
A-ANALYTICITY OF SEPARATRICIES OF FOLIATIONS
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Abstract. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on X.
We prove that if L is closed under p-th powers for almost all primes p, then any L-invariant smooth formal

curve is A-analytic. Building on prior work of Bost we obtain an algebraicity criterion for those curves.
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1. Introduction

Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on X (defined
over K).

If L is closed under p-th powers for almost all primes p, then the generalization to foliations by Ekedahl,
Shepherd-Barron and Taylor (see [ESBT99, Conjecture F]) of the classical Grothendieck-Katz conjecture pre-
dicts that L has algebraic leaves. The conjecture has been shown in some special cases, e.g. if X is a abelian
surface and L is induced by a non-zero vector field ([Bos01, Theorem 2.3]), if X is the total space of a line
bundle over an algebraic curve and L is induced by a linear connection ([And04, Corollaire 4.3.6]), and if X is
a P1-bundle over an elliptic curve E and L is an Ehresmann connection on X → E ([Dru21, Proposition 9.3]).

Actually, [Bos01, Theorem 2.3] follows from an algebraicity criterion for smooth formal schemes in algebraic

varieties over number fields ([Bos01, Theorem 3.4]), which we recall now. Let P ∈ X(K), and let V̂ be a smooth

formal subscheme of the completion X̂P of X at P . If V̂ is A-analytic (we refer to Section 2 for this notion)

and V̂C satisfies the Liouville condition for some embedding K ⊂ C, then the formal scheme V̂ is algebraic.

If L is regular at P ∈ X(K), then the formal leaf V̂ of L through P is smooth but V̂ is not A-analytic in

general. Nevertheless, if L is closed under p-th powers for almost all primes p, then V̂ is A-analytic by [Bos01,
Proposition 3.9].

Suppose now that P ∈ X(K) be a singular point of L, and let K ⊂ C be an embedding. In [CS82], Camacho
and Sad proved that there is at least one separatrix of LC through PC ∈ XC, i.e. a (local) irreducible complex
curve in XC passing through PC and tangent to LC. Suppose in addition that PC is a non-degenerate reduced
singularity of LC. Then, by [MM80, Appendice II], LC has exactly two separatrices through PC. They are
smooth and intersect transversely at PC. In this paper, we extend [Bos01, Proposition 3.9] to this setting.

Theorem 1.1. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P ∈ X(K) be a singular point of L.
Suppose furthermore that PC is a non-degenerate reduced singularity of LC for some embedding K ⊂ C. Then
the following holds.

(1) There exist smooth formal subschemes V̂ and Ŵ over K of the completion X̂P of X at P such that V̂C
and ŴC are the formal completion at P of the separatrices of LC through PC for any embedding K ⊂ C.

(2) The formal curves V̂ and Ŵ are A-analytic.
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2 STÉPHANE DRUEL

In fact, a slightly more general statement is true (see Theorem 4.1 and Corollary 4.2).

The following is an immediate consequence of [Bos01, Theorem 3.4] and Theorem 1.1 together.

Corollary 1.2. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P ∈ X(K) be a singular point of

L. Suppose that PC is a non-degenerate reduced singularity of LC for some embedding K ⊂ C. Let X̂P be the

completion of X at P , and let V̂ ⊂ X̂P be a formal separatrix through P . Suppose in addition that there exists

an embedding K ⊂ C such that V̂C satisfies the Liouville property. Then V̂ is algebraic.

1.1. Structure of the paper. Section 2 gathers notation, known results and global conventions that will be used
throughout the paper. In section 3 we provide technical tools for the proof of the main results. More precisely,
we study formal power series solutions of certain p-adic nonlinear differential equation using a Newton iteration
procedure. Section 4 is devoted to the proof of Theorem 1.1.

2. Notation, conventions and used facts

2.1. Global convention. Throughout the paper a variety is a reduced and irreducible scheme separated and of
finite type over a field.

2.2. Foliations. Let K be a number field, and let R be its ring of integers. Let X be a smooth quasi-projective
variety over K. A foliation on X is a line bundle L ⊆ TX such that the quotient TX/L is torsion free.

Let U ⊆ X be the open subset where L|U is a subbundle of TU . We say that L is singular at P ∈ X if
P ∈ X \ U .

Let Y ⊆ X be a closed subvariety, and let D be a derivation on X. Say that Y is invariant under D if
D(IY ) ⊆ IY .

Say that Y is invariant under L if for any local section D of L over some open subset U of X, D(IY ∩U ) ⊆
IY ∩U . To prove that Y is invariant under L it is enough to show that Y ∩ U of Y is invariant under L|U for
some open set U ⊆ X such that Y ∩U is dense in Y . If X and Y are smooth and L ⊆ TX is a subbundle, then
Y is invariant under L if and only if L|Y ⊆ TY ⊆ TX |Y .

Let N ⩾ 1 be a sufficiently divisible integer, and let X (resp. L ) be a smooth model of X over R[1/N ]
(resp. a line bundle on X contained in TX /S such that L ⊗RK coincides with L and the quotient TX /S/L is
torsion free), where S := SpecR[1/N ]. Let p be a maximal ideal of R with p ∤ N , and let kp := R/p denote the
residue field at p. Let p denote the characteristic of kp. The sheaf of derivations Derkp

(OXp
) ∼= TXp

is endowed
with the p-th power operation, which maps any local kp-derivation of OXp

to its p-th iterate.
We say that L is closed under p-th powers for almost all primes p if there exists N | N ′ such that, for any

p ∤ N ′, L |Xp
⊆ TXp

is closed under p-th powers. This condition is independent of the choices of X and L .

2.3. A-analyticity of formal smooth schemes. We briefly recall a number of definitions and facts concerning A-
analytic formal curves from [Bos01] (see also [BCL09]). We refer to loc. cit. for further explanations concerning
these notions.

Let K be field equipped with some complete ultrametric absolute value | · | and assume that its valuation
ring R is a discrete valuation ring.

Let N be a positive integer, and let r be a positive real number r. For any formal power series f =∑
I∈NN aIX

I ∈ Cp[[X1, . . . , XN ]], we define ||f ||r by the formula

||f ||r = sup
I

|aI |r|I| ∈ R⩾0 ∪+∞.

The power series f such that ||f ||r < +∞ are those that are convergent and bounded on the open N -ball of
radius r in K N .

Fact 2.1. Let r > 0 be a real number, and let f ∈ Cp[[X1, . . . , XN ]] and g ∈ Cp[[X1, . . . , XN ]] be formal power
series with ||f ||r < +∞ and ||g||r < +∞. Then ||fg||r < +∞, and ||fg||r ⩽ ||f ||r||g||r.

For any positive real number r, we denote by Gan,r < Aut
(
ÂN

K0

)
the subgroup consisting of all N -tuples

f = (f1, . . . , fN ) such that f(0) = 0, Df(0) ∈ GL2(R), and ||fi||r ⩽ r for each i. This subgroup may be
identified with the group of all analytic automorphisms, preserving the origin, of the open N -dimensional ball
of radius r. Set also Gan := ∪r>0Gan,r.
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Notice that a smooth formal subscheme V̂ of dimension d of ÂN
K0 is K-analytic if and only if there exists

f ∈ Gan such that f−1V̂ is the formal subscheme Âd
K0 × {0} of ÂN

K0.

Let X be a quasi-projective R-scheme, and X =: X ⊗R K its generic fiber. Let P ∈ X (R), and let

P := P ⊗R K. Let V̂ be a smooth formal subscheme of the completion X̂P of X at P . There is a unique way

to attach a number SX (V̂ ) ∈ [0, 1] such that the following holds (see [Bos01]).

(1) We have SX (V̂ ) > 0 if and only if V̂ is K-analytic.

(2) If (X ,P) = (AN
R , 0) and V̂ is K-analytic, then SX (V̂ ) is supremum of the set of real numbers 0 < r ⩽ 1

for which there exists f ∈ Gan such that f−1V̂ is the formal subscheme Âd
K0 × {0} of ÂN

K0.

(3) If X → X ′ is an immersion, then SX (V̂ ) = SX ′(V̂ ).

(4) For any two triples (X ,P, V̂ ) and (X ′,P ′, V̂ ′) as above, if there exists an R-morphism f : X → X ′

mapping P to P ′, étale along P, and inducing an isomorphism V̂ ∼= V̂ ′, then SX (V̂ ) = SX ′(V̂ ′).

We will refer to SX (V̂ ) as the size of V̂ with respect to the model X of X.

We will need the following easy observations.

Lemma 2.2 ([BCL09]). Let φ =
∑

m⩾1 cmX
m ∈ K[[X]] be formal power series such that c1 ∈ R, and let V̂ be

its graph in Â2
K0. Set λ := infm⩾1 − log |cm+1|

m ∈ R ∪ {−∞}, and let ρ be the radius of convergence of φ. Then
the following holds.

(1) The size SA2
R
(V̂ ) of V̂ with respect to (A2

R, 0) satisfies SA2
R
(V̂ ) ⩽ ρ.

(2) If ρ > 0, then SA2
R
(V̂ ) ⩾ min(1, expλ). In particular, V̂ is K-analytic. Moreover, if φ ∈ R[[X]], then

SA2
R
(V̂ ) = 1.

(3) If ρ > 0 and φ′(0) is a unit in R, then SA2
R
(V̂ ) = min(1, expλ).

Proof. Items (1) and (3) are shown in [BCL09, Proposition 3.5]. To prove Item (2), let

f(X1, X2) := (X1 +X2, φ(X1)) ∈ Aut
(
Â2

K0

)
.

Then f−1V̂ is the formal subscheme Â1
K0 × {0} of Â2

K0. If ρ > 0, then λ ∈ R. Set r := min(1, expλ) ∈ [0, 1].
Then ||f ||r ⩽ r, and hence f ∈ Gan. This finishes the proof the lemma. □

Lemma 2.3. Let φ =
∑

m⩾2 cmX
m ∈ K[[X]] be formal power series such that c2 ∈ R, and set φ := φ(X)/X =∑

m⩾1 cm+1X
m. Let V̂ (resp. Ŵ ) be the graph of φ (resp. ψ) in Â2

K0. Then SA2
R
(V̂ ) ⩾ SA2

R
(Ŵ ).

Proof. Let be a positive real number such that r < SA2
R
(Ŵ ). By assumption, there exist formal power series

f1 and f2 in K[[X1, X2]] such that f = (f1, f2) ∈ Gan,r and f−1Ŵ = Â1
K × {0}. This last condition is actually

equivalent to the identity

f2(T, 0) = ψ(f1(T, 0))

in K[[T ]]. Let us write f1(T, 0) =
∑

m⩾1 amT
m, and f2(T, 0) =

∑
m⩾1 bmT

m. We have b1 = c2a1. Since

f ∈ Gan,r, we must have Df(0) ∈ GL2(R). This immediately implies that a1 is a unit in R.
Let us set

g1(X1, X2) = f1(X1, X2), g2(X1, X2) = Y + f1(X1, X2)f2(X1, X2), and g = (g1, g2).

Then ||g1||r = ||f1||r ⩽ r and ||g2||r ⩽ r since ||f1f2||r ⩽ ||f1||r||f2||r ⩽ r2 ⩽ r. Moreover,

Dg(0) =

(
a1 ∂X2f(0)
0 1

)
∈ GL2(R),

and hence g ∈ Gan,r. Finally, notice that g−1V̂ = Â1
K × {0} since f2(T, 0)f1(T, 0) = φ(f1(T, 0)) in K[[T ]]. This

shows that SA2
R
(V̂ ) ⩾ SA2

R
(Ŵ ), finishing the proof of the lemma. □

Remark 2.4. In the setup of Lemma 2.3, note that the (formal) curve T 7→ (T, ψ(T )) is the proper transform of
the (formal) curve T 7→ (T, φ(T )) in the blow-up of A1

K at 0.
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Let K be a number field, and let R be its ring of integers. Let p be a maximal ideal of R, let | · |p be the
p-adic absolute value, normalized by the condition |ϖp|p = 1

♯(R/p) for any uniformizing element ϖp at p. Let

Kp and Rp be the p-adic completions of K and R, and kp := Rp/(ϖp) the residue field at p. Let p denote

the characteristic of kp. Let X be a quasi-projective algebraic variety over K, and let P ∈ X(K). Let V̂ be a

smooth formal subscheme (defined over K) of the formal completion X̂P of X at P . Let N ⩾ 1 be a sufficiently
divisible integer, and let X be a quasi-projective model of X over R[1/N ], such that P extends to a point

P ∈ X (R[1/N ]). The smooth formal scheme V̂ is said to be A-analytic (see [BCL09, Definition 3.7]) if

(1) for any place v of K, the formal scheme V̂Kv
is Kv-analytic, where Kv denotes the completion of K

with respect to v, and
(2) we have ∑

p ∤N

log
1

SXRp
(V̂Kp

)
< +∞.

This condition is independent of the choices of X , P, and N .

3. Power series solutions of certain p-adic differential equations

Let p be a prime number. Let Qp (resp. Cp) be the field of p-adic rational numbers (resp. complex numbers).
We denote by | · | the ultrametric absolute value on Cp normalized by |p| = p−1. We denote by v the p-adic
valuation on Cp normalized by v(p) = 1.

In this section, we study formal power series solutions of certain p-adic nonlinear differential equations at a
regular singular point. The following is the main result of this section.

Proposition 3.1. Let p be an odd prime integer, let 1 ⩽ s ⩽ p − 1 and 1 ⩽ t ⩽ p − 1 be relatively prime
integers, and set α := s

t . Let a, b, and cm for any integer m ⩾ 2 be power series in Cp[[X]] such that ||a||r ⩽ r
p ,

||b||r ⩽ r
p , and ||cm||r ⩽ 1

p for some real number r ∈]0, 1]. Suppose in addition that a(0) = a′(0) = 0 and that

b(0) = 0. Then the following holds.

(1) There exists a unique formal power series y in Cp[[X]] with y(0) = y′(0) = 0 solution of the differential
equation

(3.1) xy′ + αy = a+ by +
∑
m⩾2

cmy
m.

(2) There exists a constant C > 0 such that, letting R := r exp
(
− Ct (log p)2

p2

)
, we have ||y||R ⩽ R.

We will need the following well-known facts.

Fact 3.2. Let f =
∑

m⩾0 amX
m ∈ Cp[[X]] and g =

∑
m⩾0 bmX

m ∈ Cp[[X]]. Suppose that there exists a

positive real number r such that both |am|rm and |bm|rm goes to 0 as m goes to +∞. Then ||fg||r = ||f ||r||g||r
(see [Rob00, Proposition 2 of Section 6.1.4]).

Fact 3.3. Let f ∈ Cp[[X]]. If f(0) = 0 and ||f ||r ⩽ Cr for some positive real numbers r and C, then ||f ||r1 ⩽ Cr1
for 0 < r1 ⩽ r.

Fact 3.4. Let f =
∑

m⩾0 amX
m ∈ Cp[[X]]. Suppose that there exists a positive real number r such that |am|rm

goes to 0 as m goes to +∞. Then ||f ||r = ||fr||1 = sup|x|⩽1 |fr(x)| = sup|x|⩽r |f(x)|, where fr(X) := f(rX) =∑
m⩾0 amr

mXm (see [Rob00, Proposition 1 of Section 6.1.4]).

Before we give the proof of Proposition 3.1, we need the following auxiliary statements.

Lemma 3.5. Let k be a positive integer, and let b =
∑

m⩾2k bmX
m ∈ Cp[[X]] be a power series such that

||b||r ⩽ r
p for some real number r ∈]0, 1]. Set B =

∑
m⩾2k

bm
m Xm.

(1) Let r1 := r exp
(
− 2

p(p−1) log p
)
. Then ||B||r1 ⩽ p−

2
p−1 .

(2) Let r2 := r exp
(
− k+1

2k
log 2

)
. Then ||B||r2 ⩽ p−

2
p−1 .
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Proof. Let R be a positive real number. Then ||B||R ⩽ p−
2

p−1 if and only if

logR ⩽ inf
m⩾2k

{
1

m

(
− log |bm|+ log |m| − 2

p− 1
log p

)}
.

By assumption, we have

log |bm|+ (m− 1) log r ⩽ − log p

for any integer m ⩾ 2k, and hence

inf
m⩾2k

{
1

m

(
− log |bm|+ log |m| − 2

p− 1
log p

)}
⩾ inf

m⩾2k

{
1

m

(
(m− 1) log r + log |m|+ p− 3

p− 1
log p

)}
⩾ log r + inf

m⩾2k

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
using the fact that r ⩽ 1.

Notice that log |m|+ p−3
p−1 log p ⩽ − log p+ p−3

p−1 log p = − 2
p−1 log p < 0 if |m| < 1, and hence

inf
m⩾2k

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
< 0.

Then

inf
m⩾2k

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
⩾ inf

m⩾1

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
= inf

m⩾1 such that |m|<1

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
= inf

t⩾1 and u⩾1 such that |u|=1

{
1

ptu

(
− t+

p− 3

p− 1

)
log p

}
⩾ inf

t⩾1

{
1

pt

(
− t+

p− 3

p− 1

)
log p

}
.

Now observe that x 7→ 1
px

(
− x + p−3

p−1

)
is an increasing function on x > p−3

p−1 + 1
log p . On the other hand, we

have p−3
p−1 + 1

log p < 2. Thus

inf
t⩾1

{
1

pt

(
− t+

p− 3

p− 1

)
log p

}
= min

t∈{1,2}

{
1

pt

(
− t+

p− 3

p− 1

)
log p

}
=

−2

p(p− 1)
log p,

and hence

inf
m⩾2k

{
1

m

(
− log |bm|+ log |m| − 2

p− 1
log p

)}
⩾ log r − 2

p(p− 1)
log p.

This proves (1).

We proceed to show (2). We have

inf
m⩾2k

{
1

m

(
log |m|+ p− 3

p− 1
log p

)}
⩾ inf

m⩾2k

{
1

m

(
− logm+

p− 3

p− 1
log p

)}
⩾ inf

m⩾2k

{
1

m

(
− logm+

p− 3

p− 1
log p

)}
⩾ inf

m⩾2k

{
− logm

m

}
− 1

2k
log 2.

Notice that the function x 7→ − log x
x is increasing on log x > 1. Therefore, if k ⩾ 2, then

inf
m⩾2k

{
1

m

(
− logm

)}
= − k

2k
log 2.

If k = 1, then

inf
m⩾2k

{
1

m

(
− logm

)}
= min

{
−1

2
log 2,− 2

22
log 2

}
= −1

2
log 2 ⩾ − log 2.

This proves (2), completing the proof of the lemma. □
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Remark 3.6. In the setup of Lemma 3.5, notice that exp(B(x)) is the unique formal power series solution of the

differential equation xy′ = by such that y(0) = 1. We will denote B(x) by
∫ x

0
b(u)
u du.

Lemma 3.7. Let k be a positive integer, and let a =
∑

m⩾2k amX
m ∈ Cp[[X]] be a power series such that

||a||r ⩽ r
p for some positive real number r. Let 1 ⩽ s ⩽ p− 1 and 1 ⩽ t ⩽ p− 1 be relatively prime integers, and

set α := s
t and A =

∑
m⩾2k

am

m+αX
m.

(1) Let r1 := r exp
(
− t

(p−1)2 log p
)
. Then ||A||r1 ⩽ r1.

(2) Suppose that 2k ⩾ α+ 2, and let r2 := r exp
(
− kt

2k−1 log 2
)
. Then ||A||r2 ⩽ r2.

Proof. Let R be a positive real number. Then ||A||R ⩽ R if and only if

logR ⩽ inf
m⩾2k

{
− 1

m− 1
log

|am|
|m+ α|

}
.

By assumption, we have log |am| + (m − 1) log r ⩽ − log p for any m ⩾ 2k. Notice also that |s| = |t| = 1.
Thus

inf
m⩾2k

{
− 1

m− 1
log

|am|
|m+ α|

}
⩾ log r + inf

m⩾2k

{
1

m− 1

(
log p+ log |tm+ s|

)}
⩾ log r + inf

m⩾2kt+s

{
t

m− s− t

(
log p+ log |m|

)}
⩾ log r + inf

m⩾2t+s

{
t

m− s− t

(
log p+ log |m|

)}
.

Note that log p+ log |m| < 0 if |m| < |p|, and that m− s− t ⩾ t ⩾ 1. Hence

inf
m⩾2t+s

{
t

m− s− t

(
log p+ log |m|

)}
< 0,

and thus

inf
m⩾2t+s

{
t

m− s− t

(
log p+ log |m|

)}
= inf

m⩾2t+s and |m|<|p|

{
t

m− s− t

(
log p+ log |m|

)}
= inf

k⩾2 and u⩾1 such that |u|=1

{
t

pku− s− t

(
1− k

)
log p

}
⩾ inf

k⩾2

{
t

pk − 2(p− 1)

(
1− k

)
log p

}

⩾ inf
k⩾2

 t

pk
(
1− 2(p−1)

p2

)(1− k
)
log p


=

t log p(
1− 2(p−1)

p2

) inf
k⩾2

1− k

pk
.

On the other hand, the function x 7→ 1−x
px is increasing on x > 1 + 1

log p . This immediately implies

inf
k⩾2

1− k

pk
= − 1

p2
,

and hence

t log p(
1− 2(p−1)

p2

) inf
k⩾2

1− k

pk
= − t

p2
(
1− 2(p−1)

p2

) log p

= − t

p2 − 2p+ 2
log p

⩾ − t

(p− 1)2
log p.

This proves (1).
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We proceed to show (2). Suppose that 2k ⩾ α+ 2. If moreover m ⩾ 2kt+ s, then

m

2
− s− t ⩾

1

2
(2kt+ s)− s− t ⩾

1

2
(s+ 2t+ s)− s− t = 0,

and hence m − s − t ⩾ m
2 . Notice in addition that we must have k ⩾ 2 since α > 0 by assumption. Then, we

have

inf
m⩾2kt+s

{
t

m− s− t

(
log p+ log |m|

)}
⩾ inf

m⩾2kt+s

{
t

m− s− t

(
log p− logm

)}
⩾ − inf

m⩾2kt+s

{
t

m− s− t
logm

}
⩾ −2t inf

m⩾2kt+s

logm

m

⩾ −2t inf
m⩾2k

logm

m

= − kt

2k−1
log 2.

This completes the proof of the lemma. □

Remark 3.8. In the setup of Lemma 3.7, note that A is the unique formal power series solution of the differential
equation

xy′ + αy = a

with y(0) = y′(0) = 0.

We are now in position to prove Proposition 3.1.

Proof of Proposition 3.1. Notice that m+ α ̸= 0 for any integer m ⩾ 2. Item (1) then follows easily.

The proof of Item (2) is subdivided into a number of steps.

Step 1. Let m ⩾ 2 be an integer. Observe that v(m+ α) = v(tm+ s) ⩽ log(tm+s)
log p . Therefore, [SS81, Theorem

2] applies to show that the formal solution y is convergent.
Set

c(X1, X2) :=
∑
m⩾2

cm(X1)X
m
2 ∈ Cp[[X1, X2]],

and consider the formal power series

B(x) :=

∫ x

0

b(u)

u
du and z(x) := y(x) exp(−B(x)).

Note that z(0) = z′(0) = 0. Then y is solution of Equation (3.1) if and only if z is solution of

xz′(x) + αz(x) = exp(−B(x))
(
a(x) + c(x, z(x) exp(B(x)))

)
.

By Lemma 3.5 (1), B(x) converges if |x| ⩽ r0 := r exp
(
− 2

p(p−1) log p
)
, and |B(x)| ⩽ p−

2
p−1 < p−

1
p−1 . In

particular, exp(±B(x)) is well-defined. Set

a0(x) := a(x) exp(−B(x))) and c0,m(x) := cm(x) exp((m− 1)B(x))

for all m ⩾ 2, so that

exp(−B(x))c(x, z(x) exp(B(x))) =
∑
m⩾2

c0,m(x)z(x)m.

Let r1 := r exp
(
− 3

p(p−1) log p
)
< r0. Then [Rob00, Theorem of Section 6.1.5] applies to show that

exp(±B)(x) converges and that exp(±B)(x) = exp(±(B(x)) if |x| ⩽ r1. In addition, we have || exp(±B)||r1 =
sup|x|⩽r1 | exp(±B)(x)| = sup|x|⩽r1 | exp(±(B(x))|. On the other hand, sup|x|⩽r1 | exp(±(B(x))| ⩽ 1 since

|m!| ⩾ p−
m

p−1 for every integer m ⩾ 1. It follows that

|| exp(±B)||r1 = 1
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since B(0) = 0. As a consequence, we have

||a0||r1 = ||a||r1 || exp(−B)||r1 = ||a||r1 ⩽
r1
p
,

||c0,m||r1 = ||cm||r1 ⩽ ||cm||r ⩽
1

p
,

and
||y||R = ||z||R

for any real number 0 < R ⩽ r1.

Replacing r by r1, if necessary, we may therefore assume without loss of generality that b = 0, so that
Equation (3.1) reads

(3.2) xy′ + αy = a+
∑
m⩾2

cmy
m.

Step 2. The proof of [SS81, Theorem 2] then goes as follows. Let z0 ∈ Cp[[X]] be the unique formal power series
solution of

xz′0(x) + αz0(x) = a(x)

with z0(x) = O(x2) as x goes to 0. Set b0 = 0. Observe that a1(x) := c(x, z0(x)) = O
(
x2

2)
as x goes to 0. Set

b1(x) := ∂x2
c(x, z0(x)), and let z1 ∈ Cp[[X]] be the unique formal power series solution of

xz′1(x) + αz1(x) = a1(x) + b1(x)z1(x)

with z1(x) = O
(
x2

2)
as x goes to 0. Next, one defines inductively zk ∈ Cp[[X]] for all integer k ⩾ 2 as follows.

Set

yk :=

k∑
i=0

zi

for k ⩾ 0. If k ⩾ 2, set

ak(x) := c(x, yk−1(x))− c(x, yk−2(x))− zk−1(x)∂x2
c(x, yk−2(x))

and
bk(x) := ∂x2

c(x, yk−1(x)).

For k ⩾ 2, one then proves that there exists a unique formal power series zk solution of

(3.3) xz′k(x) + αzk(x) = ak(x) + bk(x)zk(x)

with zk(x) = O
(
x2

k+1)
. Finally, one proves that zk converges for all k ⩾ 0 as well as y :=

∑
k⩾0 zk and that y

is the unique solution formal power series solution of Equation (3.2) with y(x) = O(x2) as x goes to 0.

Step 3. Set Bk(x) :=
∫ x

0
bk(u)

u du. Notice that, for any integer k ⩾ 1, the formal power series zk is solution of
Equation (3.3) if and only if

wk(x) := zk(x) exp(−Bk(x))

is solution of
xw′

k(x) + αwk(x) = exp(−Bk(x))ak(x).

Let k1 be the smallest positive integer such that k1+1
2k1

⩽ 1
p2 . Then 2k1 ⩾ p2 + 1 ⩾ p+ 1 ⩾ α+ 2. Notice that

k1 ⩽ 5 log p. Indeed, let k be any integer such that k ⩾ 2
log 2 log p + 1. Then k+1

2k
⩽ 1

2k−1 ⩽ 1
p2 . It follows that

k1 ⩽ 2
log 2 log p+ 2 ⩽ 3 log p+ 2 ⩽ 5 log p.

Then, we define inductively a decreasing sequence (rk)k⩾0 of positive real numbers such that the following
holds. For any integer k ⩾ 0, if |x| ⩽ rk, then exp(±Bk)(x) converges, exp(±Bk)(x) = exp(±(Bk(x)), and zk(x)
converges as well. In addition,

|| exp(±Bk)||rk = 1,

and
||zk||rk ⩽ rk.

Finally, we will show that the limit r∞ of the sequence (rk)k⩾0 satisfies

log r − log r∞ ⩽ Ct
(log p)2

p2
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for some constant C > 0. In particular, r∞ > 0.
Set r0 := r exp

(
− t

(p−1)2 log p
)
. By Lemma 3.7 (1), ||z0||r0 ⩽ r0. Moreover, B0 = 0 since b0 = 0.

Let now k be a positive integer. Suppose rk−1 < rk−2 < · · · < r0 have already been defined. For any integer
0 ⩽ j ⩽ k − 1, we have

||yj ||rk−1
⩽ max

0⩽i⩽j
||zi||rk−1

⩽ rk−1,

and yj(x) converges if |x| ⩽ rk−1. Moreover,

||bk||rk−1
= ||∂x2

c
(
x, yk−1(x)

)
||rk−1

= ||
∑
m⩾2

mcmy
m−1
k−1 ||rk−1

⩽ max
m⩾2

{
|m|||cm||rk−1

||yk−1||m−1
rk−1

}
⩽ max

m⩾2

{
||cm||rrm−1

k−1

}
⩽
rk−1

p
.

Similarly, we have

||ak||rk−1
= ||c(x, yk−1(x))− c(x, yk−2(x))− zk−1(x)∂x2

c(x, yk−2(x))||rk−1
⩽
rk−1

p
.

Suppose first k < k1. Set

rk := rk−1 exp
(
− 2t

(p− 1)2
log p

)
⩽ rk−1 exp

(
− 2

p(p− 1)
log p

)
< rk−1.

By Lemma 3.5 (1) applied to bk and Lemma 3.7 (1) applied to exp(−Bk(x))ak(x) and arguing as in Step 1, we
see that rk satisfies all the conditions listed above.

Suppose now that k ⩾ k1, and set

rk := rk−1 exp
(
− (k + 1)t

2k−1
log 2

)
⩽ rk−1 exp

(
− k + 1

2k
log 2

)
< rk−1.

Applying Lemma 3.5 (2) to bk and Lemma 3.7 (2) to exp(−Bk(x))ak(x) and arguing again as in Step 1, we see
that rk also satisfies all the conditions listed above.

Finally, we have∑
1⩽k⩽k1−1

(log rk−1 − log rk) =
∑

1⩽k⩽k1−1

2t

(p− 1)2
log p =

2(k1 − 1)t

(p− 1)2
log p ⩽ 10t

(log p)2

(p− 1)2
,

and ∑
k⩾k1

(log rk−1 − log rk) =
∑
i⩾k1

(k + 1)t

2k−1
log 2

⩽ t log 2

∫ +∞

k1

x+ 1

2x−1
dx

=
t

2k1−1

(
1

log 2
+ k1 + 1

)
⩽ 4t

k1 + 1

2k1

⩽
4t

p2
.

Therefore, we have

log r − log r∞ =
∑
k⩾1

(log rk−1 − log rk) ⩽ 10t
(log p)2

(p− 1)2
+

4t

p2
⩽ 14t

(log p)2

(p− 1)2
.

Set C := 14, and R := r exp
(
− tC (log p)2

p2

)
. Then R ⩽ rk for any k ⩾ 0, and ||y||R ⩽ R since ||yk||R ⩽ R for

each k ⩾ 0. This completes the proof of the proposition. □
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4. Proof of Theorem 1.1

In this section we prove our main result. Note that Theorem 1.1 is an immediate consequence of Theorem
4.1 below.

Let X a smooth complex quasi-projective surface, and let L be a foliation on X. Let P be a singular point
of L, and let D be a vector field on some open subset U ∋ P such that L|U = OUD. Let α1 and α2 be the
eigenvalues of the linear part of D at P . Recall that P is a reduced singularity of L if at least one of the αi’s
is non-zero, say α2, and

α1

α2
is not a positive rational number. A reduced singularity P is called non-degenerate

if both α1 and α2 are non-zero. Then
{
α, 1

α

}
does not depend on the choice of D, where α := α1

α2
. Finally,

recall from [MM80, Appendice II], that if P is a non-degenerate reduced singularity, then there are exactly two
analytic curves in X passing through P and invariant under L. They are smooth and intersect transversely at
P .

Theorem 4.1. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P ∈ X(K) be a singular point of L.
Suppose that PC is a reduced singularity of LC for some embedding K ⊂ C. Then the following holds.

(1) The foliation L has a non-degenerate singularity at P , and −αPC(LC) ∈ Q>0. In particular, PC is a
reduced singularity of LC for any embedding K ⊂ C.

(2) There exist two L̂-invariant smooth formal subschemes V̂ and Ŵ of the completion X̂P of X at P

defined over K, where L̂ denotes the (formal) foliation induced by L on X̂P . In particular, V̂C and ŴC
are the formal completion at P of the two separatrices of LC through PC for any embedding K ⊂ C.

(3) The formal curves V̂ and Ŵ are A-analytic.

Proof. Replacing X by a Zariski open neighborhood of P in X, if necessary, we may assume without loss of
generality that X is affine, and that L = OXD for some vector field D ∈ TX ∼= Derk(OX). Let K be an algebraic
closure of K, and let α1 ∈ K and α2 ∈ K be the eigenvalues of the linear part of D at P . Suppose α2 ̸= 0.
By [McQ08, Proposition II.1.3], D is formally linearisable at P and α1

α2
∈ Q. This immediately implies that

α1 ̸= 0 since D has isolated zeroes by assumption. In addition, we must have −αPC(LC) = −α1

α2
∈ Q>0 for any

embedding K ⊂ C, proving (1).
Let us write α = − s

t , where s and t are relatively prime positive integers, and let K ⊂ C be an embedding.

Let x1 and x2 be regular functions on X such that the induced map X → A2
K is étale at P , and maps

P to 0. Shrinking X further, we may assume that X → A2
K is étale. Let D̂ denote the K-derivation of

ÔX,P
∼= K[[X1, X2]] induced by D. We may assume without loss of generality that

D̂ = (X1 + f1(X1, X2))∂X1
+ (λX2 + f2(X1, X2))∂X2

,

where f1 and f2 are formal power series with coefficients in K vanishing to order at least 2 at P . Let φ1 and
φ2 be formal power series with coefficients in K vanishing to order at least 2 at 0. Then the formal (smooth)
curves

T 7→ (φ1(T ), T ) and T 7→ (T, φ2(T ))

are invariant under D̂ if and only if

D̂(X1 − φ1(X2)) ∈ (X1 − φ1(X2)) and D̂(X2 − φ2(X1)) ∈ (X2 − φ2(X1))

if and only if

(4.1) φ1(T ) + f1(φ1(T ), T )− φ′
1(T )

(
λT + f2(φ1(T ), T )

)
= 0

and

(4.2) λφ2(T ) + f2(T, φ2(T ))− φ′
2(T )

(
T + f1(T, φ2(T ))

)
= 0.

One readily checks that there is a unique formal power series φ1 ∈ K[[T ]] (resp. φ2 ∈ K[[T ]]) vanishing to order
at least 2 at 0 solution of Equation (4.1) (resp. Equation (4.2)) since −α ∈ Q>0. This proves (2).

We will denote by V̂ (resp. Ŵ ) the formal curve T 7→ (φ1(T ), T ) (resp. T 7→ (T, φ2(T ))).

The proof of Item (3) is subdivided into a number of steps.

Step 1. Let v be a place of K, and let Kv be the completion of K at v. Notice first that V̂Kv and ŴKv are
Kv-analytic by [SS81, Theorem 2] if v is a finite place and [MM80, Appendice II] if v is archimedean.
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Step 2. Suppose that the (algebraic) curve {x1} = 0 is L -invariant. Shrinking X further, if necessary, we may
therefore assume that

D = x1∂x1
+ f(x1, x2)∂x2

,

where f is a regular function on X.
Let R be the ring of integers of K. If N denotes a sufficiently divisible positive integer, there exists a model

X of X, smooth and quasi-projective over R[1/N ], such that P extends to a point P ∈ X (R[1/N ]). We may
also assume that X → A2

K extends to an étale morphism X → A2
R[1/N ], and that D extends to a vector field

D ∈ H0(X , TX /SpecR[1/N ]) with isolated zeroes. Let p be a maximal ideal of R, and let | · |p be the p-adic

absolute value, normalized by the condition |ϖp|p = 1
♯(R/p) for any uniformizing element ϖp at p. Let Kp and

Rp be the p-adic completions of K and R, and kp := Rp/(ϖp) the residue field at p. Let finally p denote the
characteristic of kp.

Suppose that p ∤ N , and that Kp is absolutely unramified. Let D̂p denote the Kp-derivation of ÔXKp ,PKp
∼=

Kp[[X1, X2]] induced by DKp
= DKp

. Then

D̂p = X1∂X1 + fp(X1, X2)∂X2

where fp ∈ Rp[[X1, X2]]. Let also Dp be the kp-derivation of kp[[X1, X2]] induced by D̂p. By assumption, Dp

is p-closed. This immediately implies

D
p

p = Dp

since D
p

p (X1) = Dp(X1) = X1. By [AA86, Lemma 6.4] applied to Dp, there exists a formal power series

Y 2 in kp[[X1, X2]] such that Dp(Y 2) = αY 2. Notice that Y 2 may a priori depend on our choice of p. Let

Y2 ∈ Rp[[X1, X2]] be any formal power series whose reduction modulo ϖp is Y 2. By construction, we have

D̂p(Y2) = λY2 modulo (ϖp). Set Y1 := X1. Then, we have

D̂p = Y1∂Y1
+ (λY2 + gp(Y1, Y2))∂Y2

,

where gp ∈ ϖpRp[[Y1, Y2]] vanishes to order at least 2 at 0. On the other hand, recall that V̂Kp
is defined by

Y1 = φ(Y2) in Spf ÔXKp ,PKp
∼= SpfKp[[Y1, Y2]], where φ is the unique formal power series in Kp[[T ]] solution

of the differential equation
Tφ′(T )− αφ(T ) = gp(X,φ(X))

such that φ(0) = φ′(0) = 0. Let us write φ =
∑

m⩾2 amT
m and gp =

∑
m⩾0 bmY

m
2 , where bm ∈ ϖpRp[[Y1]].

Then ||cb||p,1 ⩽ |ωp| = 1
p[Kp:Qp] , so that Proposition 3.1 applies to show that the size SXRp

(V̂Kp
) satisfies

log
1

SXRp
(V̂Kp

)
⩽ C(α)[Kp : Qp]

(log p)2

p2
,

where C(α) > 0 depends only on α.

Step 3. In the general setting, let Y be the blow-up of X at P , and let M be the foliation on Y induced by
L. The exceptional divisor E is M -invariant and contains exactly two singularities Q1 and Q2 (defined over
K) of M , both reduced and non-degenerate. In addition, relabeling Q1 and Q2 if necessary, we may assume

that there is a smooth formal subscheme V̂1 (resp. Ŵ1) of ŶQ1
defined over K (resp. ŶQ2

) which is M̂ -invariant

and such that the morphism Y → X induces an isomorphism V̂1 ∼= V̂ (resp. Ŵ1
∼= Ŵ ). The blow-up Y of

X along P is a smooth and quasi-projective model of Y over R[1/N ]. In addition, Q1 and Q2 extends to
points Q1 ∈ Y (R[1/N ]) and Q2 ∈ Y (R[1/N ]), and M extends to a foliation M ⊂ TY /SpecR[1/N ]. We have a
commutative diagram

Y Bl0A2
R[1/N ]

X A2
R[1/N ],

where the horizontal arrows are étale morphims. Let U1
∼= A2

R[1/N ] ⊂ Bl0A2
R[1/N ] be the affine charts containing

Q1 with coordinates (y1, y2) (centered at Q1). Then the natural morphism U1 → A2
R[1/N ] maps (y1, y2) to

(y1y2, y2). This immediately implies that the formal subscheme V̂1 is defined by Y1 = φ(Y2)/Y2 in ŶQ1
=
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Spf ÔY,Q1
∼= SpfK[[Y1, Y2]]. Finally, recall that the size (of a smooth formal scheme) is invariant by étale

localization. Let again p be a maximal ideal of R, and suppose that p ∤ N , and that Kp is absolutely unramified.

Then Lemma 2.3 and Step 2 imply that SXRp
(V̂Kp

) satisfies

log
1

SXRp
(V̂Kp

)
⩽ log

1

SYRp
(ŴKp

)
⩽ C ′(α)[Kp : Qp]

(log p)2

p2

where C ′(α) > 0 depends only on α. This immediately implies that V̂ is A-analytic, completing the proof of
the theorem. □

Let L be a foliation on a smooth complex quasi-projective surface X, and let P be a singular point of L. By
[CS82, Theorem], there exists a (possibly singular) analytic curve passing through P . The following is an easy
consequence of Theorem 4.1 above.

Corollary 4.2. Let X be a smooth quasi-projective surface over a number field K, and let L be a foliation on
X. Suppose that L is closed under p-th powers for almost all primes p. Let P ∈ X(K) be a singular point of L,

and let V̂ be an L̂-invariant smooth formal subcheme of the completion X̂P of X at P defined over K, where L̂

denotes the (formal) foliation induced by L on X̂P . Then V̂ is A-analytic.

Proof. LetK be an algebraic closure ofK. By a result proved by Seidenberg ([Sei68]), there exists a composition
of a finite number of blow-ups YK → XK of K-rational points such the foliation MK induced by L on YK has
reduced singularities. The variety YK is defined over a finite extension F of K. Let M be the foliation on Y
indiced by L. Notice that M is closed under p-th powers for almost all primes p. Then Theorem 4.1 applied

to the proper transform of V̂F in Y together with [BCL09, Proposition 3.4] and Lemma 2.3 imply that V̂ is
A-analytic. □
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