A-ANALYTICITY OF SEPARATRICIES OF FOLIATIONS

STEPHANE DRUEL

ABSTRACT. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on X.
We prove that if L is closed under p-th powers for almost all primes p, then any L-invariant smooth formal
curve is A-analytic. Building on prior work of Bost we obtain an algebraicity criterion for those curves.
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1. INTRODUCTION

Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on X (defined
over K).

If L is closed under p-th powers for almost all primes p, then the generalization to foliations by Ekedahl,
Shepherd-Barron and Taylor (see [ESBT99, Conjecture F]) of the classical Grothendieck-Katz conjecture pre-
dicts that L has algebraic leaves. The conjecture has been shown in some special cases, e.g. if X is a abelian
surface and L is induced by a non-zero vector field ([Bos01, Theorem 2.3]), if X is the total space of a line
bundle over an algebraic curve and L is induced by a linear connection ([And04, Corollaire 4.3.6]), and if X is
a Pl-bundle over an elliptic curve E and L is an Ehresmann connection on X — E ([Dru21, Proposition 9.3]).

Actually, [Bos01, Theorem 2.3] follows from an algebraicity criterion for smooth formal schemes in algebraic
varieties over number fields ([Bos01, Theorem 3.4]), which we recall now. Let P € X (K), and let V be a smooth
formal subscheme of the completion Xp of X at P. If V is A-analytic (we refer to Section 2 for this notion)
and ‘7@ satisfies the Liouville condition for some embedding K C C, then the formal scheme Vis algebraic.

If L is regular at P € X(K), then the formal leaf V of L through P is smooth but V is not A-analytic in
general. Nevertheless, if L is closed under p-th powers for almost all primes p, then V is A-analytic by [Bos01,
Proposition 3.9].

Suppose now that P € X(K) be a singular point of L, and let K C C be an embedding. In [CS82], Camacho
and Sad proved that there is at least one separatrix of L¢ through Pr € X¢, i.e. a (local) irreducible complex
curve in X¢ passing through Pr and tangent to Lc. Suppose in addition that Pc is a non-degenerate reduced
singularity of L¢. Then, by [MMS80, Appendice II], L¢ has exactly two separatrices through Pc. They are
smooth and intersect transversely at Pc. In this paper, we extend [Bos01, Proposition 3.9] to this setting.

Theorem 1.1. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P € X(K) be a singular point of L.
Suppose furthermore that Pc is a non-degenerate reduced singularity of Lc for some embedding K C C. Then
the following holds.

(1) There exist smooth formal subschemes V and W over K of the completion )?p of X at P such that 17@
and W¢ are the formal completion at P of the separatrices of L¢ through Pc for any embedding K C C.
(2) The formal curves V and W are A-analytic.
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In fact, a slightly more general statement is true (see Theorem 4.1 and Corollary 4.2).

The following is an immediate consequence of [Bos01, Theorem 3.4] and Theorem 1.1 together.

Corollary 1.2. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P € X(K) be a singular point of
L. Suppose that Pc is a non- degenemte reduced singularity of L¢ for some embedding K C C. Let )?p be the
completion of X at P, and let V C Xp be a formal separatriz through P. Suppose in addition that there exists
an embedding K C C such that V(c satisfies the Liowville property. Then Vs algebraic.

1.1. Structure of the paper. Section 2 gathers notation, known results and global conventions that will be used
throughout the paper. In section 3 we provide technical tools for the proof of the main results. More precisely,
we study formal power series solutions of certain p-adic nonlinear differential equation using a Newton iteration
procedure. Section 4 is devoted to the proof of Theorem 1.1.

2. NOTATION, CONVENTIONS AND USED FACTS

2.1. Global convention. Throughout the paper a variety is a reduced and irreducible scheme separated and of
finite type over a field.

2.2. Foliations. Let K be a number field, and let R be its ring of integers. Let X be a smooth quasi-projective
variety over K. A foliation on X is a line bundle L C T'x such that the quotient Tx /L is torsion free.

Let U C X be the open subset where L|y is a subbundle of Ty;. We say that L is singular at P € X if
PeX\U.

Let Y C X be a closed subvariety, and let D be a derivation on X. Say that Y is invariant under D if
D(Fy) C Hy.

Say that Y is invariant under L if for any local section D of L over some open subset U of X, D(#yny) C
Hynu- To prove that YV is invariant under L it is enough to show that Y N U of Y is invariant under L|y for
some open set U C X such that Y NU is dense in Y. If X and Y are smooth and L C T is a subbundle, then
Y is invariant under L if and only if L|y C Ty C Tx|y.

Let N > 1 be a sufficiently divisible integer, and let 2" (resp. .Z) be a smooth model of X over R[1/N]
(resp. a line bundle on 2" contained in Ty /5 such that £ ®@r K coincides with L and the quotient T3,/ is
torsion free), where S := Spec R[1/N]. Let p be a maximal ideal of R with p + N, and let k, := R/p denote the
residue field at p. Let p denote the characteristic of k. The sheaf of derivations Dery, “ %p) = Ty, is endowed
with the p-th power operation, which maps any local ky-derivation of O, to its p-th iterate.

We say that L is closed under p-th powers for almost all primes p if there exists N | N’ such that, for any
p{ N, Z|a, CTg, is closed under p-th powers. This condition is independent of the choices of 2™ and .Z.

2.3. A-analyticity of formal smooth schemes. We briefly recall a number of definitions and facts concerning A-
analytic formal curves from [Bos01] (see also [BCL09]). We refer to loc. cit. for further explanations concerning
these notions.

Let K be field equipped with some complete ultrametric absolute value | - | and assume that its valuation
ring R is a discrete valuation ring.

Let N be a positive integer, and let r be a positive real number r. For any formal power series f =
> reny ar X! € Cpl[Xq, ..., Xn]], we define ||f|], by the formula

Hﬂh=s$DMAH”ER>mJ+m.

The power series f such that ||f||, < +oo are those that are convergent and bounded on the open N-ball of
radius 7 in K~

Fact 2.1. Let r > 0 be a real number, and let f € C,[[X1,...,Xy]] and g € C,[[X1, ..., Xn]| be formal power
series with [|f|, < +oo and [|g|, < +oo. Then [|fgll, < +oo, and |[fgll- < [|f]l-/lg]l-

For any positive real number r, we denote by Gan, < Aut (A%O) the subgroup consisting of all N-tuples
f = (f1,-..,fn) such that f(0) = 0, Df(0) € GLy(R), and ||fi||» < r for each ¢. This subgroup may be
identified with the group of all analytic automorphisms, preserving the origin, of the open N-dimensional ball
of radius r. Set also Gan := Ur>0Gan,r-
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Notice that a smooth formal subscheme V of dimension d of A%O is K-analytic if and only if there exists
f € Gan such that £~V is the formal subscheme A;l(o x {0} of A%O
Let 2 be a quasi- projective R-scheme, and X =: 2" Qg K its generlc fiber. Let & € Z'(R), and let

P:=2®rK. Let v be a smooth formal subscheme of the completion X p of X at P. There is a unique way
to attach a number S4 (V) € [0,1] such that the following holds (see [Bos01]).

(1) We have S5 (V) > 0 if and only if V is K-analytic.
(2) If (2, 2) = (AR,0) and V is K-analytic, then S5 (V) is supremum of the set of real numbers 0 < r < 1
for which there exists f € Gan such that f~ 1V is the formal subscheme Af(o x {0} of A%O.
(3) If " — 2" is an immersion, then Sg (V) = Sa/ (V).
(4) For any two triples (27, £, V) and (£, Z’, V') as above, if there exists an R-morphism f: 2" — 2"’
mapping & to &', étale along £, and inducing an isomorphism V = V' then Sgo (V) = S (V).
We will refer to So- (V) as the size of V with respect to the model 2 of X.

We will need the following easy observations.

Lemma 2.2 ([BCLO9]). Let o =3 -, ¢ X™ € K[[X]] be formal power series such that c¢1 € R, and let V be

its graph in @0, Set A :=inf,,>1 7% € RU{—o0}, and let p be the radius of convergence of p. Then
the following holds.

(1) The size Saz, (‘7) of V with respect to (A%,0) satisfies SA%(‘A/) < p.
(2) If p> 0, then Sy2 (V) = min(1,exp ). In particular, V' is K-analytic. Moreover, if ¢ € R[[X]], then
Spz (V) =1. -
(3) If p> 0 and ¢'(0) is a unit in R, then Sy2 (V) = min(1,exp A).
Proof. Ttems (1) and (3) are shown in [BCL09, Proposition 3.5]. To prove Item (2), let
F(X1, X2) = (X + Xa, 0(X1)) € Aut(AZ,).

Then f~1V is the formal subscheme @0 x {0} of @0. If p> 0, then A € R. Set r := min(1,exp ) € [0,1].
Then ||f||» < r, and hence f € G,,. This finishes the proof the lemma. O
Lemma 2.3. Let p =3, -, cnX™ € K[[X]] be formal power series such that c; € R, and set p 1= o(X)/X =
Yoms1 Cmi1 X ™. Let V (resp. W) be the graph of ¢ (resp. ) in A. Then Spz (V) = Spz (W).

Proof. Let be a positive real number such that r < SA% (ﬁ/\) By assumption, there exist formal power series

f1 and fy in K[[X7, X3]] such that f = (f1, f2) € Gan,» and f_l/W = Z}: x {0}. This last condition is actually
equivalent to the identity

fQ(Ta 0) = w(fl(Ta 0))
in K[[T]]. Let us write f1(7,0) = > 5, anT™, and fo(T,0) = > -, b,T™. We have by = cpa;. Since

f € Gan,r, we must have Df(0) € GLy(R). This immediately implies that a; is a unit in R.
Let us set

g1(X1, Xo) = f1(X1,X2), ¢2(X1, Xo) =Y + f1(X1, Xo) fo(X1, X2), and g=(g1,92)-

Then [|gy[lr = [|fllr <7 and [|gall» < 7 since [|fofollr < [[fillr]| follr < 72 < 7. Moreover,

Dg(0) = (%1 3X21f(0)) € GLy(R),

and hence g € Gay - Finally, notice that g~V = Zl\ x {0} since f2(T,0)f1(T,0) = ¢(f1(T,0)) in K[[T]]. This
shows that Sy2 (V) > Sz (W), finishing the proof of the lemma. O

Remark 2.4. In the setup of Lemma 2.3, note that the (formal) curve T +— (T, 9 (T)) is the proper transform of
the (formal) curve T + (T, ¢(T)) in the blow-up of Al at 0.
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Let K be a number field, and let R be its ring of integers. Let p be a maximal ideal of R, let | - |, be the
p-adic absolute value, normalized by the condition |w,|, = m for any uniformizing element w, at p. Let
K, and R, be the p-adic completions of K and R, and k, := R,/(w,) the residue field at p. Let p denote
the characteristic of k,. Let X be a quasi-projective algebraic variety over K, and let P € X(K). Let V be a

smooth formal subscheme (defined over K) of the formal completion Xpof X at P. Let N >1bea sufficiently
divisible integer, and let 2" be a quasi-projective model of X over R[1/N], such that P extends to a point
P € Z (R[1/N]). The smooth formal scheme V is said to be A-analytic (see [BCL09, Definition 3.7]) if

(1) for any place v of K, the formal scheme VKW is K,-analytic, where K, denotes the completion of K
with respect to v, and
(2) we have

1
Z log —————— < +o0.
pTN S%Rp (VK;:)

This condition is independent of the choices of 2", &, and N.

3. POWER SERIES SOLUTIONS OF CERTAIN p-ADIC DIFFERENTIAL EQUATIONS

Let p be a prime number. Let Q, (resp. C,) be the field of p-adic rational numbers (resp. complex numbers).
We denote by | - | the ultrametric absolute value on C, normalized by |p| = p~!. We denote by v the p-adic
valuation on C, normalized by v(p) = 1.

In this section, we study formal power series solutions of certain p-adic nonlinear differential equations at a
regular singular point. The following is the main result of this section.

Proposition 3.1. Let p be an odd prime integer, let 1 < s < p—1and1 <t < p—1 be relatively prime

integers, and set o := %. Let a, b, and cy, for any integer m > 2 be power series in Cp[[X]] such that ||all, < 7,
bl < 5, and [|ep]|r < % for some real number r €]0,1]. Suppose in addition that a(0) = o’(0) = 0 and that

b(0) = 0. Then the following holds.

(1) There exists a unique formal power series y in Cp[[X]] with y(0) = y'(0) = 0 solution of the differential
equation

(3.1) zy +ay=a+by+ Z cmy™.
m>=2

2
(2) There exists a constant C > 0 such that, letting R := r exp ( - Ct(lop%p)} we have ||y||r < R.

We will need the following well-known facts.

Fact 3.2. Let f = 3 SqamX™ € Cy[[X]] and g = > 0bmX™ € Cp[[X]]. Suppose that there exists a
positive real number r such that both |a,,|r™ and |b,,|r™ goes to 0 as m goes to +o00. Then || fg||. = |If|l-1l9]|
(see [Rob00, Proposition 2 of Section 6.1.4]).

Fact 3.3. Let f € C,[[X]]. If f(0) = 0 and || f||» < Cr for some positive real numbers r and C, then ||f||,, < Cry
for0 <ry <.

Fact 3.4. Let f =3, <,amX™ € Cp[[X]]. Suppose that there exists a positive real number r such that |a, |r™
goes to 0 as m goes to +-00. Then ||, = |[fr|[1 = supjy <1 [fr(2)] = supj, <, |f(2)], where fr(X) := f(rX) =
> om0 amr™X™ (see [Rob00, Proposition 1 of Section 6.1.4]).

Before we give the proof of Proposition 3.1, we need the following auxiliary statements.

Lemma 3.5. Let k be a positive integer, and let b = - .. by X™ € Cp[[X]] be a power series such that
|[bl[ < 5 for some real number r €]0,1]. Set B =3}, o b xm

(p—1)

(1) Letry:=rexp(— %logp). Then || B||r gpfﬁ.
(2) Let rg :=rexp ( — %10g2). Then ||B||r, gp‘p%.
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Proof. Let R be a positive real number. Then ||B]||r < p 71 if and only if

llogp)}.

1
log R < inf {(—1ogbm|+log|m|—
m

m>=2

By assumption, we have
log |bym| + (m — 1) logr < —logp

for any integer m > 2*, and hence

log p) }

llogp)}> inf {1<( —l)logr+log|m|+

m>2k (m
-3 log p) }

Notice that log |m| + gf_i’ logp < —logp + ;;%3 logp = —-2-logp < 0 if [m| < 1, and hence

1
inf { (log || + =3 logp>} <0.
m>=2k | 'm

logp>} ni@r;fl{;(log|m|+5:i)logp)}

1
= inf {(log|m| +2
m p

1
inf {(—log|bm +log |m| —
m

m>2k

> logr+ inf { (log\m\+
m>=2k

using the fact that r» < 1.

Then

WV

inf { <log |m| +

m>=2

-3
lo )
m21 such that |m|<1 -1 &P }
1 -3
= inf —(—t—i—L)logp
t>1 and u>1 such that |u|=1 ptu p—1

e

Now observe that = p%( —x+ g%:la) is an increasing function on z > 2 =1 34

< 2. Thus

WV

On the other hand, we

log p°

have 2 = 3 4 logp

inf l(—t—%ﬂ)lo = min i(—t—kp;?)>10 —_7210
1 | pt p—1) B T i p—1) %P T pp—1) P

and hence

1
inf {( — log |by,| + log |m| —

m>=2k |m
This proves (1).
We proceed to show (2). We have

1 — 1 —
inf —(log|m|+p 3logp) > inf —(—logm—f—p logp>
m>2k | M p—1 m>2k | m p—1
1 _
> inf {(logm+p logp)}
m>=2k | 'm p
. logm 1
>t a2

10% is increasing on logxz > 1. Therefore, if £ > 2, then

. 1 k
mn}lgk {m(—logm)} = —Q—klogz

1 1 2 1
1 —_ — = 1 _— _— = — — > — .
inf { ( log m) } min { 5 log 2, 92 log 2} 5 log2 > —log 2

m>2k (M

Notice that the function x — —

If k = 1, then

This proves (2), completing the proof of the lemma. |
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Remark 3.6. In the setup of Lemma 3.5, notice that exp(B(x)) is the unique formal power series solution of the
differential equation zy’ = by such that y(0) = 1. We will denote B(x) by f * bg) du.

Lemma 3.7. Let k be a positive integer, and let a = 3, o. anX™ € C,[[X]] be a power series such that
llal]» < for some positive real number r. Let 1 < s <p—1and 1 <t < p—1 be relatively prime integers, and
set o= f and A=3" on njjr”aX””.

(1) Letrq ':rexp( Sy 1) logp) Then ||Al],, <
(2) Suppose that 2¥ > a +2, and let ry :=rexp ( — 5L log2). Then ||A|l,, <72

Proof. Let R be a positive real number. Then ||A||g < R if and only if

1 ‘am‘
log R < inf {— 1 .
o8 ngzk{ m—10g|m—|—a|}

By assumption, we have log |a,,| + (m — 1)logr < —logp for any m > 2. Notice also that |s| = |t| = 1.
Thus

m>2k m>2k

1 1
inf {—m_llog |rr|La—T&—n|a} logr + inf {M(logp+log|tm+s)}

t
>logr+ inf {(logp+1og|m|)}
m—s—t

m>2kt+s

t
>logr + inf {(10gp+10g|m|)}.
m-—s—t

m2>22t+s

Note that logp + log|m| < 0 if |m| < |p|, and that m —s —¢ >t > 1. Hence

. t
s {W“%f’“‘)gm)} <0

and thus

(logp + log |m|)}

(l—k)bgp}

t
inf — (1 1 inf _
2 {mst< ogp og|m|)} m>2t+51£1d m|<p{mst

m2>=2t+s
. t
inf . 5
k>2 and u>1 such that |u|=1 | pfu — s —1
t

sy (1R e

WV

t
inf {] —— (1 —k)l
k32 Pk (1 — —2(1;;1)) (1 - k) logp

WV

tlogp .. 1—k
inf
(1 _ 2(;;-1)) k>2 pk
p2

On the other hand, the function x — 1;;” is increasing on x > 1 + loép' This immediately implies
1—-k 1
inf =-=,
k>2 p P
and hence
tlogp f 1-k t |
(1 2(1771)) éf}l2 Pk B 2(1 2(?*1)> &P
-2 p?(1 - 2
i 1
=———1lo
p?—2p+2 &b
> t 1
> ———logp.
(12 P

This proves (1).
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We proceed to show (2). Suppose that 2¥ > a + 2. If moreover m > 2%t + s, then
1 1
%—s—t} 5(2’%—}—5)—3—152 §(s+2t—|—s)—s—t:0,

and hence m — s —t > . Notice in addition that we must have k > 2 since a > 0 by assumption. Then, we
have

t t
inf — (1 1 > inf — (1 —1
m}lgkt-rs{m—s—t( o8P+ 0g|m|)} m)lglkt-s—s{m—s—t( oep ogm)}
t
> — inf {logm}
m>2kt+s (M — 85 —1
1
> -2t inf =20
m>2kt+s N
1
> -2t inf —2
m>=2k M
kt
This completes the proof of the lemma. O

Remark 3.8. In the setup of Lemma 3.7, note that A is the unique formal power series solution of the differential
equation
xy +oy=a
with y(0) = y'(0) = 0.
We are now in position to prove Proposition 3.1.
Proof of Proposition 3.1. Notice that m + a # 0 for any integer m > 2. Item (1) then follows easily.
The proof of Item (2) is subdivided into a number of steps.

Step 1. Let m > 2 be an integer. Observe that v(m + a) = v(tm + s) < %. Therefore, [SS81, Theorem

2] applies to show that the formal solution y is convergent.

Set
o(X1, X2) = Y em(X1)X3" € Cp[X1, X2,
m>=2
and consider the formal power series
B(z) := / Mdu and z(z) := y(x) exp(—B(x)).
0 u

Note that z(0) = 2/(0) = 0. Then y is solution of Equation (3.1) if and only if z is solution of
2 (z) + az(z) = exp(—B(w))(a(x) + ¢z, z(x) exp(B(ac)))).

By Lemma 3.5 (1), B(x) converges if |z| < ro := rexp( — ﬁlogp), and |B(z)| < prT <p w1 In

particular, exp(+B(z)) is well-defined. Set
ap(z) = a(zr)exp(—B(z))) and com(z) = cm(x)exp((m —1)B(x))
for all m > 2, so that
oxp(—B(x))e(z, 2(z) exp(B(x))) = D com(@)z(a)™.

m>=2

Let r; = rexp( — ﬁlogp) < r9. Then [Rob00, Theorem of Section 6.1.5] applies to show that
exp(+B)(z) converges and that exp(+B)(z) = exp(+(B(z)) if |z| < r1. In addition, we have || exp(£B)||,, =
SUP|y|<r, |€XP(£B)(2)| = supjy<,, |exp(£(B(x))|. On the other hand, sup, <, [exp(£(B(z))| < 1 since

|m!| > p~ 71 for every integer m > 1. It follows that

lexp(£B)|l, =1
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since B(0) = 0. As a consequence, we have

71
llaollry = [lallr[]exp(=B)llr, = llallr, < -,

HCO’mHn = llemllr, < llemllr < =,

1
p
and
lyllz = Izl
for any real number 0 < R < 1y
Replacing r by rp, if necessary, we may therefore assume without loss of generality that b = 0, so that
Equation (3.1) reads

(3.2) 2y +ay=a+ Z cmy™

m>=2

Step 2. The proof of [SS81, Theorem 2] then goes as follows. Let zy € C,[[X]] be the unique formal power series
solution of
zz(x) + azo(z) = a(x)
w1th zo(x) = O(x?) as x goes to 0. Set by = 0. Observe that a1 (x) := c(x, z0(x)) = O(ﬂc22) as x goes to 0. Set
bi(x) := Op,c(x, 20(x)), and let z; € C,[[X]] be the unique formal power series solution of
x2)(x) + az1(z) = a1(z) + b1 (z) 21 (x)

with z1(z) = O(J:Qz) as x goes to 0. Next, one defines inductively z, € C,[[X]] for all integer k > 2 as follows.

Set
k
.
i=0

for k>0. If £ > 2, set

a () = c(z,yp-1(2)) — (@, Yp—2(v)) — 2k—1(2) O, (@, Y —2())
and
bi(x) := Oy c(x, yp—1(x)).

For k > 2, one then proves that there exists a unique formal power series z; solution of
(3.3) 21, (z) + azip(z) = ak(z) + br(x)zk(x)

with z(z) = O(m2k+l). Finally, one proves that z; converges for all k > 0 as well as y := Zk>0 2 and that y
is the unique solution formal power series solution of Equation (3.2) with y(x) = O(2?) as z goes to 0.

Step 3. Set By(z) := Oz b’“iu du. Notice that, for any integer £ > 1, the formal power series zj is solution of
Equation (3.3) if and only if

w(x) = 24(2) exp(~ By(x))
is solution of

zw(z) + awy(z) = exp(—Bk(m))ak(x).

Let k1 be the smallest positive integer such that k;,jll < L. Then 2% > p? —|— > p+12> a+2. Notice that
k1 < 5log p. Indeed, let k be any integer such that k > log p+ 1. Then %t < 2&»171 < p%. It follows that
ki < log2 logp+2 < 3logp+2 < 5logp.

Then, we define inductively a decreasing sequence (ry)r>o of positive real numbers such that the following
holds. For any integer k > 0, if |x| < 7k, then exp(£By)(x) converges, exp(+By)(z) = exp(+(Bk(z)), and zx(z)
converges as well. In addition,

[lexp(£B)||r, =1,
and
Hzlc”rk Tk-
Finally, we will show that the limit 7o, of the sequence (74)r>0 satisfies

]
Ot( ogp)?
p?

logr —logry <
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for some constant C' > 0. In particular, ro, > 0.

Set ro :=rexp (— ﬁlogp). By Lemma 3.7 (1), ||z0]|r, < 70. Moreover, By = 0 since by = 0.

Let now k be a positive integer. Suppose rp_1 < rp_s < --- < ro have already been defined. For any integer
0<j< k-1, we have
||yj||"”k—1 < Org?ng ||Zi|‘rk—1 S Th—1,

and y;(z) converges if |z| < rp—1. Moreover,
||bk|‘r’“—1 = Ham?c(x7yk*1(x))||m—1
=11 3 memyi s

m>=2
< max { mlllenllr v 1727} }

—1
< rglgg{l\cm\lrﬂl’il }

Tk—
< k 1.
p
Similarly, we have
Tk—1
||ak3||rk—1 = ‘|C<$,y}€71($)> - C(l‘,yk,2<$)) - Zkfl(x)awzc(x7yk72($))”7‘k—1 < P .

Suppose first k < k1. Set
Tk *=Tk—-1€Xp | — OgP) X Tk—1€Xp | — —/——< 108D Tk—1-
(p—1)? p(p—1)

By Lemma 3.5 (1) applied to b; and Lemma 3.7 (1) applied to exp(—Bg(x))ax(x) and arguing as in Step 1, we
see that rj satisfies all the conditions listed above.

Suppose now that k > k1, and set

k+1)t kE+1

(2167_1) log 2) < rEp_1exp ( - ok
Applying Lemma 3.5 (2) to by and Lemma 3.7 (2) to exp(—Bg(x))ax(x) and arguing again as in Step 1, we see
that r; also satisfies all the conditions listed above.

Finally, we have

TR = Tp_1 exp(— 10g2> < Th—1-

2t 2(ky — 1)t (logp)?
> ogry—logre) = Y ——slogp= " logp < 10t
< it P 1) (r—1) (r—1)
and
E+1)t
Z (logrk_1 — logry) = Z %10g2
}CZkl 7/2191
+oo
z+1
< tlog2 d
0g /k1 29:71
t 1
= — ki +1
k1 (1 g2+ 1+ >
k
<qfitl
k1
4t
Sp
Therefore, we have
(logp)* | 4t (log p)*
logr —logry = logrg—1 —logry) < 10t——% + — < M4t——%.
,;( ' ) p—1)?2 p? (p—1)?

Set C := 14, and R := rexp ( —tC'(loiif)z). Then R < 7y for any k > 0, and ||y||r < R since ||yx||r < R for
each k > 0. This completes the proof of the proposition. |
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4. PROOF OF THEOREM 1.1

In this section we prove our main result. Note that Theorem 1.1 is an immediate consequence of Theorem
4.1 below.

Let X a smooth complex quasi-projective surface, and let L be a foliation on X. Let P be a singular point
of L, and let D be a vector field on some open subset U > P such that L|y = OyD. Let oy and ag be the
eigenvalues of the linear part of D at P. Recall that P is a reduced singularity of L if at least one of the «;’s
is non-zero, say asg, and 3—; is not a positive rational number. A reduced singularity P is called non-degenerate
if both a; and s are non-zero. Then {a, é} does not depend on the choice of D, where a := z—; Finally,
recall from [MM80, Appendice I1], that if P is a non-degenerate reduced singularity, then there are exactly two
analytic curves in X passing through P and invariant under L. They are smooth and intersect transversely at
P.

Theorem 4.1. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P € X (K) be a singular point of L.
Suppose that Pc is a reduced singularity of Lc for some embedding K C C. Then the following holds.
(1) The foliation L has a non-degenerate singularity at P, and —ap.(Lc) € Qso. In particular, Pc is a
reduced smgularzty of L¢ for any embedding K C C.
(2) There exist two L-invariant smooth formal subschemes V and W of the completion Xp of X at P
defined over K, where L denotes the (formal) foliation induced by L on Xp In particular, ‘7C and W@
are the formal completzon at P of the two separatrices of L¢ through Pc for any embedding K C C.
(3) The formal curves V and W are A-analytic.

Proof. Replacing X by a Zariski open neighborhood of P in X, if necessary, we may assume without loss of
generality that X is affine, and that L = 0x D for some vector field D € Tx = Dery(0x). Let K be an algebraic
closure of K, and let a; € K and ay € K be the eigenvalues of the linear part of D at P. Suppose oy # 0.
By [McQO08, Proposition II.1.3], D is formally linearisable at P and of € Q. This immediately implies that

aq # 0 since D has isolated zeroes by assumption. In addition, we must have —ap,(L¢) = —g—; € Q- for any
embedding K C C, proving (1).
Let us write o = — %, where s and t are relatively prime positive integers, and let K C C be an embedding.

Let z1 and zo be regular functions on X such that the induced map X — A%( is étale at P, and maps
P to 0. Shrinking X further, we may assume that X — A% is étale. Let D denote the K-derivation of
Ox,p = K[[X1,X2]] induced by D. We may assume without loss of generality that

D = (X1 + f1(X1, X2))0x, + (AXs + fo(X1, X2))Ox,,

where f; and fo are formal power series with coefficients in K vanishing to order at least 2 at P. Let ¢ and
2 be formal power series with coefficients in K vanishing to order at least 2 at 0. Then the formal (smooth)
curves

T (p1(T),T) and T+ (T,¢2(T))

are invariant under D if and only if

D(X1 — ¢1(X2)) € (X1 — ¢1(X2)) and D(Xs — p2(X1)) € (X2 — ¢2(X1))
if and only if

(4.1) e1(T) + fi(p1(T), T) = Py (T)(AT + f2(p1(T),T)) =0
and
(4.2) Ap2(T) + fo(T, p2(T)) — 05(T) (T + f1(T, 92(T))) = 0.

One readily checks that there is a unique formal power series ¢ € K[[T]] (resp. 2 € K[[T]]) vanishing to order
at least 2 at 0 solution of Equation (4.1) (resp. Equation (4.2)) since —a € Qs. This proves (2).

We will denote by V (resp. /W) the formal curve T — (1 (T),T) (resp. T — (T, p2(T))).
The proof of Item (3) is subdivided into a number of steps.

Step 1. Let v be a place of K, and let K, be the completion of K at v. Notice first that va and /VVKW are
K,-analytic by [SS81, Theorem 2] if v is a finite place and [MM80, Appendice II] if v is archimedean.
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Step 2. Suppose that the (algebraic) curve {z1} = 0 is Z-invariant. Shrinking X further, if necessary, we may
therefore assume that

D = xlaml + f(acl,xg)am,
where f is a regular function on X.

Let R be the ring of integers of K. If N denotes a sufficiently divisible positive integer, there exists a model
Z of X, smooth and quasi-projective over R[1/N], such that P extends to a point & € 2 (R[1/N]). We may
also assume that X — A% extends to an étale morphism 2~ — A%%[l /np> and that D extends to a vector field
9 € HY(Z, T9 /spec R[1/N]) With isolated zeroes. Let p be a maximal ideal of R, and let |- |, be the p-adic
absolute value, normalized by the condition |wy]|, = m for any uniformizing element w, at p. Let K, and
R, be the p-adic completions of K and R, and k, := R,/(w,) the residue field at p. Let finally p denote the
characteristic of k.

Suppose that p { N, and that K, is absolutely unramified. Let @p denote the K,-derivation of 7% Dy Prcy =
Kp[[X1, X5]] induced by Pk, = Dk,. Then

@p = X10x, + [p(X1, X2)0x,

where f, € Rp[[X1, Xa]]. Let also 9, be the ky-derivation of ky[[X1, X]] induced by @p. By assumption, 7,
is p-closed. This immediately implies

Dy =Dy
since @5()(1) = 9,(X1) = X;. By [AA86, Lemma 6.4] applied to Z,, there exists a formal power series
Yy in kp[[X1, X3]] such that Z,(Y2) = aY,. Notice that Y5 may a priori depend on our choice of p. Let
Y> € R,[[X1,X2]] be any formal power series whose reduction modulo w, is Y5. By construction, we have
@p(Yg) = AY, modulo (wy). Set Y; := X;. Then, we have

@p =Yi0y, + (>\Y2 + gp(Yl’ YQ))aYW

where g, € wyR,[[Y1,Y2]] vanishes to order at least 2 at 0. On the other hand, recall that ‘71(,, is defined by
Y: = p(Y2) in Spfﬁgg}(p,gz}(p = Spf K,[[Y1, Y2]], where ¢ is the unique formal power series in K,[[T]] solution
of the differential equation

TE(T) — ap(T) = gp (X, (X))
such that ¢(0) = ¢'(0) = 0. Let us write o = > ~,anT™ and gy, = 3, 5 bnY3", where b, € @, Rp[[Y1]].
Then ||cp||p,1 < |wp| = m, so that Proposition 3.1 applies to show that the size Sa, (‘A/Kn) satisfies
1 (logp)?

< C(o)[Ky - Q)

log————— —
S, (Vi,) p?

where C'(«) > 0 depends only on «.

Step 3. In the general setting, let Y be the blow-up of X at P, and let M be the foliation on Y induced by
L. The exceptional divisor E is M-invariant and contains exactly two singularities @; and @ (defined over
K) of M, both reduced and non-degenerate. In addition, relabeling @ and Qs if necessary, we may assume

that there is a smooth formal subscheme V; (resp. /V[71) of ?Ql defined over K (resp. 17@2) which is M-invariant

and such that the morphism ¥ — X induces an isomorphism Vi = V (resp. W; & ﬁ/\) The blow-up % of
Z along & is a smooth and quasi-projective model of Y over R[1/N]. In addition, )7 and Q2 extends to
points 2; € #(R[1/N]) and 2, € % (R[1/N]), and M extends to a foliation .# C Tu /spec r[1/n]- We have a

commutative diagram

Y — BloA%[l/N]

|

2 —— ANy

where the horizontal arrows are étale morphims. Let U; =2 A??[l /N C BIOA%{[1 /] be the affine charts containing
1 with coordinates (y1,y2) (centered at @1). Then the natural morphism U; — A%WN] maps (y1,y2) to
(y1y2,y2). This immediately implies that the formal subscheme V; is defined by Y1 = ¢(Y2)/Ys in Yo, =
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Spf 53/’@1 >~ Spf K[[Y1,Y5]]. Finally, recall that the size (of a smooth formal scheme) is invariant by étale
localization. Let again p be a maximal ideal of R, and suppose that p { NV, and that K, is absolutely unramified.

Then Lemma 2.3 and Step 2 imply that S%RP (VKP) satisfies

1 1 lo
log ———— <log —————— < C'(a)[K, : @, 152" gp)”
S%Rp (VKp) S@Rp (WKp) p
where C’(a) > 0 depends only on «. This immediately implies that V is A-analytic, completing the proof of
the theorem. O

Let L be a foliation on a smooth complex quasi-projective surface X, and let P be a singular point of L. By
[CS82, Theorem], there exists a (possibly singular) analytic curve passing through P. The following is an easy
consequence of Theorem 4.1 above.

Corollary 4.2. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P € X (K) be a singular point ofL
and let V be an L-invariant smooth formal subcheme of the completion Xp of X at P defined over K, where L
denotes the (formal) foliation induced by L on Xp Then V is A- analytic.

Proof. Let K be an algebraic closure of K. By a result proved by Seidenberg ([Sei68]), there exists a composition
of a finite number of blow-ups Y7 — X7 of K-rational points such the foliation M+ induced by L on Y7 has
reduced singularities. The variety Y is defined over a finite extension F' of K. Let M be the foliation on Y
indiced by L. Notice that M is closed under p-th powers for almost all primes p. Then Theorem 4.1 apphed
to the proper transform of VF in Y together with [BCL09, Proposition 3.4] and Lemma 2.3 imply that Vs
A-analytic. O
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