and hence h0

(

X◦, SiN ∗
Y ◦/V ⊗ OX◦( j H)

) = 0
for any positive integer j and any natural number i satisfying i > cj by
assumption. This implies that multY ◦(s|V ) � cj/2 for any positive integer j
and any section s ∈ H0

(

Z ,OZ ( j A)
)

such that s|V is non-zero. The proposition
now follows from Corollary 8.3 applied to (Z , Y ◦, A) and V . �

We end the preparation for the proof of Theorem 1.6 with a flatness criterion
(see Remark 8.6 below). We feel that it might be of independent interest.

Proposition 8.5 Let X be a normal complex projective variety of dimension n,
and let H be anampleCartier divisor. Suppose that X is smooth in codimension
two. Let TX = E ⊕ G be a decomposition into involutive subsheaves, where
E is H-stable and det(E ) ∼= OX . Suppose furthermore that h0

(

X, S2(E ∗) �
L

) 	= 0 for some rank one reflexive sheaf L with c1(L ) · Hn−1 = 0. Then
c1(E )2 · Hn−2 = c2(E ) · Hn−2 = 0.

Proof Set r := rankE . Consider a non-zero section g ∈ H0
(

X, S2(E ∗)�L
)

.
Since E is H -stable, g induces an isomorphism E ∼= E ∗ � L . Taking deter-
minants and double duals, we obtain L [⊗r ] ∼= OX . Let f : ˜X → X be
the corresponding cyclic cover (see for instance [40, Lemma 2.53]). Then
f [∗]L ∼= O

˜X , and g induces a holomorphic metric on f [∗]E |˜Xreg
. Apply-

ing Proposition 7.5, we see that f [∗]E |˜Xreg
admits a holomorphic connection.

Notice that ˜X \ ˜Xreg has codimension at least three. It follows from Remark
7.6 that

c1(E )2 · Hn−2 = 1

deg( f )
c1( f

[∗]E )2 · ( f ∗H)n−2 = 0

and that

c2(E ) · Hn−2 = 1

deg( f )
c2( f

[∗]E ) · ( f ∗H)n−2 = 0,

proving the proposition. �
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Remark 8.6 In the setup of Proposition 8.5, suppose furthermore that X is a
Q-factorial variety with only canonical singularities. Then it follows from [27,
Theorem 6.5] that there exists a finite surjective morphism f : ˜X → X , étale
in codimension one, such that f [∗]E is a locally free, flat sheaf on ˜X .

Proof of Theorem 1.6 Maintaining notation and assumptions of Theorem 1.6,
set r := rankE .

Suppose that there exists a finite cover f : ˜X → X that is étale in codimen-
sion one such that the reflexive pull-back f [∗]E is not stable with respect to
f ∗H . Applying [34, Lemma 3.2.3], we see that the f [∗]E is polystable, and
hence, there exist non-zero reflexive sheaves (Ei )i∈I , f ∗H -stable with slopes
μ f ∗H (Ei ) = μ f ∗H ( f [∗]E ) = 0 such that

f [∗]E ∼=
⊕

i∈I
Ei .

Suppose that the number of direct summands is maximal. Then, for any finite
cover g : ̂X → ˜X that is étale in codimension one, the reflexive pull-back
g[∗]Ei is obviously stable with respect to ( f ◦ g)∗H . Notice that ˜X is still
smooth in codimension two, since f branches only over the singular set of X .
It follows from Proposition 8.1 that if Ei has algebraic leaves for some i ∈ I ,
then so does E .

Suppose first that there exists i0 ∈ I such that c1(Ei0)
2 · ( f ∗H)n−2 	= 0 or

c2(Ei0) · ( f ∗H)n−2 	= 0. Applying Theorem 6.1 to E ∗
i0
, we see that one of the

following holds.

1. Either there exists c > 0 such that h0
(

˜X , S[i]E ∗
i0

⊗ O
˜X ( j f ∗H)

) = 0 for
any positive integer j and any natural number i satisfying i > cj ,

2. or r = 3, and there exists a finite morphism g : ̂X → ˜X that is étale in
codimensionone, and a rank1 reflexive sheafL on ̂X withμ( f ◦g)∗H (L ) =
0 such that h0

(

̂X , (S2( f ◦ g)∗E ∗
i0

) � L
) 	= 0.

If we are in case (1), apply Proposition 8.4 to conclude that Ei0 has algebraic
leaves.

Suppose that we are in case (2). Then we may assume that ˜X = X , and that
Ei0 = E . Taking pull-backs and double duals, we obtain a decomposition

T
̂X

∼= g[∗]E ⊕ g[∗]G

into involutive subsheaves, where g[∗]E is g∗H -stable and det(g[∗]E ) ∼= O
̂X .

Applying Proposition 8.5 to g[∗]E , we see that

c1(E )2 · Hn−2 = 1

deg(g)
c1(g

[∗]E )2 · (g∗H)n−2 = 0
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and

c2(E ) · Hn−2 = 1

deg(g)
c2(g

[∗]E ) · (g∗H)n−2 = 0,

yielding a contradiction.
Finally, suppose that c1(Ei0)

2 ·( f ∗H)n−2 = c2(Ei )·( f ∗H)n−2 = 0 for each
i ∈ I . Let S be a smooth two dimensional complete intersection of general
elements in |mH | for a sufficiently large positive integer m. Observe that S is
contained in the smooth locus Xreg of X , and that E is locally free along S (see
[33, Corollary 1.4]). By the restriction theorem ofMehta and Ramanathan, the
locally free sheaf Ei |S is stable with respect to H|S with μH|S (Ei |S) = 0, and
c1(Ei |S)2 = c2(Ei |S) = 0. This implies that Ei |S is flat (see Remark 6.4). A
straightforward computation then shows that c2(E ) · Hn−2 = c2(E|S) = 0,
yielding a contradiction. This completes the proof of the theorem. �

9 Proof of Theorem 1.2

We are now in position to prove our main result.

Proposition 9.1 Let X be a normal complex projective variety of dimension
at most 5, with klt singularities. Assume that KX ≡ 0. Then there exists an
abelian variety A aswell as a projective variety ˜X with canonical singularities,
a finite cover f : A× ˜X → X, étale in codimension one, and a decomposition

˜X ∼=
∏

j∈J

Y j

such that the induced decomposition of T
˜X agree with the decomposition given

by Theorem 1.1.

Proof Notice first that KX ∼Q 0 by [51, Corollary V 4.9]. Thus, there exists
a finite cover f1 : X1 → X , étale in codimension one, such that KX1 ∼Z 0
(see [40, Lemma 2.53]). By [43, Proposition 3.16], X1 has klt singularities.
It follows that X1 has canonical singularities since KX1 is a Cartier divisor.
Applying Theorem 1.1, we conclude that there exists an abelian variety A
as well as a projective variety X2 with canonical singularities, a finite cover
f2 : A × X2 → X1, étale in codimension one, and a decomposition

TX2 =
⊕

i∈I
Ei

such that the following holds.
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1. The Ei are integrable subsheaves of TX2 , with det(Ei ) ∼= OX2 .
2. The sheaves Ei are strongly stable.
3. The augemented irregularity of X2 is zero.

To prove the theorem, we will show that the foliations Ei are algebraically
integrable. We may obviously assume that TX2 is not strongly stable. Let
β : ̂X2 → X2 be a Q-factorial terminalization of X2. By Lemma 4.9, there is
a decomposition

T
̂X2

=
⊕

i∈I
̂Ei

of T
̂X2

into involutive subsheaveswith det(̂Ei ) ∼= O
̂X2

such thatEi ∼= (β∗ ̂Ei )
∗∗.

Notice that q̃(̂X2) = 0 by Lemma 4.4. Let

T
̂X2

=
⊕

i∈J

̂G j

be a decomposition of T
̂X2

into strongly stable involutive subsheaves with
det(Gi ) ∼= O

̂X2
whose existence is guaranteed by Theorem 1.1. For any j ∈ J ,

̂G j is a direct summand of Ei j for some i j ∈ I . To prove the claim, it suffices
to prove that the foliations ̂Gi are algebraically integrable. By Corollary 5.11,
we must have c2( ̂G j ) 	≡ 0 for each j ∈ J . This implies in particular that ̂G j

has rank at least 2, and therefore, rank ̂G j ∈ {2, 3} since dim X � 5 and TX2

is not strongly stable by assumption. Now, by Theorem 1.6, we conclude that
the sheaves Ei are algebraically integrable, proving our claim. The proposition
then follows from Proposition 4.10. �
Proof of Theorem 1.2 Theorem 1.2 is an immediate consequence of Proposi-
tion 9.1 and of the characterization [25, Proposition 8.21] of canonical varieties
with trivial canonical class and strongly stable tangent bundle as singular ana-
logues of Calabi–Yau or irreducible holomorphic symplectic manifolds. �
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